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Age-related delay in visual and auditory evoked
responses is mediated by white- and grey-matter
differences
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Slowing is a common feature of ageing, yet a direct relationship between neural slowing and

brain atrophy is yet to be established in healthy humans. We combine magnetoencephalo-

graphic (MEG) measures of neural processing speed with magnetic resonance imaging (MRI)

measures of white and grey matter in a large population-derived cohort to investigate the

relationship between age-related structural differences and visual evoked field (VEF) and

auditory evoked field (AEF) delay across two different tasks. Here we use a novel technique to

show that VEFs exhibit a constant delay, whereas AEFs exhibit delay that accumulates over

time. White-matter (WM) microstructure in the optic radiation partially mediates visual

delay, suggesting increased transmission time, whereas grey matter (GM) in auditory cortex

partially mediates auditory delay, suggesting less efficient local processing. Our results

demonstrate that age has dissociable effects on neural processing speed, and that these

effects relate to different types of brain atrophy.
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A
ge-related declines in cognitive abilities like fluid
intelligence and working memory are well-documented,
and a major burden for both older individuals and the

societies they inhabit1. One potential common cause for these
cognitive declines is a general slowing of information processing
speed2. This slowing can be measured by behavioural responses
in various tasks, which has been related to age-related atrophy of
white matter (WM)3–5 and grey matter (GM)6–10. Animal studies
have proposed at least two mechanisms of age-related slowing:
demyelination, which results in longer axonal transmission times
between neurons11,12, and changes in the neuron itself (such as
increased hyperactivity), which results in reduced neural
responsiveness13. These animal studies reinforce the importance
of changes in both white and grey matter, and raise the possibility
that these changes cause different types of neural slowing. Despite
these links between WM, GM and behavioural slowing in
humans, and between physiological changes and neural
processing delays in animals, there is currently no evidence
from studies of healthy ageing in humans that directly links
differences in brain structure with differences in neural
processing speed. Such evidence would provide important
mechanistic insights into the causes of age-related slowing of
information processing, and hence cognitive decline. We provide
such evidence by combining magnetoencephalography (MEG)
and magnetic resonance imaging (MRI) from a large sample of
617 population-derived healthy adults, distributed uniformly
from 18 to 88 years of age, recruited from the Cambridge Centre
for Ageing and Neuroscience (Cam-CAN; www.cam-can.org).

Age-related slowing of the neural response evoked by
simple visual stimuli such as checkerboards has been
observed using event-related potentials (ERPs) recorded with
electroencephalography (EEG)14–17. Similar effects have also been
found for auditory stimuli18–21, complex visual stimuli such as
faces22–26 and olfactory stimuli17,27. Many studies have reported
effects of age on early components of the ERP or event
related field (ERF; for example, within 200 ms of stimulus
onset)15,17,28–30, while others have reported age effects on later
components (typically 200–800 ms) without a corresponding
increase in latency in the early components18,23,25,26,31–34.
We propose that these reflect two distinct types of delay:
constant and cumulative delay. Constant delay affects all time
points equally, equivalent to a temporal shift of the whole evoked
response (both early and late components). Cumulative delay, on
the other hand, increases with post-stimulus time, and therefore
is easier to detect for late than early components. Despite reports
of cumulative delay in the literature18,24, there has been no
systematic comparison of constant and cumulative delay, and it is
possible that they have different neuronal causes. Research on
senescent monkeys suggests that age-related delay of the visual
evoked field (VEF) has a cortical origin13, while a review
comparing electroretinogram, and cortical evoked potentials
suggest that delays in humans originate in the
retinogeniculostriate pathway28. Similarly, the causes of delay of
the auditory evoked response may include contributions from
peripheral, central auditory system or cortical functional
deficits35–39.

The study of age-related delays in ERPs/ERFs is further
complicated by inconsistent findings in the degree of age-related
delay of both early and late components (for review,
see refs 17,25,26,28). There are several likely sources of this
inconsistency. First, differences in information processing
demands across experimental tasks (such as attending to faces
versus ignoring auditory oddballs) mean that evoked responses
are difficult to compare across studies. While clearly providing
important information in their respective domains, complex tasks
like face recognition are likely to recruit multiple cortical systems,

and it is unclear how each system contributes to the spatially
integrated signal recorded by EEG/MEG. Second, age-related
delays may differ according to the type of stimulus, for example,
visual versus auditory stimuli, because age could potentially have
differential effects on brain regions specialised for different
sensory modalities. Even when results are consistent across
different tasks and modalities, they are rarely compared directly
within the same group of participants. Third, previous studies
have tended to compare small groups of young versus old
volunteers, rather than examine continuous differences across the
adult lifespan, and tended to use volunteers who are self-selecting,
rather than being representative of the population.

Yet another important source of inconsistency across studies is
the method of measuring delay. One common measure is the
latency of the peak (maximum) of an evoked component. This
measure is very sensitive to noise however (being based on a small
number of time points), so other techniques pool over several
time points23, for example, using the fractional area latency40,
or the slope or intercept of functions fit to parts of the evoked
response. Here we use all (peristimulus) time points to estimate
delay, improving robustness and sensitivity, and enabling
estimation of second-order delay characteristics like constant
and cumulative delay, which are not readily available from single
peak latencies, and difficult to quantify when there are multiple,
potentially overlapping temporal components.

To address some of the other limitations in the literature, we
directly compare the effects of age across two types of task
(Passive and Active) and on two types of stimuli (visual and
auditory). Furthermore, we apply our novel method for
simultaneously estimating constant and cumulative delay to a
larger and more representative (opt-out) sample than is typically
tested, spanning the whole adult lifespan. Finally, we relate these
estimates of neural delay, for the first time, to structural estimates
of both GM and WM on the same individuals.

More precisely, we use simple stimuli (visual checkerboards
and pure tones) that are likely to activate only a few brain regions,
and compare two tasks that differ in attentional demand:
(i) a Passive viewing/listening session in which visual or auditory
stimuli are presented separately, and do not require a response,
versus (ii) an Active task in which the same stimuli are presented
simultaneously, and require a motor response. We also use MEG,
which has the same temporal resolution as the EEG, but has the
advantage of higher spatial resolution, because magnetic fields are
less spatially distorted by biological tissue than electrical fields41,
thereby increasing our ability to separate brain sources (see also
ref. 26). Brain structural measures come from three types of MRI
contrast: T1-weighted, T2-weighted and diffusion-weighted.
The T1 and T2 data are combined to optimize estimation of
local GM volume. Diffusion data are optimized for estimation of
the mean kurtosis (MK) of the tissue’s water diffusion42,43, which
is believed to offer a sensitive metric of age-related changes of
WM microstructure, such as changes of cell membranes,
organelles and the ratio of intra and extra-cellular water
compartments44. Moreover, in contrast to standard diffusion
tensor measures, diffusion kurtosis measures are robust to regions
with a high concentration of crossing fibres43,45.

Our main experimental hypotheses were that age is positively
correlated with constant and/or cumulative evoked response
delay in auditory and visual conditions, and that this relationship
between age and delay is mediated by differences in WM
microstructure or GM volume.

Here we use a novel technique to show that VEFs exhibit a
constant delay, whereas AEFs exhibit a cumulative delay.
Furthermore, WM microstructure in the optic radiation
(connecting thalamus to the visual cortex) partially mediates
age-related constant delay of the VEF, whereas grey matter
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structure in the superior temporal gyrus (STG; an auditory
processing region) partially mediates cumulative delay of
the AEF. These findings demonstrate a dissociation between the
types of age-related delay in auditory and visual modalities.
Furthermore, we show that these age-related delays are mediated
by different aspects of age-related differences in brain structure:
WM microstructure in the optic radiation partially mediates age-
related visual constant delay, while grey-matter volume in the
STG mediates age-related auditory cumulative delay.

Results
PCA-derived event related fields. We start with data from the
Passive task, in which auditory tones and visual checkerboards
were presented in separate trials. To reduce our data set to a small
set of meaningful components and improve the signal-to-noise
ratio, principal component analysis (PCA) was performed on the
trial-averaged event-related fields (ERFs) for each stimulus-type,
after concatenating the data in the time dimension (Methods
section). The first principal component explained 48% of the
variance for auditory stimuli and 28% of the variance for visual
stimuli, and entailed a spatial component for all participants
(Fig. 1a) plus a separate time-course for each participant (Fig. 1c).
The individual time courses were then averaged to create a
template ERF for later model fitting (Fig. 1d). We used multiple
sparse priors46 to localize the spatial component, which revealed
peaks in bilateral primary auditory cortex for the auditory stimuli
and in bilateral extrastriate cortex for the visual stimuli
(Fig. 1a,b). Importantly, the ERF-images in Fig. 1c show how
the ERFs are delayed as age increases, with indication of a
cumulative shift for auditory stimuli and a constant shift for
visual stimuli; a difference that we formally quantify below.

To estimate constant and cumulative delay for each participant,
a template fitting procedure was employed, in which the group
average signal (grey line in Fig. 1d) was fit to each participant’s

ERF by a combination of temporal displacement (constant delay)
and temporal linear dilation (cumulative delay). Using a local
gradient ascent algorithm, these two parameters were adjusted
until the linear model fit (R2) was maximized. Using R2 as the
utility function simplifies the fitting procedure, and allows
simultaneous estimation of the amplitude offset and amplitude
scaling (Methods section).

Constant and cumulative delay estimates for the AEFs and
VEFs were correlated with age, using robust regression after
removing outlying values for each modality separately (Fig. 2).
In the visual condition, there was a significant effect of age
on constant delay (percentage variance explained (R2)¼ 0.11,
Po0.001, N¼ 526), but no effect of age on cumulative delay
(R2¼ 0.00, P¼ 0.996, N¼ 526). In the auditory condition, on the
other hand, there was a significant effect of age on cumulative
delay (R2¼ 0.15, Po0.001, N¼ 577), but not on constant delay
(R2¼ 0.00, P¼ 0.159, N¼ 577). There was also a smaller but
statistically significant increase in amplitude scaling of the AEF
with age (R2¼ 0.04, Po0.001, N¼ 569), a small increase in
auditory amplitude offset (R2¼ 0.02, P¼ 0.002, N¼ 562), and an
increase in visual amplitude offset (R2¼ 0.09, Po0.001, N¼ 491;
see Fig. 3). For conversions of these results to ms/year, and
comparison with traditional peak latency estimates, see
Supplementary Table 2.

We also repeated the PCA and ERF fitting steps for the Active
task, in which the auditory and visual stimuli were presented
simultaneously, and to which the participant responded with a
key-press. This PCA produced similar results, though the
simultaneous presentation of visual and auditory stimuli meant
that the first spatial component reflected a mixture of responses
to both stimulus-types (Supplementary Fig. 1). To better separate
the auditory and visual responses in the Active task, and aid
comparison with the Passive data, we applied the spatial weights
of the PCA from the Passive data to estimate the time courses for
each stimulus-type in the Active task. Importantly, age had a
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Figure 1 | Principal component analysis (PCA) and delay estimation of auditory and visual evoked responses. (a) Two-dimensional topographical MEG

sensor plot of the first spatial component derived using PCA in the Passive task. Values represent the root mean square (RMS) of each pair of gradiometers.

(b) Group Multiple Sparse Prior (MSP) source reconstruction based on the spatial component shown in a (cluser peak MNI coordinates: right HG¼ [þ 38,

� 22, þ8], left¼ [� 38, � 26, þ8]; right V2¼ [þ 14, �96, þ 20], left¼ [� 14, � 96, þ 20]; ES right¼ [þ 16, � 74, þ 24], left¼ [� 16, � 74,

þ 20]). (c) Heat-maps illustrating the mean time course for each participant from the first temporal component of the PCA. Data are smoothed in the y

direction for visualization only (Gaussian width¼ 5 subjects). (d) Group average time courses for each of three age groups (18–44, 45-65, 66–88 years).

Because all of our analyses are based on principal components, the y axis of plots have arbitrary units.
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significant effect on the visual constant delay (R2¼ 0.03,
Po0.001, N¼ 473), but not visual cumulative delay (R2¼ 0.00,
P¼ 0.959, N¼ 473), and on the auditory cumulative delay
(R2¼ 0.09, Po0.001, N¼ 513), but not auditory constant delay
(R2¼ 0.00, Po0.188, N¼ 513), replicating the pattern of
significant age effects in the Passive task.

We also tested whether the task moderated the size of the age
effect on the latency parameters. The effect of age on the
auditory cumulative parameter was greater in the Active task than
the Passive task, although no other delay parameters showed
such an interaction between task and age (see Table 1).
Nonetheless, for subsequent analyses below, we focus on the
Passive data, where the auditory and visual responses are more
easily separated by PCA.

Testing assumptions of the delay model. The template fitting
method described here is conditional on several assumptions
about the generators of the ERF. First, in applying PCA to
our entire data set, we assume spatial stationarity of the evoked
responses across the age range. It is possible that age-related
changes in structural morphology result in changes in spatial
distribution of the evoked fields. We address this issue in
Supplementary Fig. 2b, where we compare the spatial distribution
of signal variance between young and old participants, and
did not observe any evidence of spatial non-stationarity.
Furthermore, we did not find any qualitatively different results of
ERF fitting when comparing templates derived from just young or
just old participants (Supplementary Fig. 3).

Second, we assume temporal stationarity of all delay
parameters. That is to say, the equations derived during fitting
apply to the entire time-series (epoch), rather than distinct time
windows of the evoked response. This rests on the hypothesis that
evoked responses in MEG/EEG are the result of sustained,
dynamic interactions between neuronal sub-populations within
and across brain regions47,48, producing damped oscillations,
rather than being distinct and transient evoked components at the
peaks and troughs of ERF/ERP waveforms. If this assumption is
true, then changes to the physical characteristics of those
neuronal populations (such as GM or WM integrity) are likely
to lead to temporally extended delay characteristics. To test this
hypothesis, we performed extensive simulations (Supplementary
Fig. 4) that show when temporal stationarity holds, our template
method is much more sensitive (in the presence of noise) than
more traditional peak-based, peak-to-peak or fractional area
measures of latency. We also confirmed, using traditional
peak-based analyses, that constant and cumulative delay were
evident in the experimental data, although peak-based measures
are suboptimal for distinguishing between these two types of
delay (Supplementary Fig. 5). Finally, we investigated whether
there was evidence in our data against temporal stationarity.
To do this, we repeated our template fitting approach on a shorter
time window from 0 to 140 ms that only covered the first visual
peak and the first two auditory peaks (excluding the later, more
dispersed components). The results show that largely the same
pattern of age effects on delay is observed in this early window as
it is in the entire epoch (see Supplementary Fig. 2a), supporting
the present assumptions.
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Figure 2 | Robust regressions with age of the two delay parameters for each stimulus modality in the Passive task. There is a significant effect of age on

constant but not cumulative delay in the VEF, and a significant effect of age on cumulative but not constant delay in the AEF.
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Adjusting for confounding factors. It is possible that the above
effects of age on neural delays are simply a consequence of the
known age-related changes in sensory acuity (despite our
screening criteria, and use of lenses to correct vision; Methods
section). We therefore correlated the neural delay estimates
against separate, standardized measures of auditory and visual
thresholds (Methods section). Results are summarized in Table 2.
There was a negative relationship between visual acuity and visual
constant delay (Spearman’s correlation (rs)¼ � 0.14, P¼ 0.002,
N¼ 524), though this effect disappeared after adjusting for
age (rs¼ 0.00, P¼ 0.993, N¼ 524). Similarly, auditory
acuity was negatively related to auditory cumulative delay
(rs¼ � 0.21, Po0.001, N¼ 575), but not after adjusting for age

(rs¼ � 0.05, P¼ 0.209, N¼ 575). Importantly, however, both
visual and auditory age-related neural delays remained significant
after controlling for visual (rs¼ 0.30, Po0.001, N¼ 524) and
auditory (rs¼ 0.31, Po0.001, N¼ 575) sensory acuity,
respectively.

To check that the effects of age on neural delay estimates were
not biased by effects of age on the estimated response amplitude
(offset or scaling) or the estimated fit quality, we also repeated the
partial correlation of neural delays with age after adjusting for
these estimates. For both visual and auditory measures, the effects
of amplitude scaling on delay were uncorrelated after controlling
for age (auditory cumulative rs¼ � 0.02, P¼ 0.686, 577; visual
constant rs¼ � 0.01, P¼ 0.796, N¼ 526) and the effects of age on
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Figure 3 | Amplitude offset and amplitude scaling parameters extracted during template fitting. Amplitude offset was calculated by taking the mean

difference between template and individual ERFs, while amplitude scaling indicates the amount the template needs to be scaled to minimize residual error

between template and individual ERF.

Table 1 | Comparison of ERF fitting results between Passive and Active tasks.

Slope: Passive – Active
rs

Slope: Active
b [CI] (R2)

Slope: Passive
b [CI] (R2)

N

Auditory constant 0.02 �0.03 (�0.07, 0.01) (0) �0.03 (�0.07, 0.01) (0) 513
Auditory cumulative �0.13** 0.30 (0.22, 0.37) (0.09***) 0.22 (0.17, 0.27) (0.14***) 513
Visual constant 0.00 0.31 (0.1, 0.47) (0.03***) 0.38 (0.28, 0.48) (0.10***) 473
Visual cumulative 0.02 0.00 (�0.11, 0.12) (0) 0.00 (�0.09, 0.08) (0) 473

Statistical tests to compare the template fitting results from the active and passive sessions. The fitting parameters from the Active task were those obtained after applying Passive weights to the Active
task data (Supplementary Fig. 1). To test whether the slope of the relationship between each delay parameter and age differed across the two tasks, we calculated the difference between Passive and
Active tasks for each participant, and used a Spearman’s correlation to test whether these difference scores were related to age. The age-effect was only significantly different across tasks for the auditory
cumulative delay parameter (with a higher age-effect in the Active task). Data were removed from both Passive and Active tasks if an outlier existed in any column for a given modality, so that Passive
and Active data sets contained equal numbers of participants. *Po0.05, **Po0.01, ***Po0.001
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delay remained significant after controlling for amplitude
(auditory cumulative rs¼ 0.37, Po0.001, N¼ 577; visual
constant rs¼ 0.32, Po0.001, N¼ 526). The same was true for
amplitude offset and fit error (Table 2). Thus, there is no evidence
that our age-related neural delays were caused by age-related
differences in sensory acuity, response amplitude or offset, or
goodness of template fit.

In summary, it appears that age has a qualitatively different
effect on neural delay in auditory and visual modalities. Indeed,
the auditory cumulative delay was only weakly correlated with
visual constant delay (R2¼ 0.02, P¼ 0.005, N¼ 491), and this
effect vanished after controlling for age (R2¼ 0.00, P¼ 0.947,
N¼ 491), suggesting these two delay parameters are not
intrinsically related, and are therefore likely to have separate
underlying causes. To investigate possible causes, we turned to
the MRI data on each participant.

Mediation of neural latency by structural brain measures. To
test the hypothesis that brain structural changes account for some
of the shared variance between age and neural delay, whole-head
voxel-wise robust mediation analyses were performed49.
Mediation analysis tests whether the relation—path c—between
a predictor variable (X, age) and an outcome variable (Y, ERF
delay) is significantly attenuated when the relation between X and
a mediator variable (M, WM microstructure or GM volume)—
path a—and the relation between M and Y—path b—are added to
the model. Four separate models were tested at each voxel: one
for each type of delay (auditory cumulative or visual constant) as
the outcome and one for each brain measure (white or grey
matter) as the mediator. All models included total intracranial
volume (TIV) as a covariate of no interest. Mediation effect sizes
were computed for every voxel, and a voxel-wise false detection
rate (FDR) of 5% applied to correct for multiple comparisons.
This threshold was further Bonferroni-corrected for multiple
comparisons across the four models. Finally, voxels were also
required to (i) show significant relations between age and
mediator (path a) and between mediator and outcome (path b)
at the same level of FDR correction, and (ii) fall within GM or
WM masks.

The mediation effects of WM microstructure on
the relationship between age and visual constant delay are
displayed in Fig. 4a. Two clusters of significant voxels were
found in the left retrolenticular part of the internal capsule
(RIC; label 1), and the left posterior thalamic radiation
(PTR; label 2). These paths together form the optic radiation
projecting from the lateral geniculate nucleus (LGN) to the
primary visual cortex (V1). The cluster centred on left RIC
extended to left superior corona radiata and left superior
longitudinal fasciculus, although the mediation effects here were
generally lower. The cluster visible in left PTR also extended to
splenium of corpus callosum, connecting left and right occipital
cortices. There was no evidence that WM mediated the effects of
age on auditory cumulative delay.

Mediation effects of GM on the relationship between age and
auditory cumulative delay are displayed in Fig. 4b. One cluster
was found comprising the left posterior STG (label 1), extending
to middle temporal gyrus (MTG). Another cluster was observed
in superior lateral occipital cortex (label 2), although effect sizes
here were lower (peak¼ 12%) than in STG (peak¼ 26%). There
was no evidence that GM mediated the effects of age on visual
constant delay.

Discussion
Using a novel analysis technique on MEG data from a large
lifespan cohort, we discovered two distinct types of age-related
neuronal delays in sensory-evoked responses: a constant delay in
the visual evoked magnetic field (VEF) to checkerboards and a
cumulative delay in the auditory evoked magnetic field (AEF) to
tones. These delays occurred regardless of whether participants
were passively encountering auditory and visual stimuli
separately, or actively responding to them when both were
presented concurrently, demonstrating that these age effects
occur under variable levels of attention. After controlling for
common age effects, these two types of delay were uncorrelated
across individuals, suggesting dissociable causes. In support of
this interpretation, we found that WM microstructure (MK, from
diffusion-weighted MRI), primarily in the optic radiation
(LGN to V1), mediated the effect of age on the visual constant
delay, whereas GM volume (as estimated from T1- and T2-

Table 2 | Tests for the effect of potential confounds on delay.

Age versus delay Age versus acuity Delay versus acuity Delay versus acuity
Cov¼ age

Age versus delay
Cov¼ acuity

N

Auditory cumulative 0.37*** �0.46*** �0.21*** �0.05 0.31*** 575
Visual constant 0.32*** 0.43*** �0.14** �0.00 0.30*** 524

Age versus amp Delay versus amp Delay versus amp
Cov¼ age

Age versus delay
Cov¼ amp

Auditory cumulative - 0.20*** 0.06 �0.02 0.37*** 577
Visual constant - 0.07* �0.03 �0.01 0.32*** 526

Age versus offset Delay versus offset Delay versus offset
Cov¼ age

Age versus delay
Cov¼offset

Auditory cumulative 0.13** �0.16*** �0.23*** 0.41*** 577
Visual constant 0.30*** 0.09 �0.01 0.31*** 526

Age versus RMSE Delay versus RMSE Delay versus RMSE
Cov¼ age

Age versus delay
Cov¼ RMSE

Auditory cumulative 0.07 0.06 0.03 0.37*** 577
Visual constant �0.13** �0.09* �0.05 0.33*** 526

Partial rank correlations (Spearman’s Rho) demonstrating that the age versus delay relationships observed in the main results section are not accounted for by visual or auditory acuity, age-related
changes in amplitude scaling (Amp), amplitude offset (Offset) or root mean square error (RMSE) of fit. Column 2 shows the relationship between age and the potential confounding variable (for example,
auditory/visual acuity). Column 3 shows the relationship between evoked response delay and the confounding variable. Column 4 shows the relationship between delay and the confounding variable
while controlling for age. Column 5 shows the relationship between age and delay while controlling for the confounding variable. In all cases, except for amplitude offset, controlling for age abolishes the
relationship between delay and the confounding variable. In all cases, controlling for the confounding variable has very little effect on the age-delay relationship. Auditory acuity measures were not
available for 2 participants, who were excluded from the above analysis. * Po0.05, **Po0.01, ***Po0.001.
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weighted MRIs), primarily in the posterior STG, mediated the
effect of age on the auditory cumulative delay. We discuss
these findings in light of prior behavioural, neuroimaging and
animal studies.

The age-related neural slowing in the VEF and its relationship
to WM microstructure in the optic radiation point to a delay in
the arrival time of information communicated from the LGN to
V1. Several aspects of our results support this conclusion.
First, the main generator of the VEF was located in extrastriate
visual cortex. Second, the slowing was characterized by a constant
delay of the entire ERF, so that both early (B50–150 ms) and late
(B150–400 ms) components of the evoked response were
affected, consistent with a delayed arrival time. Third, the
whole-brain voxel-wise mediation analysis revealed that micro-
structural differences in the left RIC and PTR partially account
for the age-related delay. The RIC in particular is a major
junction of fibres that transmit information from the LGN to
visual cortex (and our use of diffusion kurtosis likely increased
our sensitivity to regions with such crossing or fanning fibres).
Furthermore, the lack of cumulative delay suggests that, once the
information reaches visual cortex, it is processed at a normal rate
(cf. auditory results, discussed below).

These results contrast with findings in the senescent macaque
monkey13, which revealed no WM atrophy, and no delay in the
LGN-V1 pathway. Instead, spike-timing delays were related to

increased neuronal excitability and an increase in transmission
time from V1 to V2. One reason for this discrepancy may be
differences in the neural measures (for example, spiking rates
versus the local field potentials recorded with MEG); another may
be that humans have different neurobiological ageing profiles to
macaques, highlighting the importance of investigating ageing
in vivo in humans. Our results do not preclude the possibility that
other information-carrying fibres and thalamic nuclei play a role
in visual processing delays, but clearly point to age-related
differences in WM microstructure being at least partially
responsible for delays in information processing associated with
healthy human ageing. Further, our findings support a review
comparing pattern-evoked electroretinogram and cortical evoked
potentials that concluded age-related visual deficits are the result
of disruption to the retinogeniculostriate pathway28.

The age-related cumulative delay observed in the auditory
evoked response, along with the lack of constant delay, points to a
different mechanism than that associated with the visual
response. We suggest that this cumulative delay reflects a deficit
in local processing within auditory cortex, specifically recurrent
interactions between primary auditory cortex and higher order
auditory regions. We again base this claim on several aspects of
our analyses. First, the main source of the AEF was the primary
auditory cortex, in-line with evidence that this region responds to
pure tones50. This delay was mediated by GM volume in a higher

Model: X = Age, M = Mean kurtosis, Y = Visual constant delay, Cov = TIV
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Figure 4 | Whole-brain voxel-wise mediation analysis results. Voxel hue corresponds to the effect size (% mediation effect), while opacity corresponds

to the univariate P value. Clusters of at least 250 voxels that survive FDR correction are marked with a black border. (a) WM structure (MK) in the

optic radiation (connecting LGN to V1) [label 1], and in splenium of corpus callosum [label 2], mediates the age versus visual constant delay relationship.

(b) GM volume in the left posterior STG mediates the age versus auditory cumulative delay relationship [label 1]. Another cluster was observed in the left

superior lateral occipital cortex, a region not involved in auditory processing [label 2]. All effects indicate positive mediation (that is, the age versus delay

relationship is attenuated when including the mediator).
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order auditory region, namely the STG. We also observed a
cluster in left superior lateral occipital cortex, but since this region
is not involved in processing of auditory stimuli, we suggest that
collinear decline between this region and STG is responsible for
this result, rather than any true functional link. The STG is too
distant from the primary source to be considered the generator of
the AEF, but is certainly anatomically connected to primary
auditory cortex51, suggesting that interactions with STG are
responsible for the temporal dilation of the AEF. Indeed, the
auditory system is organized into a functional hierarchy,
beginning with processing of simple sounds (tone and
frequency) in primary auditory cortex, before further processing
in surrounding belt regions in the superior temporal lobe47,50,52.
It is difficult to say with certainty, but the cumulative delay
observed in the present study may therefore be linked to a
disruption of neural function (possibly neural recovery times53)
and dynamic interactions between primary auditory cortex and
higher processing regions, resulting in delay that worsens over the
duration of the evoked response, but does not affect the arrival
time of information from the peripheral auditory system. Finally,
we cannot completely rule out the contribution of central
auditory processing deficits on our results19,54. However, central
deficits are linked with age-related amplitude increases of the
AEF, while our study demonstrated an independence of
amplitude and latency. Further research is clearly needed to
determine the contribution of central auditory processing deficits
in cumulative delay of the AEF.

This idea of delays in local cortical interactions may also
explain the results presented in recent studies22,23 that have
reported age-related cumulative delay for information accrual
during processing of simple vs. complex visual stimuli after
B90–120 ms. These findings cannot be explained by the visual
constant delay found here, because one would expect simple and
complex stimuli to be equally delayed, leaving no net delay when
contrasting them. We suggest that increasing stimulus complexity
results in a greater dependence on recurrent communication
between brain regions responsible for face discrimination. The
speed at which this occurs, and therefore the temporal profile of
the evoked response, would then be dependent on the integrity of
those neural networks. Future studies directly comparing the
delay profiles of responses across simple and complex
discrimination tasks may help to shed light on these effects.
Furthermore, computational modelling would help to understand
the different neural mechanisms that could result in constant
versus cumulative delay in different sensory systems.

One potential additional cause of age-related delay in evoked
responses is the well-known age-related change in sensory acuity.
If sensory acuity were an adequate predictor of neural delay, we
would expect a relationship between acuity and delay to remain
even after adjusting for age. However, while auditory acuity was
weakly correlated with auditory cumulative delay, this correlation
disappeared when accounting for age. The same was true for the
relationship between visual acuity and visual constant delay. Most
importantly, the correlations between age and both visual and
auditory delays remained significant after adjusting for sensory
acuity. These results suggest that sensory acuity does not play a
significant role in our findings, which is consistent with previous
studies arguing that optical and retinal factors cannot
fully account for age-related delays in the visual evoked
response14–16,22,28.

We also investigated the effects of task on ERF fitting results,
and found evidence that the effect of age on some latency
estimates depends on the task in which latency is estimated: the
slope of the relationship between auditory cumulative delay and
age was higher in the Active task than Passive task. We cannot tell
from our two paradigms whether this effect of task reflects

whether or not a response to the visual/auditory stimuli is
required, and/or whether or not the visual and auditory stimuli
are simultaneous. This is direct evidence for the concern raised
in the Introduction that divergent results in the literature may
reflect the use of quite different tasks. Nonetheless, the dissociable
effects of age on visual constant versus auditory cumulative
delay held across both of the present tasks (the slope for auditory
cumulative delay was simply greater in the Active task),
suggesting that the basic age effects on visual and auditory delay
are somewhat invariant to the presence of the motor component
of the task, or the concurrent presentation of auditory and visual
stimuli.

The new method we used here to estimate delay made several
assumptions. First, the use of PCA to decompose the data into a
set of individual time courses and group spatial components
assumes that the spatial components are stationary across the age
range. We showed that this assumption holds in our data by
demonstrating a high spatial correspondence between evoked
response variance maps of young and old age groups. Second,
the fitting of deriving constant and cumulative delay assumes
temporal stationarity of delay parameters over the entire
evoked response. To test this assumption, we fit ERFs from
short time windows (0–140 ms) and found the same pattern of
visual-constant and auditory cumulative delay. Furthermore,
we employed a more traditional peak fitting method with both
simulated and real data to show that, when treating peaks of
the evoked response as separate components, constant and
cumulative delay can still be derived, albeit with less reliability.
Therefore, we conclude that the assumptions of temporal and
spatial stationarity were met in our data, and that our method was
suitable to derive independent measures of constant and
cumulative delay.

Nonetheless, when interpreting these results, some caveats
should be noted. First, while our findings go beyond previous
studies in testing for age-related delays across both visual
and auditory modalities and across two different tasks, our
findings are nonetheless restricted to simple visual and auditory
stimuli, which may not generalize to more complex stimuli that
require more extensive neural processing. This might explain the
age-related cumulative delay found previously in the ERP to
faces23, which likely involves a greater degree of recurrent
processing between multiple visual cortical regions responsible
for face perception.

Second, caution is warranted over interpretation of our
mediation analysis. Mediation analysis is a statistical approach
that cannot properly determine causality in the same way that an
intervention might (for example, to lesion parts of the optic
radiation and test effects on visual constant delay). Furthermore,
mediation results from cross-sectional studies cannot be
interpreted solely in terms of the ageing process55, and have
alternative explanations such as cohort effects. Whatever the
precise role of age, our findings nonetheless demonstrate that
there are at least two types of neural processing delay, which are
unrelated across individuals, and have different relationships with
white and grey matter in the brain structures associated with that
processing.

Third, this study presents a novel investigation of the
relationship between delays in human evoked responses and
brain structure (as measured by MRI). As such, we had no
specific hypotheses about the relative roles of grey versus WM, or
different brain regions. Thus, even though our whole-brain search
revealed statistically significant and mechanistically interpretable
results, our findings should be regarded as exploratory.
Future studies could take a more confirmatory approach to
testing the role of specific structural properties in sensory
processing delays.
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Finally, note that we are not claiming that our present white and
grey matter findings are a complete account of age-related slowing.
Our voxel mediation effect sizes explained at most 26% of the age-
related variance in response delays. It is possible that a larger
proportion of variance in neural delay could be explained by
combining brain measures across voxels, but even then, full
mediation would be surprising since several other factors not
measured here, such as altered neurotransmitter concentrations56 and
central auditory processing deficits54 are also potential contributory
factors. Nonetheless, our findings represent an important step
forward in demonstrating dissociable types of age-related neuronal
slowing, and generating mechanistic hypotheses for their causes.

To conclude, the present work fills a gap in the literature:
evidence that in healthy humans, age-related delay of the
electrophysiological response to stimulation is due to structural
differences of functionally-relevant brain regions responsible for
the transfer and processing of information. We have taken this a
step further to show that neural delay should not be thought of as
a unitary concept that affects all brain regions equally. Instead,
ageing appears to be associated with regionally specific changes
in characteristic neural responses, which are likely due to
heterogeneous age-related changes across anatomical structures.

Methods
Participants. Participants were recruited from a healthy population-derived sample
from the Cam-CAN study (www.cam-can.org; see Shafto et al.57 for a
comprehensive explanation of the study design and experimental protocol). Ethical
approval for the study was obtained from the Cambridgeshire Research ethics
committee. Prior to the home interview, individuals give written informed consent
for the study. Written informed consent is also given by participants at each
scanning session. Participants were excluded based on several criteria: Mini Mental
State Examination o25; failing to hear a 35 dB 1 kH tone in either ear; poor English
language skills (non-native or non-bilingual speakers); self-reported substance abuse
and serious health conditions (for example major psychiatric conditions, or a history
of stroke or heart conditions); or MRI or MEG contraindications (for example,
ferromagnetic metallic implants, pacemakers or recent surgery). Participants that did
not take part in both the MEG and MRI sessions were also excluded. The final
sample of N¼ 617 had an age range of 18–88 years at the time of first contact. For a
post hoc analysis of power (number of participants needed to detect the present effect
sizes), see Supplementary Fig. 6. Participants completed a Siemens HearCheck
auditory screener consisting of three sound pressure levels (75dB, 55dB, and 35dB) at
two frequencies (1000Hz and 3000Hz) without hearing correction. The Snellen sight
test is also performed with corrected vision. In addition to screening tests at home
interview stage, participants took both a visual (Snellen sight test, with vision
correction) and auditory acuity test immediately preceding the MEG scan (see Shafto
et al.57 p7 for details). The scores from the home interview stage were also used in
later statistical analysis of age-related neural delay to control for the possible
confounds of age-related differences of visual/auditory acuity (2 participants with
missing acuity data were removed; see Table 2).

Audio-visual tasks. The visual stimulus consisted of two circular checkerboards
presented simultaneously to the left and right of a central fixation cross (34 ms duration
� 60 presentations). The diameter of each circular checkerboard subtended an angle of
3�, their centroids were separated by 6� on the horizontal plane, and the checks had a
spatial frequency modulation of 2 cycles per degree. Visual stimuli were presented using
a Panasonic PT-D7700 DLP projector (1,024� 768, 60 Hz refresh rate) outside of the
magnetically shielded room (MSR), projected though a waveguide onto a back-pro-
jection screen placed 129cm from the participant’s head. The stimulus onset was
adjusted for the 34 ms (2 refreshes at 60 Hz) delay induced by the projector. The
auditory stimulus was a binaural tone (300 ms duration; 20 presentations of 300, 600
and 1,200 Hz; 60 total presentations), with a rise and fall time of 26 ms, and presented at
75 dB sound pressure level (measured using an artificial ear). The stimulus onset was
adjusted for the 13 ms delay for the sound to reach the ears. The first session involved
the Active task, in which participants were presented with both types of stimuli con-
currently, and asked to respond by pressing a button with their right index finger after
stimulus onset. The reaction times (RTs) are analysed in Supplementary Table 1,
though note that the Active task was not explicitly speeded. The stimulus-onset asyn-
chrony varied randomly between 2 and 26 s, to match an fMRI version of same task
(see Taylor et al.58 for more details). The session lasted 8 min and 40 s in total.

The second session was the Passive task. Participants experienced separate trials with
either the visual or auditory stimulus, which they were asked to passively observe (no
response required). Visual and auditory trials were pseudo-randomly ordered, with a
stimulus onset asynchrony (SOA) that varied randomly between 0.8 and 2 s. Given the
simultaneous presentation, evoked responses were adjusted by the average delay of
23 ms (13 ms auditory and 34 ms visual). The session lasted B2 min.

PCA based latency analysis. The 2D (time� sensor) matrices for each
participant were concatenated along the time dimension. PCA was performed with
columns as signals and rows as observations to produce a set of time domain
signals for each trial-type. The nth principal component was then reshaped to give
individual trial averages for each participant. The principal component weights
represent the degree to which each channel contributes towards the nth principal
component. Given that the relationship is linear, the weights can also be used
for source localization. Since the simple sensory-evoked sources are likely to be
distributed across multiple regions, we used multiple sparse priors, implemented in
SPM12, which is capable of recovering multiple sparsely distributed generators of
ERFs (ref. 46). Each participant’s MRI was coregistered to their MEG data using
three anatomical fiducial points (nasion, and left and right pre-auricular points)
that were digitized for the MEG data and identified manually on the MRIs. Lead
fields were calculated using a single-shell model based on the deformed spheres
approach59.

ERF Fitting. The aim of the fitting procedure was to obtain estimates for two types
of delay: constant delay, defined as delay that affects all time points equally
(modelled using a 0th order delay parameter); and cumulative delay, defined as
delay that is linearly dependent on the time point at which it is measured (modelled
using a 1st order delay parameter). Note that the delay terms could be of any order,
but limiting the delay estimates to 0th and 1st order terms reduces the danger of
over-fitting. ERF fitting was performed using in-house code written in MATLAB.
First, a template ERF was computed from the data as the trial-averaged ERF for a
given principal component, averaged across all participants. Because this template
represents the group average, approximately equal numbers of participants will
have negative and positive relative delay parameters when fitting their individual
ERFs. A template fitting algorithm was designed to iteratively alter the temporal
characteristics of the template signal s(t) by:

ŝ tð Þ ¼ s t0 � tCON þ
t� t0½ �
tCUM

� �
: ð1Þ

where tCON is the constant delay, tCUM is the cumulative delay and t0 is a
stationary point in time for any value of tCUM, and was constant across all tests
(see below). Cubic spline interpolation was used to obtain ŝ for any given set of
delay parameters.

For each individual time-course s(t), the parameters were adjusted iteratively
using a local maximum gradient ascent algorithm until the convergence criteria
was satisfied. Starting parameters were chosen to correspond to the null hypothesis
that no delay would be observed compared to the group average
(tCON ¼ 0; tCUM ¼ 1), and delay parameters were adjusted by a predefined
quantity (tCON ¼ � 20 ms; tCUM ¼ � 10 % ), giving 4 fits per iteration. A value of
t0¼ 50 ms was fixed on the basis of the typical latency for information to reach
sensory cortices (for example, P1m). Fit was determined using linear regression,
and the parameter values that gave the best R2 fit were chosen as starting points in
the next iteration. Using regression simplified the fitting procedure, since
amplitude scaling and mean were determined from the regression model’s beta
estimate and intercept, respectively. If none of the parameters resulted in a better fit
than the current best fit, then the magnitude of the parameter adjustments were
reduced by a factor of 0.75 and the process was repeated. Convergence was
achieved when the R2 fit improvement over the current best fit was o1e-6. This
method helped to reduce the occurrence of spurious outliers, because the gradient
ascent was constrained to converge into the maxima closest to the starting point.
Results were visually inspected to ensure optimal fitting was achieved. Outlier
parameter values were handled during statistical testing, described below.

Robust regression. For each delay parameter, outliers were identified based on the
boxplot rule (±1.5 times the inter-quartile range) and removed from the analysis.
An outlier in either the constant or cumulative delay estimate resulted in the
participant being rejected from the analysis for a given experimental condition
(visual or auditory). For all correlation analyses, robust methods were employed to
control for remaining extreme values. Robust regression was implemented using
MATLAB Statistical Toolbox (LinearModel.fit). A bi-square weighting function
with a tuning constant of 4.685 was used to weight cases based on their residual
error from an ordinary least squares fit, then repeated until convergence.

For the purpose of comparing our results with those in the literature using more
conventional measures, the linear equation describing the age-related change in
constant and cumulative delay can be converted back to peak latency, l, by
combining the age versus constant/cumulative delay regression equations
(Results section) with Equation 1 (where t becomes the peak-of-interest, a is age,
and tCON and tCUM are replaced with the linear equations obtained from our main
analysis):

l ¼ t0 þ b0 CON þ ab1 CON þ b0 CUM t� t0ð Þþ ab1CUM t� t0ð Þ: ð2Þ
Separating the constant and age dependent terms gives the coefficients of the linear
equation l ¼ b0 þ ab1:

b0 ¼ t0 þb0 CON þ b0 CUM t� t0ð Þ ð3Þ

b1 ¼ b1CUM t� t0ð Þþb1CON ð4Þ
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where t is the peak-of-interest (for example, for P2m, t¼ 200—obtained from the
ERF template), and b0 CON, b0 CUM, b1 CON and b0 CUM are the intercepts and slope
betas from the age versus delay regression equations. Confidence intervals can also
be converted using the same formula.

MRI Data. MRI data were acquired using a Siemens 3T TIM TRIO (Siemens,
Erlangen, Germany) with a 32-channel head coil at the MRC Cognition & Brain
Sciences Unit (CBU), Cambridge, UK. Anatomical images were acquired with a
resolution of 1 mm3 isotropic using a T1-weighted MPRAGE sequence (TR:
2250 ms; TE: 2.98 ms; TI: 900 ms; 190 Hz; flip angle: 9�; FOV: 256� 240� 192 mm;
GRAPPA acceleration factor: 2), and a 1 mm3 isotropic T2-weighted SPACE
sequence (TR: 2800 ms; TE: 408 ms; flip angle: 9�; FOV: 256� 256� 192 mm;
GRAPPA acceleration factor: 2). Diffusion-weighted images (DWIs) were
acquired with a twice-refocused spin-echo sequence, with 30 diffusion
gradient directions for each of two b-values: 1,000 and 2,000 s mm� 2, plus
three images acquired with a b-value of 0. These parameters are optimized for
estimation of the diffusion kurtosis tensor and associated scalar metrics. Other
DWI parameters were: TR¼ 9,100 milliseconds, TE¼ 104 milliseconds, voxel
size¼ 2 mm isotropic, FOV¼ 192 mm� 192 mm, 66 axial slices, number of
averages¼ 1.

All MRI data were analysed using the SPM12 software (www.fil.ion.ucl.ac.uk/
spm), implemented in the AA 4.2 batching software (https://github.com/
rhodricusack/automaticanalysis).

The T1 and T2 images were initially coregistered to the MNI template using a
rigid-body transformation, and then combined to segment the brain into 6 tissue
classes: GM, WM, cerebrospinal fluid, bone, soft tissue and residual noise. The GM
images were then submitted to diffeomorphic registration (DARTEL) to create
group template images, which was then affine-transformed to the MNI template.
To accommodate changes in volume from these transformations, the GM images
were modulated by the Jacobean of the deformations to produce estimates in MNI
space of the original local GM volume.

The DWI data were first coregistered with the T1 image and then skull-stripped
using the BET utility in FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). Linear fitting of a
higher order tensor was then used to estimate MK (using in-house code). Images of
the diffusion metrics were then normalized to MNI space using the
DARTELþ affine transformations from the T1þT2 pipeline above.

MEG scanning and pre-processing. Data were collected continuously using
a whole-head Elekta Neuromag Vector View 306 channel MEG system
(102 magnetometers and 204 planar gradiometers; Elekta, Neuromag, Helsinki,
Finland), located in a MSR at the CBU. Data were sampled at 1kHz with a highpass
filter of 0.03 Hz. Recordings were taken in the seated position. Head position within
the MEG helmet was estimated continuously using four head-position indicator
coils to allow for offline correction of head motion. Two pairs of bipolar electrodes
were used to record vertical and horizontal electrooculogram signals to monitor
blinks and eye-movements, and one pair of bipolar electrodes to record the elec-
trocardiogram signal to monitor pulse-related artefacts. Instructions and visual
stimuli were projected onto a screen through an aperture in the front wall of the
MSR. Participants were given MEG-compatible glasses to correct their vision.
Auditory stimuli were presented binaurally via etymotic tubes. Motor responses
were made via a custom-built button box with fibre optic leads. For a schematic
diagram of the MEG processing pipeline, see Fig. 5.

Temporal signal space separation (tSSS; MaxFilter 2.2, Elekta Neuromag Oy,
Helsinki, Finland) was applied to the continuous MEG data to remove noise from
external sources and from head-position indicator coils (correlation threshold 0.98,
10-s sliding window), for continuous head-motion correction (in 200-ms time
windows), and to virtually transform data to a common head position (‘-trans

default’ option with origin adjusted to the optimal device origin, [0, þ 13, � 6]).
MaxFilter was also used to remove mains-frequency noise (50 Hz notch filter) and
to automatically detect and virtually reconstruct any noisy channels. Data were
then imported into Matlab using SPM12. We identified physiological artefacts from
blinks, eye-movements and cardiac pulse using the logistic Infomax independent
components analysis (ICA) algorithm implemented in EEGLAB. This was done by
identifying those ICs whose time courses and spatial topographies correlated highly
with reference time courses (correlation greater than three s.d.’s from mean) and
spatial topographies (correlation greater than two s.d.’s from mean), respectively,
for each of the above artefact types (run via in-house code,
detect_ICA_artefacts.m).

Data were then filtered using a two-pass 5th order Butterworth filter (1-32 Hz)
implemented in fieldtrip, epoched (time window: � 100 to 500 ms peristimulus
time), and the average baseline (� 100 to 0 ms) was subtracted from the data. Trial
averaged responses of evoked amplitude were computed for each channel,
participant and condition of the experiment. This resulted in a two-dimensional
matrix for each participant (channels� time). All subsequent analyses were carried
out using data from the 204 gradiometer channels, since these are more sensitive to
superficial sources than the magnetometer sensors, and the sensory cortices of
interest here are superficial. ERF fitting on both the Passive and Active task data
was performed on the principal components of the channel level data (see
subsection on PCA based latency analysis, below).

Whole-brain voxel-wise mediation analysis. Images in MNI space of MK
from the DWI pipeline, and of local GM volume (GMV) from the T1 and T2
pipeline, were smoothed (12 mm FWHM) and entered into a whole-brain
voxel-wise robust mediation analysis implemented using the M3 Mediation
Toolbox (http://wagerlab.colorado.edu)49. A three path model was used
with age as the predictor variable (X), delay as the dependent variable
(Y; outliers removed as above), and anatomical data as the mediator variable (M).
Since TIV was correlated with age (R2¼ 0.01, P¼ 0.03), it was also included
as a covariate to control for the possible confounding effects of head size on
structural statistics.

Mass univariate robust mediation was computed per voxel using the robust fit
option of the M3 toolbox (10,000 bootstrapped samples per voxel) to generate path
data (paths: a¼X–4M, b¼M–4Y, c0 ¼X–4Y, c¼ abþ c0), and associated P
values calculated per voxel. Four models were tested, all with age as the predictor
(X) and TIV as covariate of no interest, which correlated with age (R2¼ 0.01,
P¼ 0.03, N¼ 617). The mediator variable (M) was voxel data from either the white
or GM images. WM volumes were masked using the JHU ROIs (all ROIs were
included); GM volumes were masked using the Harvard Oxford GM atlas. Only
those voxels falling within the mask were entered into the mediation model.
The FDR threshold for each image was calculated from the resulting P value
maps using the M3 mediation toolbox. Statistical maps were thresholded
according to these P value thresholds, and clusters with fewer than 250
suprathreshold voxels were excluded. Mediation effect sizes were calculated using
the formula, Meffect ¼ 100ab=c, which represents the mediation effect on the c path
of including M in the model (resulting in c0) as a percentage of the total direct effect
(c). A value of 100% indicates full mediation.

Data availability. Data from the Cam-CAN project is available from the
managed-access portal at http://camcan-archive.mrc-cbu.cam.ac.uk, subject to
conditions (see website). Analysis scripts are available in Supplementary
Information accompanying this publication. For a complete description of
Cam-CAN data and pipelines, see Taylor et al.58
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Figure 5 | Flow chart diagram illustrating the processing steps involved in the analysis of MEG data.
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