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Chimeric antigen receptor (CAR) T-cell therapy shows promise for treating liquid cancers
and increasingly for solid tumors as well. While potential design strategies exist to
address translational challenges, including the lack of unique tumor antigens and the
presence of an immunosuppressive tumor microenvironment, testing all possible design
choices in vitro and in vivo is prohibitively expensive, time consuming, and laborious. To
address this gap, we extended the modeling framework ARCADE (Agent-based
Representation of Cells And Dynamic Environments) to include CAR T-cell agents
(CAR T-cell ARCADE, or CARCADE). We conducted in silico experiments to
investigate how clinically relevant design choices and inherent tumor features—CAR
T-cell dose, CD4+:CD8+ CAR T-cell ratio, CAR-antigen affinity, cancer and healthy cell
antigen expression—individually and collectively impact treatment outcomes. Our
analysis revealed that tuning CAR affinity modulates IL-2 production by balancing
CAR T-cell proliferation and effector function. It also identified a novel multi-feature
tuned treatment strategy for balancing selectivity and efficacy and provided insights into
how spatial effects can impact relative treatment performance in different contexts.
CARCADE facilitates deeper biological understanding of treatment design and could
ultimately enable identification of promising treatment strategies to accelerate solid
tumor CAR T-cell design-build-test cycles.
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1 INTRODUCTION

Chimeric antigen receptor (CAR) T-cell therapy combines advances in cellular engineering and
personalized medicine for patient-specific, targeted cancer treatment (Barrett et al., 2014; Jackson
et al., 2016). This therapy involves collecting, purifying, and genetically modifying a patient’s own
T-cells to express a CAR that specifically targets the patient’s tumor(s) (Barrett et al., 2014; Jackson
et al., 2016). These engineered cells are expanded ex vivo and then re-infused into the patient where
the CAR T-cells target and kill antigen-expressing tumor cells. The six FDA-approved CAR T-cell
therapies and many studies expanding CAR designs exclusively target “liquid” cancers that typically
derive from CD19+ B-cells (Jackson et al., 2016; Castellarin et al., 2018; Yanez-Munoz and Grupp,
2018; NCI, 2022). CD19 CAR T-cell therapies have shown great success in the clinic with response
rates between 70–90% reported (Lim and June 2017). In contrast, response rates for solid cancers are
significantly lower at 4–16% (Hou et al., 2019).
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CAR T-cells are currently less effective for treating solid
tumors due unique complexities of both the tumor
microenvironment (TME) and tumors themselves. First, TME
barriers prevent CAR T-cell infiltration (Castellarin et al., 2018).
These barriers include the intricate influence of both tumor-
suppressing and tumor-promoting cells on the TME (Whiteside,
2008; Galluzzi et al., 2018), immune-evading cell markers
promoting tumor escape (Maus and June 2016; Galluzzi et al.,
2018), and physical and chemical barriers that impact spatial
dynamics and nutrient availability (Whiteside, 2008; Castellarin
et al., 2018). Thus, developing CAR T-cells that remodel the
immunosuppressive TME has been an active area of research
(Cherkassky et al., 2016; Liu et al., 2016; Lim and June 2017;
Huang et al., 2018; Rafiq et al., 2018). Second, solid tumors often
lack unique tumor antigens for selective targeting (Kakarla and
Gottschalk, 2014). Cross-reactivity with healthy tissues present
harmful or fatal off-tumor effects (Bonifant et al., 2016; Lim and
June 2017). Cellular engineering efforts have focused on
increasing CAR specificity by tuning the affinity of receptor-
antigen interactions to avoid healthy cells (Caruso et al., 2015;
Johnson et al., 2015; Liu et al., 2015; Castellarin et al., 2018).
Similarly, creating CAR T-cells that perform Boolean logic can
enhance tumor recognition specificity (Wilkie et al., 2012; Lanitis
et al., 2013; Wu et al., 2015; Castellarin et al., 2018; Cho et al.,
2018). Designing CAR T-cells that target multiple antigens
simultaneously can also prevent formation of antigen escape
variant tumors (Hegde et al., 2013; Hegde et al., 2016; Cho
et al., 2018). Finally, additional factors that have not proven
problematic for “liquid” cancers, such as the need for site-specific
trafficking of CAR T-cells to solid tumors and tumor antigen
heterogeneity, further complicate solid-tumor CAR T-cell
therapy design (Lim and June, 2017).

In combination with the array of engineering design choices
presented by addressing the constraints above, additional design
choices impact CAR T-cell effector functions and long-term
persistence regardless of tumor type. These features include
CD4+:CD8+ CAR T-cell ratios (Zhao et al., 2015;
Sommermeyer et al., 2016; Turtle et al., 2016), choice of
intracellular co-stimulatory domain (ICD) in the CAR
(Kawalekar et al., 2016; Guedan et al., 2018), and the stage of
T-cell differentiation (Sommermeyer et al., 2016). Collectively,
the vast number of design choices complicates interpreting and
comparing studies of and iteratively tuning CAR T-cell therapies.

Simultaneously tuning multiple features of a CAR T-cell
therapy and forecasting their impact on emergent population
dynamics remains a grand challenge. Exploring the
multidimensional design space becomes prohibitively
expensive and laborious in vitro and in vivo, particularly when
considering the time and resources required for mouse
experiments. Additionally, some design aspects and emergent
properties are difficult to interrogate experimentally, such as cell-
level behavioral states that impact treatment efficacy. Employing
in silico experiments has proven to be a resource-saving and
valuable way to understand how underlying biological processes
impact CAR treatment outcome and hypothesizing new design
features to improve efficacy. Recent CAR T-cell modeling efforts
have used ordinary differential equation (ODE) models to

understand factors influencing CAR T-cell receptor signaling
and downstream activation (Rohrs et al., 2018; Cess and
Finley, 2020a; Rohrs et al., 2020). Other CAR T-cell ODE
modeling efforts aim to optimize patient pre-conditioning with
chemotherapy (Owens and Bozic, 2021). However, these models
lack spatial resolution, test a limited set of features, and do not
assess emergent cell population dynamics; these important
contributions do not yet enable predictions of the sort needed
to guide the design of CAR T-cell therapies.

Agent-based models (ABMs) provide ideal in silico testbeds
for interrogating emergent population dynamics. ABMs are
bottom-up computational frameworks that describe the
behavior of autonomous agents through defined rules that
guide agent actions and interactions within their local
environment. The ABM framework provides single-cell spatial
and temporal resolution, incorporates quantitative and
qualitative experimental observations, and enables tuning and
measuring properties of interest through in silico experiments
(Chavali et al., 2008; Narang et al., 2012; Yu and Bagheri, 2016;
Vodovotz et al., 2017). Past ABMs have explored how cell
properties influence tumor growth (Zhang et al., 2009; Waclaw
et al., 2015; Norton et al., 2017; Yu and Bagheri, 2020),
vasculature and microenvironment dynamics (Anderson et al.,
2006; Yu and Bagheri, 2021), immune response to infection and
tumors (Folcik et al., 2007; Cess and Finley, 2020b), and tumor
response to checkpoint inhibitor therapy (Gong et al., 2017).
However, to our knowledge, no ABM reported to date has
characterized CAR T-cell dynamics in solid tumors or
explored how CAR T-cell and tumor features impact outcomes.

In this study, we systematically explore CAR T-cell therapy
designs in solid tumor contexts by adding CAR T-cell agents to an
established ABM (Agent-based Representation of Cells And
Dynamic Environments, or ARCADE) comprising tissue cell
agents (Yu and Bagheri, 2020) and dynamic vasculature (Yu
and Bagheri, 2021). We use this model—CAR T-cell ARCADE
(CARCADE)—to simulate CAR T-cell interactions with tissue
cells and analyze a multidimensional design space. We
demonstrate that CARCADE recapitulates known observations
and predicts responses to new designs for solid tumor CAR T-cell
therapies.

2 RESULTS

2.1 CARCADE Characterizes CAR T-Cell
Behavior, Metabolism, and Effector
Function
CARCADE provides a flexible framework for characterizing and
exploring hypothesized dynamics of population-level tumor
responses to CAR T-cell treatment by defining individual CAR
T-cell, cancer, and healthy cell features and rules.

2.1.1 CAR T-Cell Agents Recapitulate CAR T-Cell
Behavior
ARCADE comprises tissue cell agents with individual subcellular
metabolism and signaling modules that influence the cell-level
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FIGURE 1 | CARCADE structure and CAR T-cell agent design. (A) Depiction of CARCADE components. Subcellular modules guide underlying cellular function to
influence behavior (Gzm. B, granzyme B). Agents include tissue cell and CAR T-cell agents, each of which has separate rule sets and is depicted with surface ligands and
CARs (dark gray). Tissue cells include both healthy cells and cancer cells. Agents exist in an environment where diffusion is controlled by partial differential equations and
constant sources or vasculature provide nutrients. (B) Descriptions of each CAR T-cell agent state, separated by whether the state is desired or undesired for
efficacious treatment. (C) Diagram of CAR T-cell metabolism and inflammation module interactions with small molecules, proteins, and regulatory edges. The
inflammation module diagram is broken into two parts, showing differences between CD4+ CAR T-cells (light green, top) and CD8+ CAR T-cells (purple, bottom). All CAR
T-cells use identical metabolism modules. Regulatory edges (upregulation: green arrow, downregulation: red flathead arrow) result from IL-2 binding and antigen-
induced activation. G, glucose; O, oxygen; GB, granzyme B; OXPHOS, oxidative phosphorylation. Legend for cell color is consistent with panel B. (D) An example of a
single dish and tissue simulation of untreated cancer and healthy cells shown at select time points. For tissue, the dynamic vasculature architecture is overlaid.
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decision making rules and drive emergent population- and
environment-level dynamics (Figure 1A). Tissue cell agent
rules and parameters can be tuned to represent either cancer
or healthy cells. We introduce a new cell agent representing CAR
T-cells into this framework (Figure 1A). All cell agents are
simulated in a microenvironment that comprises either
constant nutrient sources (representing a dish context) or
vasculature (representing a vascularized tissue context). To
distinguish between simulation and experiment, we denote
simulated dish and tissue contexts as dish and tissue,
respectively.

Agents navigate through a set of defined, cell-type specific
states and rules derived from experimentally observed states and
transitions. Each tissue cell can be in one of six states—migratory,
proliferative, quiescent, senescent, necrotic, and apoptotic—at
each time step. CAR T-cell agents follow a unique rule set with
additional states designed to capture T-cell behaviors
(Figure 1B). There are two subtypes of CAR T-cell agents:
CD8+ T-cells that primarily provide cytotoxic functions and
CD4+ T-cells that primarily provide stimulatory functions
(Liadi et al., 2015; Golubovskaya and Wu, 2016;
Sommermeyer et al., 2016). Although both T-cell subtypes can
provide cytotoxic and stimulatory functions, for simplicity, we
specified that each of these T-cell subtypes would perform only
their primary function. CAR T-cell agents can enter ten different
subtype-dependent states, broadly categorized as desirable and
undesirable during treatment. Desired states include migratory,
proliferative, stimulatory (CD4+ only), cytotoxic (CD8+ only),
and paused. Undesired states include apoptotic, senescent,
exhausted, anergic, and starved. Cells change state according
to the rule set and to their current state (Supplementary
Figures S1, S2, Supplementary Methods Details). All new
model parameters are listed in Supplementary Table S1 (Kuse
et al., 1985; Lauffenburger and Linderman, 1993; Robertson et al.,
1996; Frauwirth et al., 2002; De Boer et al., 2003; Deenick et al.,
2003; Iwashima, 2003; Jacobs et al., 2008; Busse et al., 2010; Yoon
et al., 2010; Wang et al., 2011; Altman and Dang, 2012;
Robertson-Tessi et al., 2012; Stone et al., 2012; Cheng et al.,
2013; Hegde et al., 2013; Heskamp et al., 2015; Kinjyo et al., 2015;
Liu et al., 2015; Obst, 2015; Harris and Kranz, 2016; Hegde et al.,
2016; Arcangeli et al., 2017; Borghans and Ribeiro, 2017; Gong
et al., 2017; Gherbi et al., 2018; Guedan et al., 2018; Salter et al.,
2018; Yu and Bagheri, 2020; 2021).

Each agent utilizes subcellular modules to capture underlying
metabolic and signaling states. ARCADE tissue agents use two
subcellular modules that control metabolism and signaling. The
metabolism module uses stoichiometric equations to determine
cellular uptake of glucose and oxygen, which is then converted
to energy and cell mass. The signaling module uses an ODE
model with regulatory nodes to determine the influence of
tumor growth factor alpha (TGFα) on a tissue cell’s decision
to proliferate or migrate. CAR T-cell agents use the tissue cell
metabolism module with modifications to capture the influence
of IL-2 signaling and antigen-induced activation on T-cell
metabolism: 1) increased metabolic preference for glycolysis;
2) increased glucose uptake rate; and 3) increased fraction of
glucose used to produce cell mass (Figure 1C, Supplementary

Methods Details) (Frauwirth et al., 2002; Jones and Thompson,
2007; Pearce, 2010; Altman and Dang, 2012; Gerriets and
Rathmell, 2012; MacIver et al., 2013; Chang and Pearce,
2016; Mehta et al., 2017). CAR T-cell agents also contain an
inflammation module to capture the impact of IL-2 binding and
antigen-induced activation on IL-2 production in CD4+ CAR
T-cells (Malek and Castro, 2010; Liao et al., 2013; Rosenberg,
2014) and on granzyme production in CD8+ CAR T-cells (Liadi
et al., 2015) (Figure 1C, Supplementary Methods Details). For
both CAR T-cell subtypes, the inflammation module uses an
ODE model to determine the amount of IL-2 bound to various
IL-2 receptor species (Malek and Castro, 2010; Liao et al., 2013;
Ross and Cantrell, 2018).

2.1.2 In Silico Experiments Mimic In Vitro and In Vivo
Contexts
To provide an in silico testbed that can be related to physical
experiments, simulations were designed to represent two
experimental contexts: dish and tissue (Figure 1D). Each
configuration utilizes an environment in which four nutrient and
signaling molecules—oxygen, glucose, TGFα, and IL-2—diffuse.
Additionally, the environment contains distinct sources from
which oxygen and glucose are produced. Dish uses a
constant nutrient source environment to represent the well-
mixed cell media of an in vitro experiment. These simulations
are initialized with a defined number of tissue cells placed
randomly in the environment. CAR T-cells are introduced
after 10 min and simulated for 7 d of treatment. Tissue uses
vasculature to represent realistic hemodynamics of nutrients
diffusing through the environment to represent an in vivo
solid tumor experiment. Vasculature can be degraded and
collapse due to cancer cell crowding and movement. These
simulations are initialized with a confluent bed of healthy cells
and a small colony of cancer cells added to the center of the
simulation environment. The cancer cell colony grows for 21 d to
form a tumor before CAR T-cells are added and simulated for 9 d
of treatment. Untreated dish and tissue simulations
highlight how in silico experimental design leads to diverse
outcomes (Figure 1D).

2.2 Monoculture and Co-Culture
Simulations are Consistent With In Vitro
Observations
CAR T-cell agents were developed de novo based on
established cell-level observations; resulting emergent
dynamics of the simulation were used for model validation.
The comparison between in silico and in vitro/in vivo
experiments is a critical and common method for validating
ABMs. To confirm that emergent dynamics follow
experimental observations, we tested how outcomes vary as
a function of four CAR and tumor features—CAR T-cell dose
(Sampson et al., 2014), CD4+:CD8+ CAR T-cell ratio
(Sommermeyer et al., 2016; Turtle et al., 2016), CAR-
antigen affinity (Chmielewski et al., 2004; Hudecek et al.,
2013; Caruso et al., 2015; Johnson et al., 2015; Liu et al.,
2015; Ghorashian et al., 2019), and antigen density on
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FIGURE 2 | Impact of individual CAR T-cell and tumor features on cytotoxicity and CAR T-cell growth in dish. (A) Cell counts over time of untreated (black) and
treated conditions (graded hues) holding all but one feature constant. Each column shows the axis being changed, where all other features are held constant at indicated
intermediate values (indicated by asterisk, CAR T-cell dose = 500 CAR T-cells, CD4+:CD8+ ratio = 50:50, CAR affinity = 10−7 M, cancer antigens = 1000 antigens/cell),
while rows show the cell type being plotted. (B) Normalized percent lysis curves for in silico and published experimental in vitro data. Plot for simulated data shows
percent lysis for each set of CAR affinity values across normalized cancer antigen values. All other axes were held constant, and the data were averaged across
replicates. Simulations with negative percent lysis indicate cancer cell growth. Experimental data—representing an array of CAR types, effector to target (E:T) ratios,
ICDs, and cancer cell lines (Supplementary Table S6, Supplementary Data S5)—were normalized to maximum percent lysis and antigen levels with estimated error
bars. The plots show percent lysis for each set of CARs tested per paper, each with unique CAR affinity and tested across a range of antigen target values. (C) Volume
and cell cycle distributions for CAR T-cell populations at t = 4 d (filled) and t = 7 d (outline) holding all but CAR affinity constant at an intermediate value in monoculture.
Legend is consistent with panel B. The data for cancer cell populations and for all other features can be found in the Supplementary Material. (D)Cell counts over time
of untreated (black) and treated conditions (graded hues) holding all features constant at an intermediate value. Legend is consistent with panel B for both ideal and
realistic co-culture. Solid lines represent total cell counts, dashed lines represent live cell counts.
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cancer cells (Stone et al., 2012; Liu et al., 2015; Watanabe et al.,
2015; Majzner et al., 2020).

In a clinical setting, CAR T-cells necessarily interact with both
healthy and cancer cells, and healthy cell antigen expression can
impact off-target effects (Harris and Kranz, 2016). It is critical to
consider how these CAR and tumor features impact both cancer
and healthy cell populations. We simulated CAR T-cell treatment
in three different contexts—1) monoculture with only cancer
cells, 2) ideal co-culture with cancer cells and antigen-negative
healthy cells, and 3) realistic co-culture with cancer cells and low-
level antigen expressing healthy cells—modulating CAR T cells
and tumor features in each context to assess how in silico
dynamics compare to observations in vitro. Using dish
removes confounding effects of nutrient constraints and TME
factors. We simulated 10 replicates of each combination of
features (Supplementary Table S2 for monoculture,
Supplementary Table S3 for co-culture). In monoculture,
dish was randomly plated at t = 0 s with 2 × 103 antigen-
expressing cancer cells. At t = 10 min, treatment begins by adding
a dose of CAR T-cells, each expressing 5 × 104 CARs with a
defined CAR affinity and CD4+:CD8+ ratio. We simulated 7 d of
treatment. Co-culture is identical except initial plating uses
1 × 103 cancer cells and 1 × 103 healthy cells. Simulation
trajectories—including each cell’s location, state, volume, and
average cell cycle length—were collected every half day. The
input files used to generate dish simulations are described in
the Supplementary Material (Supplementary Data S1 and
Supplementary Table S4 for monoculture, Supplementary
Data S2 and Supplementary Table S5 for co-culture).

2.2.1 Cancer Cell and CAR T-Cell Dynamics Are
Independent of Context
We first consider the impact of individual features on cell counts
and behavior in dish (holding other features constant at
intermediate values). In all simulations, cancer cell and CAR
T-cell counts follow experimentally observed trends, including
conditions with effector-to-target (E:T) ratios less than one where
cancer cell killing occurs over several days (Figure 2A for
monoculture, Supplementary Figure S3A for ideal co-culture,
Supplementary Figure S3B for realistic co-culture)
(Chmielewski et al., 2004; Arcangeli et al., 2017). Increasing
CAR T-cell dose increases T-cell counts and accelerates cancer
cell killing (Sampson et al., 2014; Hamieh et al., 2019). Our
simulations mirror this trend; when E:T ratios are increased
beyond the initial range explored (i.e., to explore ratios greater
than one), substantial cancer cell killing occurred in monoculture
in half the time (all other features are held at intermediate values)
(Supplementary Data S3, Supplementary Figure S4A).
Increasing the E:T ratio brings closer parity in rate of cancer
cell killing between our simulations and experimental analyses,
but we acknowledge that there remains a discrepancy based on
time to complete elimination of cancer cells. This difference can
be attributed to unaccounted for contact-independent
mechanisms of killing, potentially including exosomes (Fu
et al., 2019); these additional mechanisms were not included
in the model for simplicity. Intermediate CD4+:CD8+ ratios
maximize cancer killing and increase CAR T-cell proliferation

(Sommermeyer et al., 2016; Turtle et al., 2016). Higher fractions
of CD8+ CAR T-cell treatments prove less effective because
cytotoxic CD8+ cells need the support of the cytokines
primarily produced by CD4+ cells (Liadi et al., 2015;
Golubovskaya and Wu, 2016). We tested an expanded range
of CD4+:CD8+ ratios to include 90:10 and 10:90 in monoculture
and co-culture; these extensions further validated observed trends
and provided no additional treatment benefit, and thus we do not
carry these conditions forward in subsequent analyses (see
Supplementary Note S1, Supplementary Data S4, and
Supplementary Figure S5). Increasing CAR affinity increases
the chances of CAR T-cell antigen binding and subsequent
activation, resulting in increased cancer cell killing
(Chmielewski et al., 2004; Liu et al., 2015; Hernandez-Lopez
et al., 2021). This increased activation also leads to increased
proliferation and thus increased T-cell count (Caruso et al., 2015).
Increased antigen expression on cancer cells increases cancer cell
killing (Chmielewski et al., 2004; Liu et al., 2015; Watanabe et al.,
2015; Arcangeli et al., 2017). Similarly, because CAR T-cells are
more likely to be activated by high antigen density cancer cells,
CAR T-cell proliferation, and thus counts, increase with
increasing antigen count (Hernandez-Lopez et al., 2021). CD8+

T-cells counts exceed CD4+ T-cell counts even when cells are
delivered at a 50:50 ratio, especially in conditions where cells are
more likely to be activated (Sommermeyer et al., 2016; Turtle
et al., 2016). The lowest CAR T-cell counts occur when we treat
with only one subset of CAR T-cells. Cancer cells cannot be killed
off without CD8+ cells. CD8+ cells have limited killing and
proliferative capacity without cytokines produced by CD4+

cells, and lack of cancer cell killing presents spatial limitations
on CAR T-cell proliferation. Overall, all dish simulations,
regardless of healthy cell context, support experimental
observations of cancer and CAR T-cell dynamics, suggesting
that healthy cell presence and antigen expression do not
strongly influence cancer and CAR T-cell dynamics or
individual feature trends in vitro.

2.2.2 Monoculture Data Qualitatively Recapitulate a
Range of In Vitro CAR T-Cell Studies
Quantifying percent lysis as a function of cancer antigen
density is a common experimental analysis. In monoculture,
percent lysis increases as a function of both antigen count and
CAR affinity. This qualitative trend and the general shape of
the data agrees with prior in vitro observations (Figure 2B)
(Chmielewski et al., 2004; Caruso et al., 2015; Liu et al., 2015;
Watanabe et al., 2015; Arcangeli et al., 2017; Ghorashian et al.,
2019; Hernandez-Lopez et al., 2021). Additionally, for
monoculture and most in vitro data, higher CAR affinities
promote higher percent lysis across all antigen expression
values. Our simulations reproduce general trends observed
across diverse in vitro studies varying in CAR, intracellular co-
stimulatory domain, effector to target ratio, and cell lines
(Supplementary Table S6, Supplementary Data S5).
Notably, CARCADE captures known experimental trends
relevant to many different experimental CAR T-cell
scenarios without being trained to any specific CAR T-cell
experiment. Consistency in these emergent dynamics provides
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baseline validation that supports our use of the model to
interrogate CAR T-cell design.

2.2.3 Trends in Cell-Level Features Support
Population-Level Observations and Model Validation
Treatment efficacy can be evaluated by volume (Jacobs et al.,
2008) and cell cycle length (Yoon et al., 2010) distributions, which
serve as proxies for CAR T-cell growth and proliferation resulting
from antigen-induced activation and IL-2 binding. As an
increasing number of CAR T-cells undergo antigen-induced
activation, CAR T-cell volumes increase and cycle lengths
decrease both over time and with increasing CAR affinity
(Figure 2C). In T-cells, antigen-induced activation and IL-2
binding influence metabolism to help T-cells rapidly
proliferate by increasing nutrient uptake, metabolic preference
for glucose, and flux of nutrients towards producing cell mass
(Frauwirth et al., 2002; Jacobs et al., 2008; Pearce, 2010; Altman
and Dang, 2012; Gerriets and Rathmell, 2012; Buck et al., 2015;
Chang and Pearce, 2016; Mehta et al., 2017). These internal
cellular changes increase cell growth rates, increase volumes, and
decrease cell cycle lengths (van Stipdonk et al., 2003; Jacobs et al.,
2008; Yoon et al., 2010; Altman and Dang, 2012; Kinjyo et al.,
2015). The cell cycle length observed in silico—an emergent
property of the simulations—ranged from around 6–24 h and
falls within the range of 2–24 h found in vitro, in vivo, and for
other in silico models (De Boer et al., 2003; van Stipdonk et al.,
2003; Yoon et al., 2010; Altman and Dang, 2012; Kinjyo et al.,
2015; Gong et al., 2017). Cancer cell volumes increase slightly and
cycle lengths decrease slightly with increasing CAR affinity and
over time, as cancer cells proliferate to compensate for cell death
(Supplementary Figure S6A). Similar trends in volume and cell
length distributions are observed across all other modulated
features, where conditions with more activated CAR T-cells
result in increased CAR T-cell volume and decreased cell cycle
lengths (Supplementary Figure S6B–D). Altogether, the model
recapitulates known in vitro observations, and furthermore, it
enables us to observe single cell-level properties that are non-
trivial to measure experimentally.

2.3 Varying Individual Features Highlights
Tradeoffs Within Co-culture
Due to the lack of unique tumor antigens, CAR T-cell designs
must rely on target antigens that are more highly expressed on
cancer cells than healthy cells (Harris and Kranz, 2016).
Investigating the difference in treatment outcomes—cancer cell
killing, healthy cell sparing, and CAR T-cell growth—between the
ideal co-culture (containing antigen-negative healthy cells) and
realistic co-culture (containing antigen-expressing healthy cells)
is critical for understanding successful CAR T-cell design (Caruso
et al., 2015).

2.3.1 Healthy Cell Antigen Expression and Tumor/CAR
T-Cell Features Impact Healthy Cell Killing
Healthy cell antigen density does not affect cancer cell killing,
CAR T-cell proliferation, or previously noted trends across
individual features for these populations (Supplementary

Figure S3). However, healthy cell antigen density
dramatically impacts healthy cell killing (Figure 2D)
(Arcangeli et al., 2017). The seeming lack of influence that
minimal healthy antigen expression has on CAR T-cell
proliferation is demonstrated by a lack of clear difference in
CAR T-cell volume and cell cycle length distributions
(Supplementary Figure S7) or fraction of cells in the
proliferative state (Supplementary Figure S8) between the
ideal and realistic co-culture. In general, we hypothesize that
the low healthy cell antigen level is too weak to impact these
other factors but enables the CAR T-cells to target healthy
cells. Thus, healthy cell antigen expression only needs to be
considered in avoiding healthy cell death and not in tuning
CAR T-cell behavior or cancer cell killing.

To further investigate the impact of healthy cell antigen
expression on feature trends, we directly compare cell counts
between the ideal and realistic co-culture along the CAR affinity
feature axis (Figure 3A). Cancer cell killing dynamics are nearly
identical in both contexts, increasing with increased CAR affinity.
In contrast, healthy cell dynamics differ dramatically between
contexts. When healthy cells do not express antigen, increasing
CAR affinity leads to increased healthy cell count as healthy cells
grow to fill the space left behind by targeted cancer cells.
However, when healthy cells do express antigen, healthy cell
killing increases with increasing CAR affinity. Additionally,
healthy cell counts begin to decrease at increasingly earlier
time points with increasing CAR affinity. Comparing cell
counts along other features exhibits similar trends: presence of
healthy cell antigen generally only impacts healthy cell dynamics,
resulting in varying degrees of healthy cell killing
(Supplementary Figure S3). These data are consistent with
experimental studies demonstrating a detrimental effect of
high CAR affinity designs on healthy cells (Caruso et al., 2015;
Harris and Kranz, 2016). Low affinity CARs successfully target
tumors that overexpress the desired antigen and produce minimal
off-tumor effects when healthy cells express low antigen levels
(Caruso et al., 2015; Johnson et al., 2015; Liu et al., 2015). When
healthy cells express antigen, it is not always desirable to have the
strongest affinity CAR T-cells.

2.3.2 Cell Dynamics Reveal Potential New Treatment
Strategy That Spares Healthy Cells
Comparing trends in cell dynamics between ideal and realistic co-
culture provides insight as to why each feature differentially
impacts healthy cell killing. In ideal co-culture, increasing
CAR affinity and cancer antigen expression level leads to
healthy cell growth beyond their original numbers. Increasing
CART-cell dose and CD4+:CD8+ ratio leads to healthy cell counts
similar to those in the untreated control (Supplementary Figure
S3). Interestingly, increasing CAR affinity results in more healthy
cell growth compared to the case in which cancer cell antigen
expression is increased. We hypothesize that this difference
occurs because cancer cell killing is more strongly impacted by
CAR affinity than cancer antigen density, providing healthy cells
more opportunity to grow as more cancer cells die. However, in
realistic co-culture, increasing cancer antigen level results in more
healthy cell growth before being killed off compared to the
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FIGURE 3 | Impact of individual CAR T-cell and tumor features on efficacy, selectivity, and cytokine production in monoculture vs co-culture. (A) Cancer and
healthy cell counts over time of untreated (black) and treated (graded hues) conditions holding all but CAR affinity, which is reported in units of M, constant at an
intermediate value and separating data by co-culture context. Column shows co-culture type, row shows cell type. Solid lines represent total cell counts, dashed lines
represent live cell counts (live, excludes necrotic and apoptotic states as in Figure 2). Intermediate values of other features indicated by asterisk in panel B: CAR
T-cell dose = 500 CAR T-cells, CD4+:CD8+ ratio = 50:50, cancer antigens = 1000 antigens/cell. (B) Scatter plots of normalized live healthy cell count (NH ) vs normalized
live cancer cell count (NC ) for untreated (black) and treated conditions (graded hues) holding all but one axis constant at an intermediate value. Upper left plot shows
quadrant meanings. Upper right plot shows scatter plot for different co-culture contexts. Columns show co-culture type, and each row indicates which feature is being
plotted. (C) IL-2 and glucose concentrations over time holding all but CAR affinity constant at an intermediate value in monoculture. Legend is consistent with panel B.
(D) IL-2 and glucose concentrations over time varying CAR affinity while holding all features constant at an intermediate value in ideal and realistic co-culture. Legend is
consistent with panel B. (E) Parity plot of IL-2 concentration at final time point (t = 7 d) for all conditions in realistic (y-axis) vs ideal (x-axis) co-culture colored by each
feature (column). Legend is consistent with panel B.
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scenario in which CAR affinity is increased. Cancer antigen
expression primarily impacts cancer cell killing, which gives
healthy cells the ability to grow before being targeted after
cancer cell populations decline. Meanwhile, CAR affinity
impacts both cancer and healthy cell killing, so healthy cells
are killed at the same time as cancer cells. These data highlight
how each feature differentially impacts the dynamics of this
system. A large difference in cancer and healthy cell antigen
levels can create a time delay between when cancer killing
completes and when healthy cell killing starts, whereas tuning
CAR affinity cannot create such a window. This time delay is an
emergent phenomenon that occurs in some scenarios—it is not a
trained, optimized, or hard-wired parameter in the model. One
can design a strategy to take advantage of this time delay in
scenarios when it occurs, for example, by deactivating CAR
T-cells with an antibody or small-molecule induced off-switch
that shuts down effector function after cancer cells are killed but
before lower antigen expressing healthy cells are targeted.

2.3.3 Individual Feature Analysis Highlights Tradeoffs
in a Pareto Curve
To quantify cancer and healthy cell killing, we use two metrics:
normalized live healthy and cancer cell counts. The normalized
count for each population (NP) is calculated as follows:

NP � nF
nT

where nF and nT are the total number of live cancer or healthy
cells at the final (t = 7 d) and treatment start (t = 0 d) timepoints,
respectively. Values below one indicate net killing, and values
above one indicate net growth. Together, these metrics place
treatment outcomes within quadrants that can be used as
guidelines for classifying efficacy (Figure 3B). Ideally,
treatment conditions would appear in the upper left quadrant
with maximal healthy cell sparing andmaximal cancer cell killing.
In both contexts, the trends match those of experimental
observations—more aggressive treatments with more overall
killing result from increasing CAR T-cell dose, intermediate
CD4+:CD8+ ratio, increasing CAR-antigen affinity, and
increasing cancer antigen density. These conditions allow for
healthy cell maintenance or growth in ideal co-culture, nearing or
entering the efficacious and selective treatment quadrant.
However, in realistic co-culture, there exists a dramatic
tradeoff between cancer cell killing and healthy cell killing,
presenting a Pareto curve across each feature. Aggressive
treatments exist toward the lower left quadrant (not selective
for cancer cells). This observation suggests that it is not possible
to optimize both efficacy and safety when healthy cells express
antigen, and the most useful strategies—typically less aggressive
treatments—balance these objectives (Caruso et al., 2015;
Johnson et al., 2015; Liu et al., 2015).

2.4 IL-2 Production Is More Strongly
Impacted by Tuned Features Than Context
IL-2 production is a standard in vitro measurement to quantify
T-cell activation (Liu et al., 2015; Sommermeyer et al., 2016;

Arcangeli et al., 2017). Similarly, glucose consumption can
quantify T-cell activation through nutrient usage and
competition (Frauwirth et al., 2002). We compare nutrient
consumption and cytokine production across features and
contexts to identify strategies for understanding, and
potentially controlling, IL-2 production.

2.4.1 Tuning CAR Affinity Modulates IL-2 Production
by Balancing CAR T-Cell Proliferation and Effector
Function
In dish (Figure 3C and Supplementary Figure S9A for
monoculture, Supplementary Figure S10A for co-culture), IL-
2 increases over time and with increasing values of CAR T-cell
dose, CD4+:CD8+ ratio, CAR affinity, and cancer antigen
expression level due to increased numbers of activated CD4+

CAR T-cells. Across all contexts and features, glucose decreases as
IL-2 increases, indicating that glucose consumption follows CAR
T-cell activation and proliferation (Figure 3D, Supplementary
Figure S9B, Supplementary Figure S10B).

Unintuitively, IL-2 concentration is not maximized at the
highest CAR-antigen affinity in monoculture where CAR
T-cell activation is maximized. At the highest CAR
affinity, more CAR T-cells spend time in effector, non-
proliferative states (Supplementary Figure S11), resulting
in fewer total CD4+ T-cells producing IL-2 (Figure 2A). This
decrease is not observed in co-culture where cancer cell
numbers are lower, reducing the likelihood that CAR
T-cells will be activated. Decreased activation in co-culture
produces lower IL-2 concentrations compared to
monoculture. Thus, CAR T-cells in co-culture remain
outside of the regime at which this tradeoff between
activated and proliferating T-cells is observed. We
hypothesize that maximum IL-2 production occurs at
intermediate CAR affinity where there exists a balance
between proliferation and frequent antigen binding.
Excessively high CAR affinity leads to frequent target
antigen binding, causing CAR T-cells to spend more time
in effector rather than proliferating states, leading to fewer
total CAR T-cells that can later produce cytokines. On the
other hand, very weak affinity CARs drive cells primarily into
states other than proliferative and effector states. Maximizing
CAR-antigen affinity can therefore prove counterproductive
for achieving CAR T-cell proliferation, survival, and cytokine
production at the tumor site; moderate CAR-antigen
affinities may be more effective.

2.4.2 IL-2 Production Is Independent of Healthy Cell
Antigen Expression
In co-culture, healthy antigen expression minimally impacts
IL-2 production and glucose consumption over time
(Figure 3D). We speculate that healthy antigen expression
is too low to strongly impact CAR T-cell proliferation and
thus IL-2 production. Comparing final IL-2 concentration in
all ideal versus realistic co-culture conditions reveal that IL-2
levels are independent of context for a given condition,
further supporting this hypothesis (Figure 3E). CAR T-cell
IL-2 production and overall glucose consumption are more
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strongly impacted by the higher level of antigen expression
on the cancer cells than by the low antigen expression on
healthy cells. When considering desired IL-2 levels produced
by CAR T-cells in patient treatment, IL-2 production can be
mostly attributed to and designed around cancer cells in
isolation as healthy cell antigen expression does have a
significant impact.

2.5 Multidimensional Data Analysis Reveals
Context-Specific Treatment Strategies
Since tuning individual features has different impacts on
treatment efficacy based on the type of dish, we rank-
ordered treatment outcomes across all individual simulated
conditions, tuning all features simultaneously, within each
context. Comparing the strongest treatments between

FIGURE 4 | Collective impact of CAR T-cell and tumor features on dish outcomes. (A) Heatmap showing values for each feature with line plots showing
normalized live cancer cell count (NC ) sorted from highest (left) to lowest (right). The dashed line indicates value of NC = 1, meaning no net change due to treatment.
Values of NC > 1 indicate net growth and values of NC < 1 indicate net killing. (B)Heatmap showing values for each feature with line plots showing normalized live cancer
cell count (NC ) and normalized live healthy cell count (NH ) (dashed line indicates normalized live cell count of 1) and the difference in normalized live healthy and
cancer cell counts (NH − NC ) for each ideal co-culture simulation individually (dashed line indicates NH − NC = 0). The heatmap has been sorted from lowest (left) to
highest (right) difference. All metrics were calculated at the final time point (t = 7 d). (C) Heatmap and normalized cell counts for realistic co-culture. Labels are consistent
with panel B. Each feature is reported in the following units: CAR T-cell dose = number of CAR T-cells, CD4+:CD8+ ratio = unitless, CAR affinity = M, cancer antigens =
antigens/cell.
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monoculture and co-culture will enable us to determine how
optimal treatments vary between contexts.

2.5.1 Aggressive Feature Choices Additively Benefit
Treatment in Monoculture
Formonoculture, outcome is sorted by normalized live cancer cell
count (Figure 4A). The best outcomes typically occur at the
highest CAR T-cell doses, at a 25:75 CD4+:CD8+ ratio, at
moderate to strong CAR affinity, and with high cancer cell
antigen density. These trends are consistent with individual
feature analyses in monoculture, and the same trends are
observed in scenarios in which we considered expanded CAR
T-cell doses (Supplementary Figures S4A,B) and CD4+:CD8+

ratios (Supplementary Figure S5F). Choosing aggressive values
for all features and using large E:T ratios yield cancer cell killing
rates that are comparable with those observed in most
experimental studies that use E:T ratios greater than one
(i.e., killing most cancer cells occurs within hours),
(Supplementary Figure S4A). Worse outcomes, in which
cancer cells grow beyond their initial plated count, occur at
low CAR T-cell doses, at 100:0 and 0:100 CD4+:CD8+ ratios,
with the weakest CAR affinity, or with lower cancer cell antigen
expression. Overall, combining aggressive choices for individual
features additively benefits treatment outcome in monoculture.
Effective CAR T-cell designs in the absence of healthy cells
combine design choices from individually optimized features.

2.5.2 Addressing Off-Target Effects Requires Tuning
Multiple Parameters
To identify general conclusions across diverse co-culture
conditions, we considered treatment outcomes across all
individual simulated conditions, sorted by the difference in the
normalized live healthy and cancer cell count at the endpoint
(Figure 4B for ideal co-culture, Figure 4C for realistic co-
culture). This difference is maximized when healthy cells are
spared and cancer cells are killed. We expect aggressive
treatments to be most effective in the ideal cases, as healthy
cells that do not express antigen cannot be killed. Trends in ideal
co-culture match those in monoculture, supporting the idea that
“invisible” healthy cells do not change observed trends.

However, the realistic co-culture where healthy cells express
antigen, and can therefore be targeted by CAR T-cells, is more
clinically relevant. In this context, there is a distinct tradeoff
between cancer cell killing and healthy cell sparing. Conditions
with the lowest normalized live cancer cell counts also show the
lowest normalized live healthy cell counts (Figure 4C).
Treatments with a positive difference all have some amount of
healthy cell killing, but this killing is minimal compared to other
conditions. Effective treatments have the highest doses of CAR
T-cells, weaker CARs, CD4+:CD8+ ratios of 25:75 or 50:50, and
higher cancer cell antigen count (Figure 4C). These observations
agree with experimental findings that optimization of CAR T-cell
therapy design yields different conclusions when balancing
cancer cell killing and healthy cell sparing, versus focusing on
the former objective alone (Caruso et al., 2015; Johnson et al.,
2015; Liu et al., 2015). Though choosing high doses of weak CAR
T-cells might seem unintuitive, using weak CARs minimizes the

probability of targeting healthy cells while the high dose
maximizes the probability that these weaker CARs successfully
interact with high antigen density cancer cells. These results
suggest that delivering higher doses of weaker CAR T-cells
with CD4+:CD8+ ratios of 25:75 or 50:50 kill more cancer cells
and spare more healthy cells for tumors where on-target off-
tumor killing is undesired or detrimental.

2.6 Spatial Dynamics Drive Vascularized
Tissue Treatment Efficacy
CAR T-cell therapy has great potential for use in solid tumor
contexts, which include a complex tumor microenvironment,
vasculature, spatial dynamics, and potentially antigen-expressing
healthy cells. Predicting how the in vitro behavior conferred by
various CAR T-cell designs corresponds to in vivo performance is
not straightforward. We investigate the translation and efficacy of
select treatment strategies in vascularized tissue where a solid
tumor exists in a bed of antigen-expressing healthy cells within a
dynamic microenvironment. We chose a subset of
simulations—the realistic co-culture conditions deemed
effective after averaging across replicates (Supplementary
Table S7)—to analyze in tissue. Effective treatments were
those that met the following two conditions: 1) cancer cells did
not grow beyond the initial number, and 2) no more than 50% of
the initial healthy cells were killed off.

A tissue is initialized with a bed of healthy cells in
vascularized tissue that was inoculated with cancer cells and
grown for 30 d. At t = 21 d, treatment began by adding a
specified total dose of CAR T-cells, each expressing 5 × 104

CARs with the given CAR affinity, and CD4+:CD8+ ratio. CAR
T-cells were spawned at locations adjacent to vasculature to
mimic intravenous trafficking to the tumor; they were not
spawned adjacent to vessels that are too small in diameter for
CAR T-cells to pass through. Files used to generate tissue
simulations are described in Supplementary Data S6 and
Supplementary Table S8.

2.6.1 Tested Treatments Are Effective in Tissue but
Differ in Healthy Cell Killing
All treated tumors resulted in far fewer cancer cells and somewhat
fewer healthy cells compared to untreated conditions, indicating
that all strategies identified as effective in realistic co-culture
proved effective in tissue (Figure 5A). As in dish, healthy
cell killing occurred primarily after most cancer cells were
removed. This again motivates treatment strategies in which
CAR T-cells include an inducible off-switch that shuts down
effector function after cancer cells are killed but before lower
antigen expressing healthy cells are targeted.

Comparing normalized live cancer and healthy cell counts at
treatment endpoint enables direct comparison of treatment
efficacy (Figure 5B). Notably, the primarily difference between
treatment strategies is in degree of healthy cell killing. CAR
affinity and cancer antigen expression, but not CAR T-cell
dose or CD4+:CD8+ ratio, dictate this difference. In general,
increasing CAR T-cell dose and using higher CD4+:CD8+ ratio
treatments results in increased CAR T-cell counts, but it has little
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FIGURE 5 | Dynamic, spatial, and ranked outcomes for selected promising treatment combinations in tissue. (A) Live cell counts over time of untreated (black)
and treated conditions (graded hues) normalized to cell count at start of treatment (t = 21 d), for all simulations, colored by cancer antigens (other features may be
changing as well). Cancer antigens reported in antigens/cell. The same data colored by other features are shown in Supplementary Figure S12 (B) Scatter plots of
normalized live cancer cell count (NC, x-axis) vs normalized live healthy cell count (NH, y-axis), each normalized to initial value at start of treatment (t = 21 d), for
untreated (black) and treated conditions (graded hues) for all simulations, colored by one feature at a time. Each feature is reported in the following units: CAR T-cell dose
= number of CAR T-cells, CD4+:CD8+ ratio = unitless, CAR affinity = M, cancer antigens = antigens/cell. (C)Normalized live cell counts over time (t = 21, 25, 28, and 30 d
shown) for untreated (black) and treated conditions (graded hues), normalized to locations per radius, for all simulations, colored by cancer antigens. The columns
indicate the timepoint in the simulation (day), while the rows indicate cell type plotted, and the x-axis for each plot shows the distance from the center. Legend is
consistent with panel B. (D)Heatmap showing values for each feature with line plots showing normalized live cancer and healthy cell counts and difference in normalized
live healthy and cancer cell counts (Np

H − NC, where healthy cell value is multiplied by the ratio of cancer to healthy cells at the start of treatment to ensure equal weighting
since initial cell population sizes are not equal; dashed line indicates value of 0) at final time point averaged across replicates. The heatmap is sorted from lowest (left) to
highest (right) difference. Feature legends are consistent with panels A and C. (E) Ladder plots of condition rankings in both dish and tissue, where condition
outcome (averaged across replicates) is colored by each corresponding feature.
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effect on cancer and healthy cell killing. Interestingly, most of the
simulations that show the highest CAR T-cell production use the
highest CAR T-cell doses and the weakest CAR affinity
(Supplementary Figure S12, Figure 5A), indicating that
designs with high doses of weak CAR T-cells result in the
highest CAR T-cell growth rate in vivo. Overall, these
observations reinforce the previously identified treatment
strategy: use weaker CARs and select antigens with the highest
differential between cancer and healthy cell expression. With this
strategy, even though the CAR is weaker, the cancer antigen
density is high enough to result in effective, selective treatment.

2.6.2 Cancer Cells With Higher Antigen Density Shield
Healthy Cells From CAR T-Cell Killing
Though changing multiple features simultaneously complicates
analysis, we noted an interesting pattern in which increasing
cancer cell antigen density spares more healthy cells in tissue,
representing a stark contrast to our dish findings. We thus
investigated the spatial dynamics of each cell type to probe
whether the mechanism by which CAR T-cells navigate within
the solid tumor gives rise to this observation. At t = 21 d, cancer
cells exist primarily in the center of the simulation, between the
center and a radius of about 0.39 mm, while healthy cells are
evenly spread across the simulation (Figure 5C). In untreated
conditions, cancer cells grow to cover a radius of 0.58 mm by t =
30 d and healthy cell count remains unchanged over time. In
treated conditions, cancer and healthy cell counts decrease over
time, primarily starting from the center where most CAR T-cells
are initially spawned and moving outward. Cancer cell counts
decrease with increasing cancer antigen density. CAR T-cell
counts increase as a function of time and cancer cell count,
but not as a function of cancer antigen density. Meanwhile, higher
cancer antigen levels result in decreased healthy cell killing. We
hypothesize that this phenomenon occurs when high antigen
density cancer cells effectively outcompete healthy cells for CAR
T-cell effector function due to large differences in the probability
of CAR-antigen binding between these two potential target cell
types. In such scenarios, CAR T cells that successfully traffic to a
tumor core are more likely to selectively target cancer cells even if
healthy cells are present.

2.6.3 Spatial Differences Between Dish and Tissue
Explain Treatment Performance
Comparing simulation rankings between dish and tissue
reveals how context impacts treatment efficacy. To rank
treatment strategies in tissue, we consider treatment outcomes
across simulations (averaged across replicates) sorted from best to
worst outcome in terms of difference in healthy and cancer cell
counts normalized to start of treatment (Figure 5D). Nearly all
highest ranked simulations use the highest CART-cell dose, a CD4+:
CD8+ ratio of 25:75, the lowest CAR affinity, and the highest cancer
antigen level. The four highest ranked treatment conditions in dish
remain the four highest ranked treatment conditions in tissue
(Figure 5E, Supplementary Table S9). The rankings for themid and
lower tier ranked simulations (5th-14th in tissue) are shuffled
from their original rankings in dish. One of the worst ranked
treatments in dish (11th) jumped to 5th in tissue, while a

middle-ranked simulation (7th) fell to 13th in tissue. These data
predict that the most effective treatment conditions in dish will
perform similarly in tissue assuming perfect CAR T-cell
trafficking. Even with perfect trafficking, performance in dish
does not exactly correlate with performance in tissue. Certain
conditions may outperform in vivo conditions compared to their
performance in vitro.

Trends in how each feature impacts relative rank reveal which
features most strongly dictate performance in tissue
(Figure 5E). There are no distinct trends as a function of
CD4+:CD8+ ratio. Most conditions that improve in rank use
the relatively higher (though still objectively moderate) CAR
affinity and higher CAR T-cell dose, and nearly all conditions
that decrease in rank (from dish to tissue) have higher
cancer antigen expression level. This finding is surprising
given earlier observations that lowest CAR affinity with
highest cancer antigen expression level combinations were
most effective.

We hypothesize the differences in dish and tissue trends/
rank result from differences in spatial dynamics. In dish, both
healthy and cancer cells are well-mixed across the simulation,
even after treatment, which results in an even spatial distribution
of CAR T-cells (Supplementary Figure S13). In tissue, cancer
cells sit in the center of the simulation surrounded by a large bed
of healthy cells, with few healthy cells in the tumor core. When
CAR T-cells are spawned with bias towards locations with more
cancer cells to mimic perfect trafficking, the probability that
spawn locations are adjacent to that of a healthy cell is higher
in dish compared to tissue. Analyzing CAR T-cell state
dynamics in both realistic co-culture dish and tissue for
the selected promising treatment strategies further informs this
spatial analysis. When we examine the distribution of CAR T-cell
states only considering T-cells that are adjacent to a cancer cell
(i.e., somewhat controlling for the local environment that a T-cell
experiences), we find similar distributions of cells in effector
states across dish and tissue simulations (Supplementary
Figure S14). Exhausted and anergic states are rare in both
contexts, which is unsurprising as they are expected to
accumulate over longer time courses than were used in these
experiments. Thus, CAR T-cells in proximity to cancer cells
exhibit similar behavior independent of experimental setup,
and differences in overall trends/rank between contexts result
from differences in collective cancer and healthy cell spatial
distributions. Overall, this spatial difference in cancer and
healthy cell distribution parallels comparisons between
physical in vitro and in vivo experiments, even if CAR T-cell
trafficking deviates from the perfect mechanism employed in our
simulations, reinforcing the key role that spatial dynamics play in
treatment outcome.

3 DISCUSSION

We developed CARCADE as an open-access in silico testbed that
enables systematic interrogation of the multidimensional design
landscape of cellular engineering strategies, therapeutic
optimization, and hypothesis generation. After verifying that
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the developed model recapitulates known trends in vitro, we
explored design strategies in both dish and tissue contexts to
gain insight into CAR T-cell design.

Tuning individual features in dish revealed key insights as to
how these features impact CAR T-cell design. For example, we
determined that healthy cell antigen expression results in healthy
cell killing but has no impact on CAR T-cell or cancer cell
dynamics. Modulating individual features recapitulated known
tradeoffs between cancer cell killing and healthy cell sparing in
realistic co-cultures. A new observation uniquely enabled by our
model’s high resolution is that maximizing CAR affinity not only
increases healthy cell killing but can also be counterproductive to
CAR T-cell proliferation and cytokine production. In a related
finding, we observed that IL-2 production is influenced more by
tunable CAR T-cell design features than by healthy cell-related
context.

Multidimensional analysis revealed that the relative
performance of various treatment strategies is context
dependent. Aggressive treatments are more effective in
monoculture and ideal co-culture experiments, but effective
treatment in realistic co-culture requires balancing all tuned
features. We identified a particularly effective treatment
strategy that balances cancer cell killing and healthy cell
sparing when healthy cells express antigen. Specifically, we
identified that the use of high doses of weak CAR T-cells with
intermediate CD4+:CD8+ ratio and a maximized difference
between cancer and healthy cell antigen expression produces
the most effective treatments. By investigating these effective
treatments in tissue context, we determined that differences
in spatial distributions of cancer and healthy cells in dish and
tissue contexts explain differences in treatment performance
between contexts.

CARCADE is a first pass toward demonstrating the utility of
models for generating hypotheses and informing design strategies
for this class of problem, and it is important to consider that this
model makes several assumptions and simplifications. First, the
model is not tuned to a specific context. Results are general and
might not hold in specific tumor contexts. Amajor strength of the
model is that it can be easily tuned to a specific CAR and/or tumor
type, and to interrogate specific design questions of interest. For
example, CARCADE does not currently specify the CAR
construct’s intracellular co-stimulatory domain (ICD), which is
known to be an important factor in dictating CAR T-cell efficacy,
persistence, and dynamics; rather, we approximate CAR behavior
independent of ICD and find that broad trends hold despite not
accounting for this factor explicitly. The model could be tuned to
capture the effect of different ICD choices on CAR T-cell
function. Similarly, the analysis can be tuned to change the
definition of effective treatment outcomes to further penalize
healthy cell killing (e.g., when considering treatments in which
damage to CAR target antigen-expressing healthy cells is less
tolerable from a safety standpoint). When treating B-cell cancers,
off-tumor effects like B-cell aplasia are manageable with
treatment, and healthy cell killing is less of a concern. In
glioblastomas, EGFR is expressed on cancer cells, healthy
brain cells, and other tissues, making healthy cell killing a
greater risk of morbidity and mortality (Caruso et al., 2015).

Another assumption made in the current CARCADE model is
that there is no T-cell-mediated killing of bystander cells unless
those bystander cells express the target antigen, which represents
an ideal case. This assumption could easily be relaxed to
interrogate the consequences of various forms of non-ideal
T-cell killing. Additionally, the process by which CAR T-cells
traffic to the tumor has been simplified and idealized, as CAR
T-cells spawn at sites closest to cancer cells. The model could be
adjusted to contemplate other scenarios, such as spawning CAR
T-cells at the simulation edge while including CAR T-cell and
environmental features that influence CAR T-cell trafficking to
the tumor. An important limitation is that CAR T-cell exhaustion
and anergy are longer-term phenomena for which our
understanding is continually evolving; the current formulation
of CARCADE reflects an abstraction of the state of this
knowledge. Future development and use of CARCADE will
benefit by incorporating new insights from experiments or
clinical studies, and through corresponding simulations
focused on longer time scale phenomena. Such refinements
will improve our ability to address important properties
including CAR T-cell efficacy and persistence.

Expanding the agents, environment, or subcellular functions
included in CARCADE offers opportunities for future model
development and use in the field of CAR T-cell engineering. The
present model comprises CAR T-cells and cancerous and healthy
tissue cells; addition of macrophages, regulatory T-cells, natural
killer cells, and other regulatory or supporting cell types or
environmental factors could enable investigation of CAR
T-cell therapy in a more complete and complex immune
environment. In future studies, it may be particularly
important to include the cell and environmental factors that
contribute to immunosuppressive environments, as this is a
common issue faced with in vivo CAR T-cell therapy.
Additionally, while the current model was designed to
facilitate analysis of treatments for solid tumors, particularly
through the use of the tissue simulations, the dish
simulations could be adapted to investigate liquid cancer
treatment strategies. Future expansions could also incorporate
trogocytosis, a processes by which CAR T-cells pick up tumor
antigens from cancer cells and then experience fratricidal killing
by other CAR T-cells, to investigate how this phenomena affects
CAR T-cell persistence (Hamieh et al., 2019).

Overall, we believe that CARCADE will prove valuable for
CAR T-cell designers and enable cross-cutting collaborations
to facilitate further model development or tuning to specific
contexts and questions of interest. By further refining the
model using experimental data, CARCADE could help
suggest potential promising strategies for experimental
pursuit by testing strategies in dish and/or tissue
contexts. CARCADE is designed to enable interrogation of
questions and phenomena that are beyond the scope of the
current study. For example, future studies using the current
model could include a more granular consideration of CAR
T-cell trafficking within the tumor by removing the
assumption of perfect trafficking. Tumor immune escape
could be investigated by creating multiple tumor
subpopulations with variable antigen expression levels or

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 84936314

Prybutok et al. Agent-Based Model of CAR T-Cell Design

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


susceptibly to killing. Additionally, inter- and intra-tumor
heterogeneity could be integrated by simulating tumors that
comprise multiple populations with different parameters and/
or differing levels of heterogeneity. Ultimately, integrating
CARCADE into the CAR T-cell design process could
accelerate the design-build-test cycle, saving resources and
time associated with new therapeutic development.

4 MATERIALS AND METHODS

CARCADE was developed by extending ARCADE, an existing
multi-scale, multi-class agent-based model that includes
tissue cells and hemodynamic environments. We used
CARCADE to generate in silico experiments where we
treated monoculture dish, ideal and realistic co-culture
dish, and tissue contexts with CAR T-cells. All model
details, including adaptation of tissue cell agents,
development of CAR T-cell agents, development and
adaptation of subcellular modules, development of dish
plating, and all simulation setups and analyses are
described in detail in the Supplementary Methods Details
section of the Supplementary Material (Kuse et al., 1985;
Lauffenburger and Linderman, 1993; Robertson et al., 1996;
Schwartz, 1996; Frauwirth et al., 2002; De Boer et al., 2003;
Deenick et al., 2003; Iwashima, 2003; Schwartz, 2003;
Chmielewski et al., 2004; Macian et al., 2004; Janas et al.,
2005; Jacobs et al., 2008; Busse et al., 2010; Malek and Castro,
2010; Pearce, 2010; Yoon et al., 2010; Akbar and Henson,
2011; Wang et al., 2011; Wherry, 2011; Altman and Dang,
2012; Gerriets and Rathmell, 2012; Robertson-Tessi et al.,
2012; Stone et al., 2012; Cheng et al., 2013; Crespo et al., 2013;
Hegde et al., 2013; Liao et al., 2013; MacIver et al., 2013;
Rosenberg, 2014; Buck et al., 2015; Heskamp et al., 2015;
Kinjyo et al., 2015; Liadi et al., 2015; Liu et al., 2015; Long
et al., 2015; Obst, 2015; Wherry and Kurachi, 2015; Chang and
Pearce, 2016; Cherkassky et al., 2016; Golubovskaya and Wu,
2016; Harris and Kranz, 2016; Hegde et al., 2016; Liu et al.,
2016; Maus and June 2016; Sommermeyer et al., 2016; Verbist
et al., 2016; Arcangeli et al., 2017; Borghans and Ribeiro, 2017;
Gong et al., 2017; Mehta et al., 2017; Gherbi et al., 2018;
Guedan et al., 2018; Huang et al., 2018; Kasakovski et al., 2018;
Rafiq et al., 2018; Ross and Cantrell, 2018; Salter et al., 2018;
Watanabe et al., 2018; Yost et al., 2019; Yu and Bagheri, 2020;
Hernandez-Lopez et al., 2021; Yu and Bagheri, 2021).

All source code for CARCADE is available on GitHub at
https://github.com/bagherilab/CARCADE. Scripts used to

process and analyze data are available on GitHub at https://
github.com/bagherilab/carcade_mapping_design_space.
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