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Abstract: Topical and transdermal delivery systems are of undeniable significance and ubiquity in health-
care, to facilitate the delivery of active pharmaceutical ingredients, respectively, onto or across the skin
to enter systemic circulation. From ancient ointments and potions to modern micro/nanotechnological
devices, a variety of approaches has been explored over the ages to improve the skin permeation of
diverse medicines and cosmetics. Amongst the latest investigational dermal permeation enhancers,
ionic liquids have been gaining momentum, and recent years have been prolific in this regard. As such,
this review offers an outline of current methods for enhancing percutaneous permeation, highlighting
selected reports where ionic liquid-based approaches have been investigated for this purpose. Future
perspectives on use of ionic liquids for topical delivery of bioactive peptides are also presented.

Keywords: active pharmaceutical ingredients; complicated skin and soft tissue infections; cosmetics;
ionic liquids; peptides; transdermal delivery; wound-healing

1. Introduction

The skin is the largest organ of the human body, protecting it against external aggres-
sions while keeping its thermal regulation and conveying the sense of touch. Being such a
formidable barrier, the skin may also be a considerable obstacle for efficient topical absorption
and/or transdermal delivery of many active pharmaceutical ingredients (APIs) and cosmetics.
Different strategies have been developed and explored over time to promote dermal perme-
ation of different substances, since empirical formulations developed over five thousand years
ago in the ancient Egyptian and Babylonian civilizations, to cutting-edge physical, chemical,
and [bio]nanotechnological approaches that build on current knowledge of skin physiology,
composition, and permeation routes (Figure 1) [1–3].
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The evolution of strategies to promote percutaneous penetration of molecules and
macromolecules is schematized in Figure 2 [5]. Current approaches encompass: (i) physi-
cal methods like sonophoresis, iontophoresis, thermophoresis, electroporation, laser mi-
croporation, thermal ablation, or microneedle patches [6]; (ii) encapsulation in suitable
nanocarriers (nanoparticles, liposomes, ethosomes, niosomes, aquasomes, etc.) [7]; (iii) use
of engineered controlled-release and/or stimuli-responsive materials (patches, wearable
devices, and others) [8]; and (iv) addition of [bio]chemical permeation enhancers (e.g., fatty
acids, fatty alcohols, alcohols, glycols, peptides, [bio]surfactants) [9]. Some of these meth-
ods can be combined, to further improve the percutaneous permeation efficiency.
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Figure 2. Diagram on the progress in the development of percutaneous absorption enhancement
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Chemical permeation enhancers (CPEs) act through interactions with molecules that
compose the stratum corneum (SC), the outermost layer of the skin that limits the rate
of dermal/transdermal permeation. CPEs include different chemical families, such as
alcohols (e.g., isopropyl alcohol), glycols (e.g., propylene glycol), terpenes and terpenoids
(e.g., menthol), essential oils (e.g., eucalyptus), sulfoxides (e.g., dimethylsulfoxide), ether
alcohols (Transcutol®), and amides (Azone®), among many others [9]. The over 600 CPEs
reported to date act via different pathways, the most common of which is disturbance
of the cell membrane phospholipid bilayers [10]. As such, it comes with no surprise
that an important portion of CPEs regard amphiphilic molecules such as fatty acids and
respective esters, fatty alcohols, and several other anionic, cationic, zwitterionic, and
non-ionic surfactants (Table 1) [9].

Table 1. Examples of amphiphilic chemical permeation enhancers (CPEs).

Class
Examples

Name Structure

Fatty acids

Lauric acid CH3(CH2)10COOH

Oleic acid cis-CH3(CH2)7CH=CH(CH2)7COOH

Linoleic acid cis,cis-
CH3(CH2)4CH=CHCH2CH=CH(CH2)7COOH
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Table 1. Cont.

Class
Examples

Name Structure

Fatty esters
Isopropyl myristate CH3(CH2)12COOCH(CH3)2

Isopropyl palmitate CH3(CH2)14COOCH(CH3)2

Fatty alcohols
Octanol CH3(CH2)7OH

Decanol CH3(CH2)9OH

Cationic surfactants

Cetylpyridinium chloride (hydrate)
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Non-ionic surfactants Polysorbates (Tween® surfactants)
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Cetylpyridinium chloride (Table 1) is one of the amphiphilic CPEs most commonly
used in cosmetics, where it also acts as a preservative and antiseptic, due to its antimicrobial
properties [11]. Cetylpyridinium chloride, by being an ionic pair that combines an organic
cation (cetylpyridinium) with an inorganic (could be organic) anion, has the structural type
of an ionic liquid. Ionic liquids (ILs) are generally defined as organic salts composed by an
organic cation and an organic or inorganic anion that are stable below their melting point.
ILs are known by their remarkable physical and chemical properties and by their possible
customization, since they can be designed to exert the desired effect by the correct choice
of the ions that compose them [12].

The relevance of ILs is currently consolidated in many areas that explore them
as (i) greener alternatives to common organic solvents, (ii) task-specific materials, and
(iii) polyvalent players in pharmaceutical sciences. In the latter field, a wide range of
ILs have been developed, spanning from ILs with intrinsic bioactivity to those having
suitable properties for drug formulation and transport [13,14]. In this regard, ILs have been
advanced as high value mediators of dermal and transdermal delivery (DTD) of small and
large molecules, whose properties can be tailored through a few simple design principles
as recently proposed by Mitragotri and co-workers [15].

In view of the above, this review offers a snapshot of the latest developments regarding
the most common methods for DTD of [bio]pharmaceuticals, highlighting the emerging
role of ILs for enhancement of percutaneous absorption of diverse payloads, including
proteins and peptides.
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2. Overview of Current Methods for Dermal and Transdermal Drug Delivery
2.1. Physical Methods

Physical methods to enhance percutaneous permeation can be divided into indirect
and direct approaches (Figure 3). In indirect methods, different types of energy are used
to promote penetration and diffusion of bioactive solutes through the SC. Thus, electrical
energy is applied in electroporation and iontophoresis procedures, acoustic energy is used
in sonophoretic methods (e.g., cavitation, ultrasound pressure), and laser or magnetic
energies can also be applied in this context.
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Electroporation uses high-voltage electrical pulses to generate transient pores in cell
membranes through which a wide variety of substances, from small drugs to nucleic acids,
can reach the intracellular milieu. Latest examples on skin applications of electropora-
tion techniques include the permeation of low concentration formic and acetic acids for
wound disinfection [16,17]. This type of electroporation applications was found to promote
differential regrowth of dermal fibroblasts and keratinocytes [18].

Iontophoresis is based on use of mild electrical currents to increase skin permeation,
mostly by electromigration of ions within the electric field applied, but also by electroos-
mosis or, to a minor extent, to enhanced passive diffusion. Understandably, this method
is better suited for the permeation of charged molecules, whose transport can be mod-
ulated by a number of parameters [19]. Ongoing investigational work on biomedical
applications of iontophoresis spans from pre-clinical studies on transdermal delivery of
anti-hypertensive agents [20], to clinical trials on iontophoresis of treprostinil as a potential
treatment for diabetic foot ulcers (DFUs) [21].

Sonophoresis has been also thoroughly explored for enhancement of percutaneous
absorption, mainly—but not exclusively—through cavitation or ultrasound (US)-based
techniques. Both cavitation [22] and US-based [23] sonophoretic methods have been also
recently considered for wound healing approaches, with encouraging results, including
in diabetic mice [23]. Of note, care must be taken in order to avoid that the intensity and
duration of US irradiation are high enough to cause burns at the irradiation site [1].

In direct methods, though considered a little invasive, pores are created in the SC,
through which the entry of solutes into the epidermis and eventually the dermis is forced by
means of mechanical, thermal, or pressure-based approaches. Currently, the most popular
direct methods include (i) the use of different types of microneedles (MNs)—solid, coated,
hollow, dissolving, or hydrogel-forming—to force percutaneous permeation of bioactive
compounds, and (ii) microdermabrasion (mechanics-driven) and thermal ablation (heat-
driven). Other physical methods have been used to promote percutaneous permeation,
though to a lesser extent; one example is that of jet injectors, whereby solid, liquid, or
plasma jets force drug delivery by means of the high pressure exerted when they hit
the skin [1].
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Microneedles (MNs)-based approaches are amongst the most widely explored phys-
ical methods to promote DTD. In recent years, different types of MN arrays have been
thoroughly studied as hurtless alternatives to classical injections, being well advanced in
the clinics [1,24]. MNs-based technologies are being pushed forward mainly for transder-
mal delivery of peptides, proteins, and antibodies [25], and for cosmetic applications [26].
Still, the latest reports highlight the therapeutic potential of MNs to tackle non-healing
wounds [27]. Based on the promising performance of diverse MN arrays such as Manuka
honey, MNs are able to promote healing and exert potent bactericidal action against
methicillin-resistant S. aureus (MRSA) [28].

[Photo]thermal ablation techniques are also regarded as a promising way to enhance
percutaneous permeation of therapeutics. In classical thermal ablation approaches, compo-
nents of the outermost skin layer are literally vaporized upon ultrafast exposure to an ex-
tremely high (>300 ◦C) temperature, which disrupts the SC barrier, facilitating subsequent
absorption of the drug, typically administered through a transdermal patch. [Photo]thermal
ablation methods have been also considered for tackling mild to severe skin infections [29],
by means of (i) direct ablation of the microbial pathogens [30], (ii) sensitization of bacterial
biofilms to standard antibiotics [31], or (iii) accelerating wound healing [32,33]. One recent
example advances a laser-activatable nanosystem able to exert a potent action against
multidrug resistant (MDR) bacteria often associated to non-healing wounds, by a combined
photothermal effect and controlled release of copper(II) ions [34].

The distinct physical methods mentioned above act through different permeation
mechanisms and have been employed alone or combined, with each other or with non-
physical methods, to enhance the absorption of a wide range of APIs, and also cosmeceuti-
cals, through the skin [1,9,35,36].

2.2. Non-Physical Methods—Nanosized Delivery Systems

Nanosized [bio]materials and formulations are regarded as the gold standard of non-
physical methods for drug delivery, with emphasis on dermal and transdermal applications.
Lipid-based or -inspired nanosystems are by far the most common, covering from the
classical examples of nanoemulsions and liposomes (Figure 4) to solid lipid nanoparticles
and nanostructured lipid carriers.
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Nanoemulsions (NEs) allow the dispersion of drug-containing droplets in very high
interfacial areas, and their relevance towards the enhancement of percutaneous absorption
of either hydrophilic (water-in-oil NEs) or lipophilic (oil-in-water NEs) substances is well
established [37,38]. NEs in use or under investigation today offer diverse compositions
and degrees of complexity, based on diverse amphiphiles, from natural lipids to synthetic
surfactants, and combinations thereof [37,38]. Use of essential oils in the formulation of
NEs has also been addressed. For instance, a clove oil-based NE was developed to combine
the anti-inflammatory and antifungal properties of the main oil component, eugenol, with
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those of the drug cargo, naftifine, used to tackle skin fungal infections [39]. Lately, other
types of liposome-inspired vesicles (Figure 5), such as ethosomes, transfersomes, niosomes,
among other, have been advanced [1,3,40,41]. Lipid-based/inspired nanosystems stem
from ancient knowledge on the value of fatty acids and derived hydrolyzable lipids, es-
pecially phospholipids, to enhance percutaneous absorption of a variety of substances
for both health- and beauty-care. Phospholipid-based emulsions, as well as micellar and
liposomal formulations for skin care are all around us, hence it comes as no surprise
that lipid-based/inspired nanocarriers have a prominent role in current approaches for
DTD of [bio]pharmaceuticals [1,3,40–43]. Still, nanosystems that do not [exclusively] de-
rive from natural lipids have been thoroughly explored for percutaneous permeation
of bioactive molecules; organic nanoformulations comprising either natural or synthetic
polymers and/or surfactants other than natural lipids can be found in recent literature,
covering distinct types of dendrimers, nanoparticles (NPs), nanoemulsions (NEs), mi-
celles, and hydrogels, for diverse purposes. Likewise, inorganic nanosystems, including
metallic, non-metallic, and magnetic NPs, among others, have been employed for DTD of
[bio]pharmaceuticals [42,44].
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Vesicular nanocarriers (VNs) currently encompass a myriad of different, mostly spher-
ical, structures that share the common trait of having single or multiple bilayer lamellae
separating one or more aqueous or hydroalcoholic inner compartments from the outer
medium, and which have been widely used for topical disorders and cosmetics [9,46]. The
best known and most commonly employed VNs are liposomes, spherical colloidal bilayer
structures formed spontaneously by amphipathic phospholipids in aqueous environments,
which were originally reported in 1965 [47]. However, a variety of liposome-inspired VNs
has evolved since, such as:

• ethosomes, soft VNs whose structure is closely related to that of liposomes, the main
difference being the presence of ethanol in moderate to high concentrations, which
confers the vesicles high malleability and the ability to significantly enhance the
percutaneous permeation of highly lipophilic molecules [48];
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• transfersomes, ultraflexible VNs composed by either phospholipids or other bilayer-
forming amphipathic molecules packed together with edge activators that decrease
the vesicle’s interfacial tension; this conveys a very high elasticity enabling a much
better permeation through the SC probably via the intercellular route [49];

• niosomes are VNs usually composed by cholesterol and alkyl or polyglycerol-based
non-ionic surfactants that usually offer higher osmotic stability and involve lower
production costs as compared to phospholipid-based VNs. Yet, like in liposomes, the
physical stability of niosomes is not adequate for prolonged storage [50,51].

• other “somes” are continuously emerging as novel VNs for drug delivery, particu-
larly for topical applications. Among others, these comprise: invasomes—terpene-
containing ethosome analogues with enhanced penetration into deeper layers of the
skin [52]; aspasomes—multilayered VNs formed by combination of ascorbyl palmitate
with cholesterol and charged lipids [53]; and other self-assembling hollow nanos-
tructures based on, e.g., solid crystalline cores (aquasomes), liquid crystalline phases
(cubosomes, hexosomes), or hollow coagulated nanoparticles (colloidosomes) [54], as
well as polymer-based vesicles (polymersomes) [55].

All these types of artificially produced VNs have been recently explored and optimized
to create increasingly efficient formulations for DTD of bioactive molecules and macro-
molecules. For instance, different hydrogels have been investigated as suitable vehicles for
topical delivery of drug-loaded niosomes [56]. In another recent report, an ethosome-based
gel showed good performance both in vitro and in vivo for delivery of thymosin β-4, a
protein that is relevant for wound repair [57]. Less common VNs have been lately advanced
for diverse purposes, such as unsaturated fatty-acid based nanovesicles (ufasomes) for
DTD of terbinafine hydrochloride to address Candida albicans-associated topical fungal
infections [58]. Interestingly, when looking at the forefront of VNs-mediated drug delivery,
we can witness the increasing relevance of cell-based VNs such as exosomes [59] or outer
membrane vesicles (OMVs) from Gram-negative bacteria [60], whose major hallmark is
their expectedly high biocompatibility and low immunogenicity. Exosomes are extracel-
lular vesicles that integrate proteins and nucleic acids of their secreting cells, and which
can affect function and properties of other cells able to internalize them [59]; as such,
recent efforts address their engineering for targeted drug delivery [61,62], also for diverse
dermatological applications [63–65] and wound healing [66]. Besides exosomes, OMVs
are also becoming prominent actors in several biomedical applications, including recent
examples where engineered OMVs from transgenic Escherichia coli have been used for DTD
of biopharmaceuticals, alone [60] or in combination with phototherapy [67].

Nanocarriers (NCs) include many other structures besides bilayered VNs, with di-
verse properties and applications, including targeted delivery of [bio]pharmaceutics
(Figure 6) [68]. NCs are typically colloidal particulate systems having at least one dimen-
sion not larger than 100 nm. NCs can be categorized in different ways, i.e., based on
morphology (nanorods, nanoshells, nanocages, nanostars, etc.), core material (metallic,
ceramic, polymeric, carbon-based, lipid-based, etc.), specific physical and/or chemical
properties (magnetic, [semi-]conductivity, thermoconductivity, stiffness, porosity, etc.),
among other criteria (e.g., surface charge or functionalization) [69]. It should be out-
lined that most current nanodelivery approaches rely on hybrid/composite systems often
comprising inorganic, biopolymeric, and several other natural and/or synthetic organic
components, which blur the frontiers between different types of NCs. While nanosized
liposomal and liposome-like VNs addressed in the previous section are also NCs, this
section is aimed at pinpointing a few recent cases where NCs with non-bilayer structures
have been explored for topical delivery focusing on the treatment of skin and soft tissue
infections and wound-healing enhancement.
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Lipid-based NCs, of which solid lipid nanoparticles (SLNs) and nanostructured lipid
carriers (NLCs) are the most representative examples (Figure 7), are currently regarded
as enhanced alternatives to classical liposomal-based formulations. SLNs emerged as the
first-generation of non-liposomal lipid-based nanocarriers, featured by a spherical shape
and a payload-containing solid core stabilized by an outer layer lined with surfactants.
SLNs offer many advantages over other types of NCs, the main of which are their high
biocompatibility and biodegradability, but also high compatibility with a wide range of
payloads and cost-effective production, among others. Still, the solid nature of SLNs poses
a few limitations, such as low loading capacity and the risks of premature drug release,
unexpected gelation, and crystallization upon storage. NLCs emerged to circumvent these
hurdles, by offering a nanostructured core containing low-melting point lipids (liquid at
room temperature) [70–72].
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The potential of both SLNs and NLCs for drug delivery, including across the formidable
obstacles that are the blood–brain barrier and the skin, has been widely addressed [71–73].
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Promising results have been lately reported to DTD of anti-inflammatory, antibacterial,
antiviral, antifungal, antiacneic, and anticancer agents, among others, as nicely reviewed
by Souto et al. [73]. Also, SLNs and NLCs have been explored for DTD of cosmetics, with
encouraging performances [74]. Importantly, the formulation of SLNs and NLCs for DTD
of [bio]pharmaceuticals and cosmeceuticals can be easily tailored according to their specific
application and payload [73,74].

SLNs and NLCs are also showing promise to promote skin regeneration [75–77]. Re-
cent investigations focused on DTD of essential oils having healing effects due to either a
dual anti-inflammatory/collagenesis-inducing action of the oil itself [78], or to a synergic
antimicrobial and healing action elicited by combination of the essential oil with specific
components in the lipid nanocarrier (e.g., oleic acid) [79]. Very recently, different SLNs
and NLCs have been tested along with NEs for DTD of curcumin, a hydrophobic photo-
sensitive phytomolecule, whose anti-inflammatory, antimicrobial, and healing properties
have been known for long [80]. This study revealed that all tested NCs were efficient for
photoprotection of the phytopharmaceutical, with NLCs offering the best pharmacolog-
ical performance, provided the matrix fluidity was tuned for optimized skin occlusion
and drug release rate [80]. In line with this, multiple benefits of SLNs/NLCs-mediated
delivery of natural and synthetic antimicrobials have been advocated in the recent liter-
ature [81–83], including for fighting multidrug-resistant (MDR) infections [84,85]. Thus,
a new “nanoantibiotic era” is on the rise [86] that will likely have great impact on the
management of complicated skin and skin structure infections (cSSTI), given the unique
ability of lipid-based NCs to overcome the skin barrier [87]. One illustrative example is
“nanoRIF”, a rifampicin-loaded hybrid lipidic/polymeric NC that showed in vivo efficacy
against Staphylococcus aureus-associated infection on skin [88].

Non-lipidic NCs enclose a broad variety of organic and inorganic nanomaterials, a few of which
are next highlighted for their recent interest for the enhancement of percutaneous permeation:

• dendrimers are hyperbranched arborescent spherical NPs that may be composed by
either natural (e.g., amino acid- or peptide-based) or artificial (e.g., ethylene glycol-
based) dendrons, whose individual structure and tridimensional arrangement in the
final dendrimer have great impact on the physical, chemical, and drug loading/release
properties of the whole nanosystem [89]. The biomedical relevance of dendrimers,
including for drug delivery, is growing exponentially [90,91], and interest is now
falling on topical applications. Latest reports in this regard concern, e.g., use of
poly(amidoamine)- or PAMAM-based dendrimers for enhanced skin permeation
of the chlorhexidine digluconate antiseptic [92], or dermal delivery and follicular
targeting of the antiacneic agent adapalene [93].

• [bio]polymer-based NCs, encompassing [bio]polymeric NPs, films, gels, nanofibers,
among others, have been thoroughly investigated for drug delivery applications [94],
including for topical use [95]. Natural polymers such as chitosan, poly(glycolic acid),
poly(lactic acid), hyaluronic acid, and poly(arginine) are amongst the most popular
components of polymeric NCs, given their biocompatibility and biodegradability,
along with their chemical “flexibility” to enable the production of a wide range of
multi-component customized stimuli-responsive nanomaterials [95]. Chitosan-based
polymeric NCs have been thoroughly explored for topical applications, given the
intrinsic antimicrobial and healing properties of chitosan [96]. One recent exam-
ple concerns development of a chitosan/carboxymethyl cellulose-based nanogel for
transdermal co-delivery of atorvastatin and Nigella sativa oil for wound management,
taking advantage of the anti-inflammatory, immunomodulatory, antioxidant, and
antibacterial properties of both bioactive cargoes; in vitro permeation, cytotoxicity,
healing, and bactericidal activity assays delivered quite promising results [97]. Many
other polymer-based nanomaterials have been explored in recent years for topical
applications from, e.g., extracellular matrix-mimicking nanofibrous scaffolds [98] to
promote accelerated healing of chronic wounds.
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• inorganic NCs integrate metal-, metal oxide-, and mesoporous silica-based NPs as
the most popular examples, although other nanosystems, such as inorganic polymer-
based NCs, carbon-, carbon oxide-, or black phosphorus-based nanomaterials, also
fit this category [99–102]. Although the majority of inorganic NCs in drug delivery,
including DTD, has been addressed to cancer theranostics [103] they have also been
explored for antimicrobial therapies [104], where silver-based NPs (AgNPs) occupy
a prominent role, given the intrinsic antibacterial properties of silver [52,105]. For
instance, AgNPs synthesized from silver nitrate in the aqueous extract of a medicinal
plant (Acanthospermum australe) used in South America to treat cSSTI, were recently
reported to have potent wide spectrum antimicrobial activity [106]. Yet, AgNPs, as
well as other inorganic NPs such as zinc oxide-based ones, may pose toxicity issues
for dermatological and dermocosmetic use [107]. As such, recent reports on use of
AgNPs, or even of other inorganic NCs, for DTD of [bio]pharmaceuticals are relatively
scarce. Notwithstanding, graphene oxide-based NCs have been lately highlighted
for topical applications [108], including as bioactive agents able to tackle cSSTI per
se [109,110]. Other carbon-based inorganic NCs have also been explored to tackle
skin disorders, with emphasis on wound healing and control of cSSTI, as recently
revised elsewhere [111]. Additional examples on use of inorganic NCs for DTD of
[bio]pharmaceuticals mainly address combination with physical methods, in particular
with microneedle-based technologies [112–114].

2.3. Chemical Permeation Enhancers

As already mentioned, chemical permeation enhancers (CPEs) are molecules able to
temporarily alter the structure of the SC, thus enhancing the percutaneous permeation of
different substances. The performance of a CPE depends on its ability to both efficiently
partition from the applied medium into the skin lipid layer and interact with the con-
stituents of this layer, causing momentary but significant perturbations that lead to the
desired higher permeability of the SC. While the solution-to-SC partition is influenced by
the lipophilicity of the CPEs, the size and structure of the latter dictate the permeation
enhancement pathway(s) (Table 2, Figure 8). Thus, some CPEs, like alcohols and polyols,
act mainly as solvents that increase the solubility of the drug and its partitioning into
the SC, whereas other solvents used as CPEs, as dimethylsulfoxide, are further able to
extract lipid molecules from the SC, creating channels that turn the SC more permeable.
Other CPEs, like fatty acids or their esters, are able to insert into the bilayer structures of
skin lipids, altering their ordered packing and thus increasing permeability [10,115,116].
Relevantly, though CPEs are usually associated to lipophilic or amphiphilic organic com-
pounds (Table 2), water is the safest and most widely employed CPE for dermatological
and dermocosmetic applications; water offers the simplest way to deliver hydrophilic
compounds across the skin, but is also able to enhance the permeation of lipophilic ones, as
it can both interact with the polar head groups in the SC lipid bilayer and disrupt hydrogen
bonding (e.g., in proteins) in intra- and intercellular compartments of the skin [116].

Table 2. Examples of different classes of CPEs and their recognized modes of action [116]. Adapted from the permission of
ref. [116]. 2018 Haque and Talukder.

CPE Class Example(s) Mode(s) of Action

low molecular weight
linear alcohols

ethanol
hexanol
octanol

extraction of intercellular lipids
increased solubility/partitioning of the solute into the SC

glycols and polyols propylene glycol
polyethylene glycol increased solubility/partitioning of the solute into the SC

esters octyl salicylate accumulation in the SC lipid bilayer enhancing solute diffusivity

amides laurocapram (Azone®) disruption of the ordered packing of the bilayers of skin lipids
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Table 2. Cont.

CPE Class Example(s) Mode(s) of Action

sulfoxides dimethylsulfoxide
dodecyl methyl sulfoxide

extraction of intercellular lipids
increased solubility/partitioning of the solute into the SC

interaction with keratin and/or corneocytes, and with the polar head
groups of the SC lipid bilayer

pyrrolidones N-methyl-pyrrolidone
2-pyrrolidone

interaction with keratin and/or corneocytes, and with the polar head
groups of the SC lipid bilayer

terpenes
menthol
limonene

nerol
disruption of the ordered packing of the bilayers of skin lipids

fatty acids oleic acid disruption of the ordered packing of the bilayers of skin lipids

fatty esters
isopropyl myristate

propylene glycol monocaprylate
propyleneglycolmonolaurate

extraction of intercellular lipids
phase separation

disruption of the ordered packing of the bilayers of skin lipids

surfactants

sodium lauryl or dodecyl sulfate (anionic) interaction with keratin and/or corneocytes
incorporation into the SC lipid bilayer and induction of lamellar phases

quaternary ammonium salts (cationic) significant disruption of the ordered packing of the bilayers of
skin lipids

cetyl or stearyl alcohol
(nonionic) disruption of the ordered packing of the bilayers of skin lipids

ether alcohols 2-(2-ethoxyethoxy)ethanol (Transcutol®)
insertion between the polar head groups of the skin lipid bilayers,

inducing swelling of the SC
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While physical and nanotechnological approaches like those addressed in previous
sections undeniably lie at the forefront of dermal and transdermal drug delivery research,
CPEs remain the simplest and most cost-effective way to permeate different solutes across
the skin, and their use is widely disseminated [116]. This explains the strong interest
towards a better understanding of their modes of action [10,117] and on development
of novel CPEs, searching for greener and more biocompatible alternatives, such as those
derived from essential oils [118] or amino acids [4].

The wide diversity and relevance of CPEs recently motivated Bozdaganyan and co-
workers to create an Open Access CPEs database, CPE-DB (http://intbio.org/cpedb/, last
accessed on 4 November 2021), that includes ca. 650 CPEs covering all classes shown in
Table 2 and a few more miscellaneous structural types [119].

http://intbio.org/cpedb/
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Amidst the chemically diverse CPEs known to date, examples are found that can
be categorized as ionic liquids (ILs), where organic cations are paired with organic or
inorganic anions [120]. One emblematic IL that is widely employed as a topical antiseptic
with high percutaneous permeation is cetylpyridinium chloride (CPC) [11], but others
have also shown high potential as CPEs for DTD applications, including ILs based on
natural building blocks like choline geranate (CAGE) [15,121] or obtained by pairing the
[ionizable] drug itself with a proper counterion as in, e.g., dodecyldimethylammonium
ibuprofenate [13]. Undeniably, ILs are rising stars for a broad variety of applications. As
recently advocated, “The time is now for ionic liquids” [122]; the next section emphasizes
this is also true for DTD of [bio]pharmaceuticals.

3. Ionic Liquid-Based Approaches in Dermal and Transdermal Drug Delivery
3.1. A Bird’s Eye View on Ionic Liquids

ILs are salts formed by organic cations and organic or inorganic anions, which possess
unique physical and chemical properties that differentiate them from the other (“conven-
tional”) salts. The most emblematic feature of ILs is their very low melting points (usually,
but not necessarily, below 100 ◦C), due to a lack of ion symmetry and to low charge
density, which results in Coulombic interactions in the solid phase that are weaker than
those in other salts [14]. Given the huge number of possible cation/anion combinations,
reports to date cover an immense panoply of different ILs that can be classified in many
different ways, depending on the classification criteria (Figure 9), as thoroughly reviewed
elsewhere [123]. In general, three generations of ILs have been recognized, going from the
earlier examples of ILs proposed as “greener” surrogates of classical organic solvents to
the next generation of ILs whose chemical and physical properties were adjustable to their
specific applications (task-specific ILs, or TSILs), and finally to ILs displaying low toxicity,
biocompatibility, biodegradability and, in some cases, even bioactivity [120,121,123–125].
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ILs are particularly appealing for pharmaceutical applications, given their (i) non-
crystalline nature, avoiding fluidity/polymorphism-related liabilities of many drug formu-
lations, and (ii) easy customization and adjustable-properties, through a sensible choice of
the ion components [12,124,125]. Hence, ILs properties such as vapor pressure, thermal
stability, chemical and electrochemical stability, polarity, solubility, amphipathicity, and
even bioactivity, can be finely tuned [14]. For instance, ionizable active pharmaceutic
ingredients (APIs) have been paired with selected counterions to deliver ILs, including
room-temperature ILs (RTILs), that possess intrinsic bioactivity [13,125,126]. Also, am-
phipathic ILs have been developed that are miscible in a wide range of solvents and
display surface activity (surface-active ILs, or SAILs), representing a new class of sur-
factants, some of which possess interesting biological properties, such as antimicrobial
action. Relevantly, though emerging from the 2nd generation of ILs for applications as,
e.g., emulsifiers, SAILs enclose a tremendous potential for biomedical and pharmaceutical
applications [14,126,127].

3.2. Ionic Liquids in Skin Permeation—A Closer Look at the Past Couple of Years

Over the last decade, the interest on using ILs to promote topical delivery of bioactive
molecules and APIs has been steadily growing. For instance, several reports from 2010 to
2018 highlight the promising role of ILs, most of which are imidazolium-based, towards en-
hanced percutaneous permeation of drugs and bioactive compounds as diverse as acyclovir,
methotrexate, dantrolene sodium, etodolac, 5-fluoroacyl, salicylic acid, caffeine, dencichine,
peptides and proteins. Interestingly, some of these reports address studies on skin perme-
ation of API-ILs, i.e., ILs resulting from combination of an ionizable drug (or API) with an
adequate counterion (e.g., lidocaine chloride), or even of two ionizable APIs with opposed
polarities (e.g., lidocaine docusate, lidocaine ibuprofenate, or lidocaine/etodolac) [128,129].

The mechanisms through which ILs or API-ILs display enhanced skin permeation are
not fully unveiled and are primarily—though not exclusively—dependent on the specific
structural and physico-chemical features of the IL. Thus, the CPE action of hydrophilic
ILs (e.g., 1-ethyl-3-methylimidazolium-based) has been mostly ascribed to their role as
polar enhancers able to (i) increase solubility and partition of hydrophilic drugs, and/or
(ii) fluidize the SC by disrupting the tight packing of both proteins and lipids (at the
headgroups level—Figure 8). In turn, hydrophobic ILs, many of which are SAILs (e.g., CPC,
1-dodecyl-3-methylimidazolium-based ILs), may exert their skin permeation action by
(i) increasing solubility and partition of hydrophobic drugs, (ii) inserting into the SC lipid
bilayers, causing a disruption of the ordered packing of the phospholipid bilayers or even
phase separation or induction of lamellar phases (Figure 8), and/or (iii) extracting SC
lipids [124,128–131]. Interestingly, SC lipid extraction followed by replacement of the
extracted lipids with the IL and water has been recently advanced as the mechanism by
which CAGE enhances the skin permeation of macromolecules like dextran [132].

ILs alone, and in combination with other percutaneous permeation methods, have
been lately explored for DTD of diverse [bio]pharmaceuticals, so a few illustrative examples
reported in the past couple of years are next highlighted.

3.3. IL-Based Topical Delivery Approaches for Small Bioactive Compounds

Non-steroidal anti-inflammatory drugs (NSAIDs), often ibuprofen but also others, are
amongst the most common low molecular weight bioactive compounds that have been ex-
plored for IL-mediated topical delivery [125,130]. In this connection, Wu et al. have recently
investigated the role of the counterion in the physico-chemical and biological properties
of ibuprofen-derived ILs, with emphasis on transdermal delivery applications [133]. This
study, which integrated nine different ibuprofen-based ILs using tetraalkylammonium and
tetraalkylphosphonium counterions, confirmed the superior permeation of the ILs accross
an in vitro skin model as compared to the free drug, highlighting the didecyldimethy-
lammonium and tetrahexylammonium counterions as the most beneficial for such an
effect [133]. Moreover, it was possible to establish a correlation between percutaneous
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permeation efficiency and (i) ILs‘ lipophilicity (higher logP and lower water solubility),
and (ii) strength of ionic association between the anionic form of the drug and the cationic
counterion [133]. In another latest study, Yuan et al. established that even minor amounts
of choline/amino acid-based ILs, namely, cholinium glycinate and cholinium alaninate,
contribute to a significant enhancement of the water solubility and permeation of ibupro-
fen across a model skin membrane, along with the advantage of showing low toxicity
to mouse embrionyc fibroblasts [134]. Cholinium-based ILs have also been the focus of
another quite interesting recent approach for enhanced DTD of NSAIDs, by Silvestre and
co-workers [135]. These authors synthesized a series of API-ILs derived from ibuprofen,
ketoprofen, and (S)-naproxen, using cholinium as the counterion, (Figure 10a) whose aque-
ous solubility were about one order of magnitude higher than those of the free NSAIDs.
Moreover, incorporation of the API-ILs into bacterial nanocellulose afforded flexible and
transparent membranes with adequate properties for use as DTD systems, while offering
equal anti-inflammatory potency and a faster drug release as compared to loading of the
parent NSAIDs alone [135].
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NSAIDs other than the profens (2-aryl-propionic acid derivatives) have also been the
subject of recent investigations addressing IL-mediated topical delivery. For instance, Carneiro
and co-workers have reported the synthesis and characterization of diclofenac imidazolium
monohydrate, an API-IL with increased water solubility as compared to the parent API that the
authors advocate as promising for transdermal delivery approaches, although its cytotoxicity
remains to be evaluated [137]. Current research is also addressing pairing diclofenac with
local anesthetics or analgesics to afford dual-action ILs that are next embedded into suitable
materials for topical application. For example, Suksaeree and Maneewattanapinyo have
recently reported the ion-pair reaction between lidocaine hydrochloride and diclofenac sodium
(Figure 10b) to afford a dual-action diclofenac/lidocaine IL that was next incorporated into a
polymer matrix suitable for fabrication of transdermal patches [136]. The authors investigated
the influence of the polymer matrix composition onto IL loading capacity, controlled drug
release rate, and drug crystallization, advancing a few guidelines for future development
of similar formulations [136]. The same research group further tested the controlled release
of the diclofenac/lidocaine IL from gelatin/poly(vinyl alcohol) transdermal patches, which
conveyed high release rates for both APIs and suitable physicochemical and stability features
for pharmaceutical applications [138].
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Incorporation of lidocaine/NSAIDs-based dual-action ILs into polyvinylidene fluo-
ride/hyaluronic acid-based membranes has also been addressed by Abednejad et al., who
found (i) an up to 470-fold enhancement of the water solubility of the ILs as compared to
the free APIs, (ii) improved release of the APIs from the IL-loaded membranes, (iii) suit-
ability of the IL-loaded membranes for use as wound-dressings, (iv) enhanced membrane
adhesion and viability of membrane-adhered fibroblasts, and (v) anti-inflammatory activity
similar to that of the free APIs [139].

IL-based strategies have also been lately addressed for enhanced skin permeation
of other types of small bioactive compounds, from anticancer or neuroactive drugs to
antioxidant or other anti-ageing agents, among others. For instance, amino acid-based
ILs have been recently considered for topical treatment of cancer. In this regard, Zheng
et al. have recently screened 15 methyl amino acid ester hydrochlorides as potential CPEs
for model drugs like 5-fluoroacyl, and found that the L-proline and the L-leucine-based
ILs were the most promising of the set, owing their percutaneous permeation ability
to a combined lipid fluidization and lipid extraction effect [140]. Another amino acid,
taurine, has been recently investigated for production of ILs with intrinsic antitumor
activity and enhanced percutaneous permeation [141]. To this end, taurine was paired
with bioactive alkaloids, namely, L-carnitine and betaine, affording ILs with high thermal
stability, biocompatibility, and in vitro antitumor activity. The taurine-derived ILs were
further shown to enhance percutaneous permeation of both insulin and dextran, possibly
via a lipid extraction mechanism [141].

IL-mediated topical delivery of neuroactive molecules such as the memory-enhancing
agents donepezil and nobiletin has been equally investigated in the last couple of years.
Wu et al. ion-paired donepezil with docusate, ibuprofen, and unsaturated fatty acids,
producing ILs that were thoroughly characterized regarding their structural and physico-
chemical properties, as well as in vitro antiproliferative action on human neuroblastoma
cells, acetylcholinesterase (AchE) inhibitory activity, and ability to permeate through model
blood–brain and skin barriers [142]. Additional skin permeation assays were carried out
using IL-loaded adhesive transdermal patches, and—taken together—results highlighted
a higher skin permeability of donepezil α-linolenate and docosahexaenate as compared
to free donepezil, which could be further enhanced by loading the ILs onto the adhesive
patches [142]. Moreover, despite having slightly decreased anti-AchE activity, the ILs had
similar or lower cytotoxicity than the free drug [142].

IL-promoted DTD of another memory-enhancing molecule, the poorly water-soluble
flavonoid nobiletin, has been also tested recently by Hattori et al., using choline and geranic
acid (CAGE); this IL established multiple hydrogen bonds with the drug, contributing
to a substantial increase of its solubility [143]. Additionally, in vitro and in vivo assays
confirmed the superior performance of CAGE, as compared to other CPEs, in enhancing the
percutaneous permeation of nobiletin, whose bioavailability via the transdermal route was
found to be 20-fold higher than oral administration of the crystalline form of the drug [143].

ILs have also been lately explored as potential CPEs of anti-ageing molecules, such
as α-lipoic acid and other natural antioxidants. Fang and co-workers prepared different
ILs by acid-base combination of α-lipoic acid with a series of amines, and the ILs subse-
quently formulated with a liquid oil mixture to form water-in-oil NEs [144]. Transdermal
permeation of the NEs was assayed in vitro on whole skin, and on medical tape-stripped
epidermal and dermal skin layers, and these assays, together with additional structural and
rheological studies, showed that different IL-skin layers’ affinities accounted for distinct
skin permeation and retention ability [144]. Still, globally, the IL-based NEs not only pro-
vided enhanced solubility and protection to this somewhat unstable drug, but also showed
very good in vivo action against photo-induced skin ageing and collagen loss in rats [144].

Caparica et al. have equally advanced IL-based emulsions as promising tools for
enhanced solubility and percutaneous permeation of natural antioxidants relevant in
cosmetics, namely, ferulic acid, caffeic acid, p-coumaric acid, and rutin [145]. These authors
explored eight different ILs, encompassing amino acids, choline, and imidazole building
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blocks, and, after setting their highest nontoxic concentrations, based on their in vitro
toxicity to human keratinocytes, determined their concentration-dependent ability to
solubilize the antioxidants, and the physicochemical properties of IL-loaded oil-in-water
NEs. This showed that incorporation of the ILs in the NEs conveyed a higher drug load in
all four cases, holding great promise for future exploration of these formulations, especially
those based on imidazolium glycinate, for DTD of natural anti-ageing agents as those
covered in the study [145].

Also with a focus on dermal care applications, Chantereau et al. reported, in early
2020, bioactive ILs obtained by pairing cholinium cations with anionic forms of B-complex
vitamins, namely, nicotinate (vitamin B3), pantothenate (vitamin B5), and pyridoxilate
(vitamin B6 co-factor) [146]. These vitamin B-derived ILs (Figure 11) showed significantly
enhanced solubility as compared to the free vitamins, and their subsequent loading onto
bacterial nanocellulose delivered flexible thermostable and nontoxic membranes with
enhanced rehydration capacity as compared to non-IL-loaded bacterial cellulose. Moreover,
in buffer, the release of the vitamin B-based ILs was faster and more extensive than that of
the free vitamins [146].
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One of the current greatest health concerns worldwide is that of MDR infections.
In line with this, several latest reports address the use of IL-based strategies for topical
application of diverse anti-infective agents to treat mild to complicated skin infections of
viral, bacterial, or fungal origin. One example concerns acyclovir, whose clinical relevance
in the management of herpes virus infections, including herpes labialis, is hampered by
its very low water solubility. Hence, Islam et al. have recently reported the preparation of
“ILs-in-oil” microemulsions (MEs) by combining hydrophilic choline-based ILs (“water”-
like) with a mixture of the SAIL choline oleate and sorbitan laurate (“oil” phase), which
allowed enhanced permeation of acyclovir through pig skin while showing no significant
skin irritation [147]. The same authors have also investigated ternary systems comprising
ethanol, isopropyl myristate, and choline/amino acid-based ILs, also with encouraging
results for solubilization and skin permeation of acyclovir [148].

Many ILs have also intrinsic antimicrobial activity, which is putting them under the
spotlight for the management of skin infections, including cSSTI. Imidazolium-based ILs
have been for long known to possess antimicrobial action [12], although this has been
occasionally hampered by their cytotoxicity [149]. Still, imidazolium-based ILs have been
used to prepare novel formulations showing encouraging features to be advanced as safe
transdermal delivery systems, e.g., IL-in-oil MEs based on 1-ethyl-3-methylimidazolium
acetate [150], or intrinsic antibacterial and antibiofilm activity, as is the case of 1-butyl-3-
methylimidazolium hexafluorophosphate-incorporated PLGA NPs developed by Taka-
hashi and co-workers [151]. CAGE is another IL well-known for its activity as a CPE
that was recently reported to display strong and broad spectrum antibacterial and an-
tibiofilm activity, including against clinical isolates and MDR strains of bacterial species
belonging to the so-called ESKAPE group (comprising Enterococcus faecium, Staphylococcus
aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobac-
ter spp.) [152]. The antibiofilm action of CAGE was further investigated in vitro on biofilms
of methicillin-sensitive S. aureus, revealing that the neat IL probably acts by contact killing,
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eradicating even 72 h-grown biofilms in less than a minute [152]. CAGE also shows promise
for tackling skin fungal infections, as recently reported by Qi and co-workers [153]. These
authors combined different antimicrobial ILs with the antifungal drug ketoconazole, and
found CAGE as the most effective in both promoting deep skin penetration of the drug, and
displaying a synergistic antifungal action in vitro against Trichophyton interdigitale [153].

Other IL-based approaches that are emerging in the latest literature are aimed at
addressing topical administration of different types of anti-infective agents. For ex-
ample, Zhang et al. have developed ME formulations based on the 1-hydroxyethyl-3-
methylimidazolium chloride and lidocaine ibuprofenate ILs that were able to improve the
transdermal permeation of the antimalarial drug artemisinin via disruption of the regular
arrangement of keratin in the SC [154]. In another example, the 3-hexyl-1-vinylimidazolium
bromide IL was employed in the production of a polymerized IL (P-IL) next used to fabri-
cate MNs both possessing intrinsic antimicrobial activity and loaded with salicylic acid,
for the topical treatment of skin infections associated to Propionibacterium acnes. These
MNs were able to promote painless and prolonged DTD of salicylic acid, with enhanced
anti-acne effects in both ex vivo and in vivo experiments [155].

Altogether, these examples highlight the tremendous chemical space that is to be explored
regarding use of ILs for topical drug delivery, with focus on anti-infective approaches to face
the rising menace of MDR pathogens. ILs are opening new avenues for the post-antibiotic era,
as recently highlighted by Bento et al., [156] and one of those avenues may pass by IL-based
approaches for topical delivery of antimicrobial and wound-healing peptides.

3.4. IL-Mediated Percutaneous Permeation of Biomacromolecules

One the general requisites for a molecule to be able to transpose the SC barrier to reach
the viable epidermis and, eventually, deeper skin layers, is a maximum molecular weight of
1 kDa, which means that, unaided, [bio]macromolecules are unable to efficiently permeate
across the skin [6]. This size limitation, along with solubility and stability issues, explains why
many of the physical, nanotechnological, and chemical approaches addressed in Section 2
have been widely employed to enhance the percutaneous permeation of biomacromolecules
such as nucleic acids, oligonucleotides, proteins, and peptides [6,157,158].

In connection with the above, ILs are also showing remarkable capabilities as new
chemical tools for the DTD of polysaccharides, nucleic acids, proteins, and peptides. The
potential of IL-mediated DTD of polysaccharides and proteins has been already hinted
in the previous sub-section, when highlighting taurine-based ILs that, besides displaying
intrinsic antitumoral activity, were also able to promote transdermal delivery of insulin
and dextran [158]. Yet, polysaccharides like dextran, and related structures, seldom are
the object of percutaneous permeation enhancement efforts. Still, Wu et al. have recently
explored the potential of eight different choline-based ILs to mediate the DTD of a gly-
cosaminoglycan, hyaluronic acid, to reduce skin dehydration [159]. The ILs were prepared
via acid-base neutralization reactions using choline and selected natural acids (malic, sorbic,
maleic, succinic, lactic, geranic, citric, and oleic), and cholinium citrate was found as the
most capable of promoting penetration into deeper skin layers and, along with cholinium
maleate, significantly reducing skin dehydration [159].

Choline-based ILs have been also lately explored for DTD of nucleic acids by Mi-
tragotri and co-workers [160]. These authors prepared six ILs by a 1:2 cation/anion ratio
mixing of cholinium bicarbonate, as the cation donor, with geranate, dimethylacrylate,
isovalerate, isopropanoate, phosphate, or biphenyl-3-carboxylate anions, and next tested
the ILs either individually or in different combinations, for their ability to promote DTD
of a siRNA with therapeutic potential to tackle plaque psoriasis. The mixture combining
CAGE and cholinium phenylpropanoate was the most efficient permeation enhancer that
further showed high stability [160]. Additional in vitro and in vivo assays focused on this
combination proved it as safe and able to efficiently silence the deviant gene, with observ-
able decrease in psoriasis-related traits, such as thickened epidermis, inflammation, and
hyperkeratosis, as compared to control mice [160]. Mitragotri’s group further investigated
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how ILs might contribute to the stabilization of framework nucleic acids (FNAs), whose
emerging role as the next generation of precision-tailored and safe NCs for gene therapy
of skin diseases is hampered by stability and percutaneous permeation limitations [161].
The authors combined the cholinium cation with the conjugate bases of six natural acids,
namely, citronellic, glutaric, glycolic, octanoic, hex-2-enoic, and oct-2-enoic acids, via salt
metathesis, and the six ILs thus obtained were tested in vitro and ex vivo for their ability to
stabilize and permeate FNAs. Cholinium octanoate showed the most encouraging perfor-
mance, being able both to keep the FNA NCs stable up to one week at room temperature,
and to promote their delivery into the deeper layers of porcine skin [161].

Proteins and peptides are, by far, the most widely and deeply studied biomacro-
molecules, given their multiple pharmaceutical and biomedical applications, stemming
from their broad range of structural, physicochemical, and biological properties, associ-
ated to a high level of specificity, thus representing the majority of biopharmaceuticals
approved for therapeutic use [162]. Yet, most protein and peptides pose many challenges
for therapeutic applications, mostly related to their low bioavailability and in vivo stability,
which underpins intensive research on strategies for efficient protein and peptide delivery
specifically aimed at oral and topical administration routes [158,163]. IL-mediated delivery
of proteins has been investigated in recent years, with emphasis on insulin, since topical
administration of this protein is highly convenient to promote higher comfort and com-
pliance in diabetic patients. Favorable insulin permeation data were recently reported by
Mitragotri and co-workers when using CAGE or taurine/carnitine ILs as, respectively,
part of a biodegradable polymeric patch for transmucosal delivery [164], or percutaneous
permeation enhancer [140]. Balcão and co-workers have also investigated the adequacy
of CAGE and choline oleate ILs, prepared in a 1:2 cation/anion ratio, for potential use
in transdermal delivery of insulin [165]. The ILs were evaluated regarding cytotoxicity,
genotoxicity, oxidative stability, and ability to enhance insulin percutaneous permeation.
CAGE presented the best profile, and was next incorporated in an optimized biopolymer
formulation, affording a transdermal patch that efficiently promoted transdermal delivery
of human insulin in a pig ear skin ex vivo model [165].

Another interesting report by Vieira et al. concerns the characterization of fluori-
nated ILs as potential protein DTD facilitators [166]. In this recent study, 1:1 combina-
tion of the perfluorobutanesulfonate anion with 1-ethyl-3-methylimidazolium, 1-ethyl-3-
methylpyridinium, or cholinium cations (Figure 12) afforded ILs with high surface activity
in aqueous media, i.e., SAILs. The self-assembling properties of these fluorinated SAILs
were similar either in water or in buffered solutions of lysozyme, selected as the model
cargo protein, which could be successfully encapsulated by the SAILs, except in the case of
cholinium perfluorobutanesulfonate. Lysozyme release and activity studies showed the
SAIL/protein systems to be reasonably stable for storage at 4 ◦C (no protein release up
to 12 h with protein activity kept intact), whereas total protein release is observed after
12 h at 37 ◦C [166].
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Like proteins, bioactive peptides hold great promise for therapeutic applications, with
the further advantages of being more cost-effective and less prone to trigger immunoal-
lergenic reactions. Interest is growing on topical delivery approaches for either antigenic
peptides of interest for preventive vaccination, or host defense peptides (HDPs) encom-
passing antimicrobial and/or immunomodulatory effects [167]. Consequently, ILs are
under the spotlight of the latest research on DTD of therapeutic peptides. For instance,
Goto and co-workers developed hydrophobic fatty acid/amino ester-based ILs that were
liquid at room temperature (i.e., RTILs) and fully miscible with common CPEs, such as
isopropyl myristate (IPM) [168]. Formulations comprising 10% wt of the RTILs in IPM
showed lower cytotoxicity than the standard CPE sodium lauryl sulfate and being also able
to better permeate a NSAID (ibuprofen) than the conventional CPE Transcutol®. These
formulations (especially the L-proline ethyl ester linoleate-based one), enhanced the percu-
taneous permeation of an antigenic peptide accross porcine skin [168]. The same authors
have very recently used similar fatty acid-based ILs to formulate IL-in-oil nanodispersions
that were optimized for higher physicochemical stability, as well as increased loading
capacity and in vivo transdermal delivery of the anticancer nonapeptide leuprolide [169].
The nanodispersions showed no significant toxicity both in vitro and in vivo, and peptide
transdermal delivery could be enhanced by as much as 65-fold compared with the aqueous
delivery vehicle [169].

Tahara et al. have equally investigated fatty acid/choline-derived ILs as potential
facilitators for the solubilization of an antigenic water-soluble peptide in an oil-based
percutaneous permeation promoter [170]. The least cytotoxic IL cytotoxic, cholinium oleate,
was dispersed with the peptide in the oil phase, and the resulting formulation showed a
28-fold enhancement of peptide transcutaneous permeation as compared to the aqueous
vehicle. Moreover, this transdermal delivery formulation did not cause any detectable
irritation on skin, and significantly suppressed tumor growth in vivo [170].

In regard to transdermal delivery of HDPs, latest efforts have focused on combina-
tion of antimicrobial HDPs with ILs possessing intrinsic antimicrobial activity, to afford
new formulations whose percutaneous permeation and antimicrobial potency might be
mutually enhanced. In this connection, Patel and co-workers mixed an HDP, melittin,
with pyrrolidinium-based ILs, and the non-covalent HDP-IL conjugates thus formed dis-
played superior in vitro activity to those of their individual components against both
Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria, while showing no significant
cytotoxicity [171]. The same authors further investigated the influence of the alkyl chain
length of the pyrrolidinium-based ILs in both their individual antimicrobial potency, and
synergistic action upon combination with melittin [172]. This study confirmed the potent
synergic action against both E. coli and S. aureus when the HDP is combined with the
ILs, and revealed a correlation between antimicrobial potency, which improved with the
increase of the alkyl chain length in the IL [172]. Another example is the work reported
by Gomes and co-workers [173]. In this study, coupling an antimicrobial methylimida-
zolium IL to the N-terminus of a collagenesis-inducing peptide with potent antibacterial
and antibiofilm properties, delivered a covalent conjugate that retained the parent pep-
tide’s activity against multidrug-resistant clinical isolates of Gram-negative bacteria, and
antibiofilm action on a resistant clinical isolate of Klebsiella pneumoniae, while exhibiting
much improved stability towards tyrosinase-mediated modifications [173]. These above-
mentioned works are an overture for the potential held by IL-based strategies as tools to
improve the properties of bioactive peptides.

4. Will Ionic Liquids and Peptides Become Relevant Co-Players in the Future
Management of Skin Infections?

The encouraging findings highlighted in the last section, along with the latest re-
ports on, e.g., (i) the fabrication of amphiphilic formulations comprising peptides and
imidazolium- or betaninium-based ILs as new delivery nanoplatforms [174,175], and
(ii) the relevance of developing cationic nanocarriers to overcome negatively-charged tis-
sue barriers like the skin [176], hold great promise for the future management of skin
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infections, including cSSTI. Current progress in ILs-mediated percutaneous permeation of
bioactive compounds, from small anti-inflammatory drugs to host defense peptides, and
even lytic bacteriophages [177], together with the intrinsic antimicrobial action of many
ILs, underline the capacity of ILs to become important players in innovative approaches to
treat skin infections. Likewise, many HDPs combine antimicrobial, immunomodulatory
and wound-healing properties, with a cationic amphiphilic structure often conveying
cell-penetrating and/or self-assembling capacity. Hence, such HDPs will prospectively be
useful both as carriers and as bioactive cargoes in transdermal delivery applications.

Effective management of infected wounds should ideally rely on topical formulations
able to exert antimicrobial, anti-inflammatory, and healing effects from the outer to the
innermost layers of the skin. ILs and HDPs have the potential to jointly contribute to such
an achievement.
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