
1Scientific Reports |         (2019) 9:17326  | https://doi.org/10.1038/s41598-019-53551-1

www.nature.com/scientificreports

Convolutional neural network for 
efficient estimation of regional 
brain strains
Shaoju Wu1,3, Wei Zhao1,3, Kianoosh Ghazi1 & Songbai Ji1,2*

Head injury models are important tools to study concussion biomechanics but are impractical for real-world  
use because they are too slow. Here, we develop a convolutional neural network (CNN) to estimate 
regional brain strains instantly and accurately by conceptualizing head rotational velocity profiles as 
two-dimensional images for input. We use two impact datasets with augmentation to investigate the 
CNN prediction performances with a variety of training-testing configurations. Three strain measures 
are considered, including maximum principal strain (MPS) of the whole brain, MPS of the corpus 
callosum, and fiber strain of the corpus callosum. The CNN is further tested using an independent impact 
dataset (N = 314) measured in American football. Based on 2592 training samples, it achieves a testing 
R2 of 0.916 and root mean squared error (RMSE) of 0.014 for MPS of the whole brain. Combining all 
impact-strain response data available (N = 3069), the CNN achieves an R2 of 0.966 and RMSE of 0.013 in 
a 10-fold cross-validation. This technique may enable a clinical diagnostic capability to a sophisticated 
head injury model, such as facilitating head impact sensors in concussion detection via a mobile device. 
In addition, it may transform current acceleration-based injury studies into focusing on regional brain 
strains. The trained CNN is publicly available along with associated code and examples at https://github.
com/Jilab-biomechanics/CNN-brain-strains. They will be updated as needed in the future.

Traumatic brain injury (TBI) remains a major public health problem in the world1,2. According to the World 
Health Organization, more than 40 million people worldwide suffer from a mild TBI (mTBI) each year3. In the 
United States alone, the number of concussion incidents could reach 1.6–3.8 million annually, and is particularly 
common in athletes playing contact sports4,5. Although mild in nature, about 300,000 of the incidents involve loss 
of consciousness, with the majority occurring in American football6.

To mitigate the risk of concussion, head impact sensors such as Head Impact Telemetry (HIT) System7 and 
mouthguards8,9 are deployed in many contact sports. They record impact kinematics upon head collision and 
have been extensively used to measure head impact exposure10. However, only peak linear and/or rotational accel-
erations such as “g-forces” are often used that do not inform impact-induced brain strains thought responsible for 
brain injury11,12. Consequently, there is question about their effectiveness in concussion detection13.

Using measured kinematics as input, a sophisticated computational head injury model can estimate detailed 
brain strains. They are generally believed to be more effective than impact kinematics in detecting brain injury, 
including concussion14. However, a significant challenge preventing injury models from real-world use such as 
facilitating head impact sensors for concussion detection on the sports field is that they are too slow—typically 
requiring hours to simulate even a single head impact on a high-end workstation15–17. As a result, the use of head 
injury models has been largely restricted to retrospective research efforts to date with no obvious clinical diagnos-
tic value, and head impact sensors are also significantly underutilized.

There exist two competing strategies to mitigate the computational cost in model simulation. They share 
similarities in conceptualizing a head injury model as a nonlinear, high-dimensional, but smooth and con-
tinuous mapping function between impact kinematics and brain responses15,18. One strategy is to simplify 
the model and response output. For example, several reduced-order models have been proposed, includ-
ing a one-degree-of-freedom (DOF) dynamic model based on modal analysis19 or equation of motion20, and 
a second-order model21. By fitting parameters of a reduced-order model against directly simulated responses 
obtained from a finite element (FE) model of the human head, hybrid brain injury metrics were developed to 
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correlate with peak maximum principal strain (MPS) of the whole brain. These metrics have shown promise over 
other conventional injury metrics derived solely from rotational kinematics when correlating against MPS of the 
whole brain over a large spectrum of impact severities and in diverse injury scenarios on a group-wise basis21,22.

However, MPS estimation accuracy from reduced models degrade for large strain impacts21,22, presumably as 
a result of failing to capture the significant nonlinearities when the impact severity is high. Unfortunately, large 
strains from more severe impacts (vs. low severity blows) likely would be the most important to consider when 
assessing the risk of brain injury on an individual basis. Further, reduced models relying on MPS of the whole 
brain lose critical information on brain strain distribution, because the strain variable is overly simplified to a sin-
gle scalar value for the entire brain and is not region-specific. It is also unclear how reduced models could estimate 
directionally informed “axonal”23–25 or “fiber”26 strains that characterize stretches along white matter fiber tracts, 
or strain rate27 thought important to brain injury as well. These observations indicate some inherent limitations 
with reduced-order models in practical applications, despite their potential for gaining physical insight into the 
induced brain strains.

To preserve the nonlinearity and spatial distribution of brain strains, a pre-computed brain response atlas 
was also introduced15. Instead of simplifying the model and output, this approach idealizes impact kinematic 
profiles serving as model input. Brain strains are pre-computed for a large library of impacts by discretizing peak 
rotational acceleration/velocity, and azimuth and elevation angles of head rotation28. Element-wise MPS values 
(vs. peak magnitude of the whole brain21,22) for an arbitrary impact are then interpolated/extrapolated instantly. 
The pre-computed response atlas was shown to be effective using dummy head impacts simulating American 
football28. However, the idealized rotational kinematic profiles are limited to triangular shapes of acceleration 
impulses that do not include deceleration. For more complex kinematic profiles involving deceleration and veloc-
ity reversal, the atlas may need to be expanded to include additional characteristic impacts. Unfortunately, this 
requires an explicit analysis of rotational velocity profile shapes, which is not trivial28,29.

Instead of simplifying the impact kinematic input15,28, head injury model, or response output19–21, here we 
develop a convolutional neural network (CNN) to learn the nonlinear impact-strain relationship without any 
simplification. The CNN is a typical data-driven approach where the network weights are determined by the 
given training data iteratively via backpropagation. By “implicitly” capturing important features of head rota-
tional velocity profiles, regional brain strains can be estimated instantly with sufficient accuracy while maintain-
ing the fidelity of impact kinematics, the sophistication of a head injury model, and the detailed response output. 
Such a capability is critical for effective real-world applications such as concussion detection on the sports field.

CNN is a class of deep learning neural network that has been extensively used in medical imaging and com-
puter vision30,31. Object detection and pattern recognition are achieved via local filter convolution to capture 
structural information among neighboring pixels/voxels32,33. This is analogous to detecting local shape variations 
in head rotational kinematic temporal profiles that serve as model input to determine brain strains. This inspired 
us to conceptualize time-varying biomechanical signals of head rotation, specifically, rotational velocity profiles 
along the three anatomical directions, as two-dimensional (2D) images to apply CNN for response regression. 
The image representation preserves the temporal locality of head rotational velocity as the three components 
along the temporal dimension are given at the same time. In contrast, concatenating the three velocity profiles 
into a one-dimensional (1D) vector may not work well with existing CNN architectures because it destroys the 
temporal locality required for data convolution.

We organized the study as the following. We first used two real-world impact datasets to generate sufficient 
training samples through augmentation. Next, we empirically optimized a CNN architecture and probed its test-
ing performance behaviors under a variety of training-testing configurations. All training samples were then 
combined to conduct a 10-fold cross-validation34 and to further test on a third, independent impact dataset 
measured in American football35. Finally, an additional 10-fold cross-validation was conducted using all response 
samples available. The CNN technique developed here allows instantly converting a head impact measured from 
impact sensors into regional brain strains. Therefore, it may facilitate head impact sensors in monitoring neural 
health and detecting concussion more effectively; thus, transforming kinematics-based TBI studies into brain 
strain-related investigations in the future.

Materials and Methods
Data augmentation.  We used two impact datasets to generate CNN training samples: (1) video-confirmed 
impacts measured in American college football, boxing, and mixed martial arts from Stanford University (SF; 
N = 110)8; and (2) lab-reconstructed impacts from National Football League (NFL; N = 53)36. The SF dataset 
was measured using instrumented mouthguards8. The latter were reconstructed and recently reanalyzed36 in the 
laboratory using dummy heads by matching the location, direction, and speed of the impacts approximated from 
video analysis37. As contribution of linear acceleration to brain strains was negligible38, only isolated 3-DOF rota-
tional velocity profiles in a ground-fixed coordinate28 were used. The data sizes were small compared to typical 
CNN applications (e.g., thousands or even millions33). Therefore, data augmentation was necessary to increase 
the variation in head rotational kinematics for training.

To do so, components along the x, y, and z directions were permuted to construct 6 (N = 3!) vrot profiles (i.e., 
xyz, xzy, yxz, yzx, zxy, and zyx; Step 1 in Fig. 1). Each profile was further rotated about a random axis passing 
through the head center of gravity with a random magnitude (within 0–900; Step 2 in Fig. 1)28. The azimuth and 
elevation angles (θ and α, respectively) of the rotational axis, Ω(θ,α), were then determined based on peak mag-
nitude of rotational velocity28. Due to head symmetry about the mid-sagittal plane, only half of the Ω sampling 
space was necessary (shaded area in Fig. 1)15. Therefore, for Ω with θ > °90 , its corresponding “conjugate 
rotational axis”, Ω″(180°−θ, −α), was used to maximize the use of vrot profiles for generating unique brain 
responses (optional Step 3 in Fig. 1).
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Finally, to focus on more “severe” head impacts relevant to potential “injury”, all profile magnitudes were ran-
domly scaled so that the peak resultant velocity magnitude was above the median concussive value of 21.9 rad/s 
found in football while below 40 rad/s, sufficient to capture the 95th percentile of 34.1 rad/s39. For a given impact 
dataset, each permutation and random perturbation/scaling constituted one batch of training data.

The augmented SF dataset was used to optimize a CNN architecture, including the number of layers and their 
associated parameters (details below). We found two batches of vrot profiles (N = 1320, 110 × 6 × 2) were neces-
sary to yield a coefficient of determination (R2) above 0.90 (deemed successful) in a 10-fold cross-validation34. 
Similarly, we generated two batches of vrot profiles for the NFL impacts (N = 636, 53 × 6 × 2). Some impacts 
from the augmented datasets may not be physically admissible or rare to occur; still, they uniquely probed the 
impact-strain response hypersurface and were useful for CNN training.

Data preprocessing.  The CNN requires a fixed input size. Therefore, all vrot profiles were reformatted into a 
3 × 201 matrix. The first dimension was fixed to represent time-varying vrot components along the three anatom-
ical directions. The second dimension corresponded to 200 ms in temporal length at a resolution of 1 ms (from 0 
to 200 ms; sufficient for all impacts used). The second dimension could be adjusted based on the impact temporal 
resolution, which may require adjusting the CNN filter and stride sizes accordingly (details below). As peak rota-
tional velocity was known to be important for brain strains, we synchronously shifted the three vrot components so 
that the resultant peak occurred at a fixed time point of 100 ms (Fig. 2). At both ends of the rotational velocity pro-
file, replicated padding was used to maintain a zero acceleration, where values at the two velocity profile borders 
were replicated along the temporal axis. Controlling the temporal location of the resultant velocity peak reduced 
kinematic data variation, which was expected to decrease the number of training samples required because the 
same shifting and padding were applied to all testing vrot profiles. Repositioning vrot profiles in time did not affect 
output, as the strain responses were accumulated maximum values, regardless of the time of occurrence.

Impact simulation.  All impacts were simulated using the recent Worcester Head Injury Model (WHIM) 
that incorporates anisotropic material properties of the white matter based on whole-brain tractography40. The 
anisotropic WHIM employs the same mesh and brain-skull boundary conditions as in the previous isotropic 
version26. It was successfully validated against six cadaveric impacts and an in vivo head rotation40.

Three strains from model simulations were separately used for training and testing: MPS of the whole brain, 
MPS of the corpus callosum (CC; a particularly vulnerable region41,42), and fiber strain of the CC, all assessed at 
the 95th percentile level. Their increasing level of sophistication (whole brain vs. region-specific; direction invari-
ant MPS vs. directionally informed fiber strain) was designed to stress test the CNN prediction capability.

CNN architecture.  Application of CNN in TBI investigation is limited to image-based tasks so far, such 
as mimicking neuronal behaviors in cognitive deficits43 and contusion image segmentation44. Its application in 
biomechanics has also emerged, for example, to predict musculoskeletal forces45 and to perform mobile gait anal-
ysis46. However, application of CNN in TBI biomechanics does not yet appear to exist.

Therefore, we first empirically optimized a CNN architecture45 using whole-brain MPS obtained from the 
augmented SF dataset. The number of CNN filters and their sizes and stride sizes were iteratively and empirically 
updated until a 10-fold cross-validation performance was maximized in terms of R2 between the predicted and 
directly simulated responses. Figure 2 shows the optimized CNN, which led to a maximized R2 of 0.937 with root 
mean squared error (RMSE) of 0.018. The 32 filters had sizes of 3 × 10, 1 × 10 and 1 × 5 with stride sizes of 1 × 2, 
1 × 2 and 1 × 1 for the three convolutional layers, respectively. They were followed by a flattening layer (with a 
dropout rate of 0.247) and two fully connected layers. Rectified linear unit (ReLU) activation functions48 were 
used.

Figure 1.  Illustration of data augmentation for a representative head impact rotational profile in terms of 
rotational axis, Ω(θ,α). Rotational velocity components along the three anatomical axes were permuted (Step 
1), randomly rotated (Step 2), and then converted to its conjugate rotational axis, Ω″ (optional Step 3), if the 
azimuth angle, θ, is outside the sampling range (shaded area). Counter clockwise (CCW) rotation about Ω″ 
generates a mirroring response about the mid-sagittal plane relative to CCW rotation about Ω15.
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The same optimized CNN architecture was employed for all subsequent trainings with 250 epochs, an initial 
learning rate of 10−6, and a batch size of 64. Mean squared error (MSE) between the predicted and directly simulated 
strain measure of interest served as the loss function for minimization via an adaptive moment estimation (Adam) 
optimizer49 implemented in Keras (Version 2.08)50. Validation-based early stopping51 was used to avoid overfitting.

Performance evaluations.  All testing vrot profiles followed the same preprocessing steps (Fig. 2). We first 
used the augmented SF dataset to train and test on the reconstructed NFL dataset, and conversely, used the aug-
mented NFL dataset to train and test on the measured SF dataset. To probe the importance of training sample size 
on testing performances, two additional batches were generated for the augmented NFL dataset, leading to a total 
of 1272 vrot impacts (53 × 6 × 4; comparable to the augmented SF data size). We then repeated the same training 
and testing on the measured SF dataset. To further investigate the importance of vrot profile shape characteristics 
in training (measured on-field vs. lab-reconstructed), we also used the augmented SF dataset to train and estimate 
strains in the measured SF dataset, as they were from the same data source and shared the same vrot resultant pro-
file shapes on a group-wise basis. For completeness, the augmented NFL dataset was also used to train and test on 
the reconstructed NFL impacts.

Next, we combined the augmented SF and NFL datasets (N = 2592) and conducted a 10-fold cross-validation. 
To demonstrate real-world use of our technique, we used the combined dataset to train and test on a third, inde-
pendent impact dataset measured and video-confirmed using an impact monitoring mouthguard9 in American 
high school football (HF; N = 31435). Finally, all impact-strain response samples available in this study were com-
bined (N = 3069; 1320 + 1272 + 110 + 53 + 314) to conduct a final 10-fold cross-validation.

For each strain measure, we evaluated testing accuracy using R2 and RMSE. Because the augmented datasets 
intentionally focused on more severe head impacts most relevant to injury, we reported the testing performances 
for impacts within the focused rotational velocity peak range, in addition to the full dataset.

Statistical tests.  For all tests, 30 trials with random CNN initialization seeds were conducted (n = 30). For 
10-fold cross-validations, their performances were compared using a corrected one-tailed t-test to avoid high 
Type I error52. For other tests, a Welch’s one-tailed t-test was used to account for unequal variances53. Significance 
level was set at 0.05.

Data analysis.  Although all velocity profiles were reformatted to 200 ms as CNN input, only impact profiles prior 
to shifting and padding were necessary for simulation (Fig. 2), as the padded zero accelerations had no effect on peak 
brain strains. Each impact of 100 ms required ~30 min for simulation with Abaqus/Explicit (double precision with 15 
CPUs and GPU acceleration; Intel Xeon E5-2698 with 256 GB memory, and 4 NVidia Tesla K80 GPUs with 12 GB 
memory) and another ~30 min for post-processing to calculate regional strains. In total, 3069 impacts were simulated, 
typically with 5–10 jobs running simultaneously. Training a CNN required ~3 min per fold on an NVIDIA Titan X 
Pascal GPU with 12 GB memory, while predicting on a testing profile was instant (<0.1 sec) on a low-end laptop. All 
data analyses were conducted in MATLAB (R2018b; MathWorks, Natick, MA) and Python (Version 2.7.0).

Figure 2.  Overview of impact data preprocessing (top) and an empirically optimized CNN architecture 
(bottom) for training and testing. A typical rotational velocity temporal profile is conceptualized as a 2D image 
for CNN input. Note the difference in velocity profile temporal axes, as no curves are “squeezed”. The technique 
is illustrated for three strain variables in this study but can be easily extended to the whole-brain, element-wise 
responses. CNN: convolutional neural network.
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Results
Performance evaluation: between the two datasets.  Using the augmented SF dataset for training and 
testing on the reconstructed NFL impacts consistently achieved significantly higher R2 and lower RMSE than the 
other way around switching the two datasets for training/testing for the same strain measure (p < 0.001; Fig. 3; 
range of R2 and RMSE: 0.884–0.915 and 0.015–0.026, respectively, vs. 0.588–0.721 and 0.035–0.07 for the latter). 
The variance across 30 trials was also consistently smaller in the former (e.g., standard deviation for R2 range of 
0.018–0.033 vs. 0.034–0.061).

Figure 4 reports R2 and RMSE using three augmented datasets for training but the same measured SF dataset 
for testing. Increasing the augmented NFL training sample size consistently increased R2 and lowered RMSE 
(p < 0.001), especially for impacts within the targeted rotational velocity peak range. Still, using the augmented 
SF dataset for training significantly outperformed those using the augmented NFL for training (p < 0.001), even 
when the sample sizes were comparable (e.g., R2 of 0.871 vs. 0.796, and RMSE of 0.021 vs. 0.03, for within-range 
fiber strain in the CC).

Figure 5 compares the predictions with the directly simulated MPS of the whole brain for four training-testing 
configurations. When the training and testing datasets were from the same source, (Fig. 5c,d), the testing per-
formance was always satisfactory (e.g., R2 > 0.937 and RMSE < 0.018 for within-range impacts). Using the 
augmented SF dataset also successfully predicted strains for the reconstructed NFL dataset (R2 = 0.921 and 
RMSE = 0.014 for within-range impacts; Fig. 5a). However, when using the augmented NFL dataset to predict 

Figure 3.  Average R2 (left) and RMSE (right) from 30 random trials (with bars indicating standard deviation) 
using augmented SF dataset to predict responses in the reconstructed NFL impacts, and vice versa. For each 
strain measure, performances are reported using either impacts from the entire dataset or those within the 
targeted resultant rotational velocity peak range (within-range). MPS: maximum principal strain; FS: fiber 
strain; WB: whole brain; CC: corpus callosum.

Figure 4.  R2 (left) and RMSE (right) when using three training datasets to test on the same measured SF impact 
dataset. Increasing the training samples in the augmented NFL dataset improved performances but were still 
outperformed by those using the augmented SF dataset for training, even when the training sample sizes were 
comparable. MPS: maximum principal strain; FS: fiber strain; WB: whole brain; CC: corpus callosum.
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measured SF dataset, the performance was notably poorer (e.g., R2 = 0.599 and RMSE = 0.057 for all impacts; 
Fig. 5b). For the three “successful” predictions, CNN predictions for out-of-range impacts remained either within 
the ±1 RMSE range for many (overall R2 > 0. 880) or somewhat overestimated.

Performance evaluation: combining the training datasets.  Figure 6 reports the testing performances 
on the three measured impact datasets by combining the augmented SF and NFL datasets for training. Testing 
on the reconstructed NFL dataset achieved the highest R2 of 0.978 with RMSE of 0.008 for within-range MPS 
of the whole brain. Compared to those when using the augmented SF dataset alone for training (Fig. 3), they 
were increased by 7–9% and decreased by 38–45%, respectively (p < 0.01). A smaller performance gain was also 
observed for the within-range impacts in the measured SF dataset (R2 increased by 2–4% and RMSE decreased by 
1–14% as compared to those when using the augmented SF dataset alone for training; Fig. 3).

When tested on the third HF dataset, the testing R2 for MPS of the whole brain achieved the highest value 
of 0.916, with RMSE consistently <0.02 for within-range impacts. Figure 7 compares the predicted three strain 
measures with the directly simulated counterparts for the three impact datasets in a typical trial using the aug-
mented datasets combined for training.

Finally, Fig. 8 compares R2 and RMSE for the three strain measures in 10-fold cross-validations using either 
the augmented SF and NFL datasets combined (N = 2592) or all impact response data available (N = 3069). 
Increasing the training samples significantly improved R2 (to values of 0.966 ± 0.001, 0.942 ± 0.002 and 
0.930 ± 0.002 for MPS of the whole brain, MPS of the CC, and fiber strain of the CC, respectively; p < 0.01), but 
not statistically significant for decreasing RMSE (p of 0.051–0.110; RMSE values consistently < 0.018).

Figure 5.  Typical prediction performances for four training-testing configurations (a–d; augmented NFL 
dataset used all four batches). Each selected plot reflects a typical trial, with its performance in terms of R2 
closest to the average value from the 30 random trials. Subscript, in, refers to impacts within the targeted 
resultant rotational velocity peak range. MPS: maximum principal strain; WB: whole brain.
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Discussion
Improving the computational efficiency while maintaining the sophistication of a head injury model and accu-
racy in response output is critical for prospective, real-world applications such as facilitating impact sensors in 
concussion detection on the sports field. This has long been desired16,17 but has remained infeasible to date. In 
this study, we introduced a data-driven approach using a convolutional neural network (CNN) to learn the non-
linear impact-strain relationship without the need to simplify impact kinematic input15,28, head injury model, or 
response output19,21,22. The substantial increase in computational efficiency—from hours on a high-end worksta-
tion to under a second on a laptop—may enable a sophisticated head injury model for practical real-world use.

For all training-testing configurations regardless of the strain measure, the trained CNN instantly estimated 
regional brain strains with sufficient accuracy, especially for within-range impacts. The only exception might 
be when using the augmented NFL dataset to test on measured SF dataset (Fig. 5b; further discussed below). 
MPS of the whole brain generally achieved the best performance, with some degradation for more sophisticated 
strain measures characterizing region-specific MPS and directionally informed fiber strain of the corpus callosum 
(Figs 7 and 8). Although the regions of interest were limited to the whole brain and corpus callosum for illus-
tration in this study, most likely the technique can be extended to other regions, including specific gray matter 
regions and their white matter interconnections. In contrast, reduced-order methods are limited to estimating 
peak MPS of the whole brain19–22 but not element- or region-wise MPS, or directionally informed fiber strain in 
specific regions. The pre-computation technique estimates element-wise MPS of the entire brain15,28; however, it 
remains unclear how it performs when estimating fiber strains.

Nevertheless, directly benchmarking against these competing methods was not feasible in this study because 
they did not use the same impact data to report performance. Accuracy assessment in this study was limited to 
those occurring in contact sports; albeit, they were scaled to levels most relevant to injury. In contrast, earlier 
reduced-order models used impacts from a broad range of head impact conditions including sports, automotive 
crashes, sled tests and human volunteers21,22. However, in addition to degraded accuracy for more severe, but 
perhaps the most important, impacts, inclusion of low-severity impacts could have also artificially skewed the 
correlation to a more favorable score. Performance with the pre-computation technique was limited to dummy 
head impacts, but not real-world recorded impacts yet28.

Both the CNN technique and the previous pre-computed brain response atlas approach15 require a large 
training dataset. However, the CNN technique is significantly more advantageous because it is scalable—when 
model-simulated responses from new or “unseen” impacts become available (e.g., to challenge the CNN esti-
mation accuracy), they can be assimilated into the existing training dataset to re-train. This iterative updat-
ing process is expected to continually improve the estimation accuracy, as illustrated (Fig. 8). In contrast, the 
pre-computation approach is unable to assimilate fresh impact-response samples15.

Even for impacts whose resultant peak velocity fell outside of the targeted peak resultant velocity range, many 
of their CNN predictions were still within ± 1 RMSE relative to their directly simulated counterparts (Figs 5 and 
7). This indicated some impressive generalizability and robustness of the CNN technique. The ReLU activation 
functions were very effective in characterizing the inherently nonlinear brain-skull dynamic system, as it intro-
duced sparsity effect54 on the neural network to improve information representation and to avoid overfitting33. 
ReLU was also desirable here since its output and strains of interest were all non-negative. Nevertheless, further 
fine-tuning the CNN architecture may be desirable in the future using all of the impact-strain response samples 
available (N = 3069).

The data augmentation scheme via permutation and random perturbation (Fig. 1) was important to generate 
sufficient data variations to the head rotational axis and velocity magnitude. However, the temporal “shapes” of 
the head rotational velocity profiles were limited to what the measured/reconstructed impact datasets offered. 
Unfortunately, a parameterized descriptor of head rotational velocity temporal shape does not exist to allow 
generating its variations for CNN training. However, potentially this could be somewhat augmented by linearly 

Figure 6.  R2 (left) and RMSE (right) when using the augmented training datasets combined (N = 2592 impacts) 
to predict brain strains for the measured SF, reconstructed NFL, and measured HF datasets based on 30 random 
trials, respectively. MPS: maximum principal strain; FS: fiber strain; WB: whole brain; CC: corpus callosum.
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scaling along the temporal direction, which can be explored in the future. Nevertheless, shifting the rotational 
velocity profiles so that the resultant peak velocity occurred at a fixed temporal location indeed slightly improved 
the testing performance; otherwise, R2 typically dropped by 0.01 for within-range evaluations.

We chose to use vrot profiles for training because vrot is known to be important to brain strain15. The corre-
sponding rotational acceleration profiles or the combination of rotational velocity and acceleration profiles could 
also be used for training. They are equivalent in prescribing head motion, with the caveat of a possible non-zero 
initial velocity in vrot profiles, which was found to be negligible for brain strain. Therefore, they were found to 
lead to virtually identical CNN performances (confirmed but not shown). The CNN input matrix was fixed to 
3 in the first dimension to correspond to the three anatomical directions, but the second temporal dimension 
could be adjusted. We found that increasing the temporal resolution did not improve CNN estimation accuracy, 
but decreasing the temporal resolution degraded the accuracy. This suggested that the latter led to some loss of 
information, as expected.

Comparing performances across different training-testing configurations, we found that training using the aug-
mented SF dataset to test on the reconstructed NFL dataset outperformed that when instead, using the augmented 
NFL dataset for training to test on the measured SF dataset, even when the sample sizes were comparable (Fig. 5).  
We suspected that this was because the measured impacts on the field contained more “feature” variations in the 
rotational kinematics profiles that included acceleration, deceleration, as well as reversal in rotational velocity8,28. 

Figure 7.  Typical CNN prediction performances for maximum principal strain (MPS) of the whole brain (WB; 
top), MPS of the corpus callosum (CC; middle row) and fiber strain (FS) of the CC (bottom) for three impact 
datasets: measured SF (left), reconstructed NFL (middle column), and measured HF (right).

https://doi.org/10.1038/s41598-019-53551-1


9Scientific Reports |         (2019) 9:17326  | https://doi.org/10.1038/s41598-019-53551-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

In contrast, lab-reconstructed head impacts mainly focused on matching impact location, direction, and speed36 
but may not include more complicated shape variations. These findings suggested the importance of using 
“feature-rich” impact kinematics data to maximize variation in the training samples. Nevertheless, the addition 
of the augmented NFL dataset did improve testing performance (Figs 3 vs. 6), suggesting that they also contained 
information useful for CNN training. On the other hand, prediction on relatively “simple” impacts such as those 
in the reconstructed NFL dataset always yielded the best performance (Figs 5–7).

Finally, although sophisticated computational hardware is desirable/necessary for model simulations40 to gen-
erate training samples and to train the CNN, this is not necessary for using an already trained CNN for predic-
tion. In fact, even a portable mobile device may be sufficient for applying a trained CNN for prediction, which is 
desirable for potential real-world deployment in the future. To potentially better serve the research community 
and other interested parties, we have made the trained CNN publicly available, along with code and examples 
at https://github.com/Jilab-biomechanics/CNN-brain-strains. It is anticipated that the link will be updated as 
needed in the future.

Limitations.  For brevity, we only reported accuracies of strains measured at the 95th percentile for illustra-
tion. The same approach was also tested at the 100th and 50th percentile levels (both used in injury prediction). A 
lower percentile would effectively serve as a smoothing filter to the impact-response hypersurface, which would 
slightly improve the prediction accuracy compared to the 100th percentile responses (confirmed but not shown).

We focused on a relatively narrow range of peak resultant velocity magnitude because they were most relevant 
to injury. However, expanding the coverage range to lower impact severities to allow considering the cumulative 
effects of repeated sub-concussive impacts is straightforward. For out-of-range impacts, the CNN generally over-
estimated strains to some degree, but with many still within ±1 RMSE relative to the directly simulated counter-
parts. This highlighted the generalizability and robustness of the technique, which was important for real-world 
applications where unexpected, “out-of-range” impacts may occur.

Further, the data-driven CNN technique does not address any physics behind brain biomechanical responses. 
However, as a fast and accurate brain strain response generator, the trained CNN may allow other research-
ers to efficiently produce impact-response data to explore the physics behind brain strains and concussion in 
reduced-order models55.

Nevertheless, the CNN was only tested using impacts in contact sports in this study because our focus was 
to enable head injury models for facilitating concussion detection on the sports field. It merits further investi-
gation into whether the application can be expanded more broadly to other impact scenarios such as automo-
tive crashes21,22. If found to be similarly effective, the technique may allow transforming state-of-the-art impact 
kinematics-based studies of brain injury into focusing more on brain strains in the future.

Finally, the trained CNN is model-dependent, and regional strain estimates are subject to all limitations 
related to the WHIM used for generating training samples. Nonetheless, the CNN can be easily re-trained to 
accommodate another model or a future, upgraded WHIM. In this case, a large amount of impacts may need 
to be simulated again. However, existing training data already simulated can still be reused to set an appropriate 
initial starting point for CNN training, which would reduce the number of impacts required to re-simulate.

Conclusion
In this study, we developed a deep convolutional neural network (CNN) to train and instantly estimate 
impact-induced regional brain strains with sufficient accuracy. The technique is significantly more advanta-
geous than other alternative methods, because it does not need to simplify impact kinematic input, head injury 
model, or response output, and is effective for estimating more sophisticated, region-specific and directionally 
informed strains. The trained neural network is uniquely capable of assimilating fresh impact-response samples 
to iteratively improve accuracy. Together with sensors that measure impact kinematics upon head collision, this 
technique may enable a sophisticated head injury model to produce region-specific brain responses, instantly, 
potentially even on a portable mobile device. Therefore, this technique may offer clinical diagnostic values to 

Figure 8.  R2 (left) and RMSE (right) in 10-fold cross-validations using either the augmented training datasets 
combined (N = 2592) or all impact response data available (N = 3069) based on 30 random trials. MPS: 
maximum principal strain; FS: fiber strain; WB: whole brain; CC: corpus callosum; “*” indicates P < 0.01.
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a sophisticated head injury model, e.g., to facilitate head impact sensors in concussion detection via a mobile 
device. This is important to mitigate the millions of concussion incidents worldwide every year. In addition, the 
technique may transform current acceleration-based injury studies into focusing on regional brain strains.
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