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Abstract

This study aims to highlight SARS-COV-2 mutations which are associated with increased or

decreased viral virulence. We utilize genetic data from all strains available from GISAID and

countries’ regional information, such as deaths and cases per million, as well as COVID-19-

related public health austerity measure response times. Initial indications of selective advan-

tage of specific mutations can be obtained from calculating their frequencies across viral

strains. By applying modelling approaches, we provide additional information that is not evi-

dent from standard statistics or mutation frequencies alone. We therefore, propose a more

precise way of selecting informative mutations. We highlight two interesting mutations found

in genes N (P13L) and ORF3a (Q57H). The former appears to be significantly associated

with decreased deaths and cases per million according to our models, while the latter shows

an opposing association with decreased deaths and increased cases per million. Moreover,

protein structure prediction tools show that the mutations infer conformational changes to

the protein that significantly alter its structure when compared to the reference protein.

Introduction

First cases of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) were

reported from Wuhan, Hubei Province, China [1] last December 2019. Since then, SARS--

CoV-2 has become the cause of the severe respiratory corona virus disease (COVID-19) [2], an

epidemic initially declared in China [3], that over the course of 2–3 months spread globally to

become a pandemic with grave repercussions (March 11th 2020, WHO publicly declared pan-

demic). The World Health Organization (WHO) reported over 4.8 million confirmed cases of

COVID-19, and over 316,000 deaths (report date: May 18th).

SARS-CoV-2 is an enveloped RNA virus, with a non-segmented, positive-sense (+ssRNA)

genome of ~30 kb, amongst the largest identified riboviria RNA genomes [4, 5]. It is believed

to have originated from the bat coronavius Bat CoV RaTG13 (~96% identity) [6]. This is third

outbreak of pathogenic zoonotic betacoronaviruses [6–10] within the last two decades,
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following the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) in 2002 [11], and

the Middle East Respiratory Syndrome, MERS-CoV in 2012. However, these two predecessors

were confined to epidemic proportions. So, what makes SARS-CoV-2 the cause of a pandemic

unmatched by the previous two recent respirator syndromes (SARS-CoV and MERS-CoV)?

The efficiency of SARS-CoV-2 can be attributed to a delicate balance between its transmission

rate (high); and mortality rate (moderately high–compared to other two recent syndromes). It

is difficult to accurately estimate differences in transmissibility and mortality because they are

dependent on multiple factors which vary significantly from one region to another. These fac-

tors include regional factors such as (i) access to testing, (ii) differences in clinical care, (iii)

population demographic differences such as age and (iv) differences in weather conditions

(e.g. heat and humidity). Nevertheless, current estimates for the basic transmissibility com-

monly range between 2–5 [12, 13]. Estimates of mortality, deaths per confirmed cases average

at 3.6% globally [14, 15] SARS-CoV and MERS-CoV, although both had higher death rates

than SARS-CoV-2 11% [16] and 35% mortality respectively [10, 11], their transmission rates

were significantly lower 1.5–2 [12, 17] and<1 [17] respectively.

The transmission and mortality rates described above, provide clues as to how to study

SARS-CoV-2 and devise strategies to investigate its genome taking under reconsideration its

overall efficiency. Although the observed sequence diversity among SARS-CoV-2 strains is

low, its rapid transmission rate provides ample opportunity for natural selection to act upon a

range of viral mutations. High mutation frequency of a given position can be the consequence

of one of two reasons: (i) either the mutation is in a neutral genomic region that allows for

leniency in the frequency of changes with little or no impact virulence. (ii) The mutation is

beneficial and actually provides a selective advantage to a viral strain enhancing its efficiency

and overall propagation.

It is known that an “efficient” virus does not result in death for the underlining host. There-

fore, the overall high transmission and moderate mortality rates of SARS-CoV-2 are what

make this virus pandemic material.

The first SARS-CoV-2 strain to be sequenced was the index strain from Wuhan [18]. Cur-

rently the Global Initiative on Sharing All Influenza Data (GISAID) database stores >23,000

SARS-CoV-2 strains (some of which are full-length sequences with high-coverage).

In this study, we capitalize on the ample amount of COVID information currently available

through GISAID database and utilize it to develop a combined phylogenetic and statistical

analysis that entails modelling the virulence of all mutations found across the SARS-CoV-2

strains sequenced to date. Our approach makes use of multiple sequence alignment (msa)

tools (MAFFT) [19] and phylogenetic tree reconstruction methods (RAxML) [20] to obtain a

map of all mutations in a variant calling format (vcf). The latter was done using snp_sites [21]

tool maintained by sanger-pathogens, which characterizes genotypes for all the mutations

(SNPs) found across all available sequenced strains in the msa. Our main objective is to high-

light mutations which are associated with increased or decreased virulence, by using genetic

data and countries’ regional information on deaths and cases per million. Initial indications of

selective advantage of specific mutations can be obtained from calculating their frequencies

across viral strains, which are obtained throughout the months of the COVID pandemic.

These indicators include: (i) An increased frequency of strains that display a particular muta-

tion over time in one region; (ii) Frequent recurrence of a specific mutation across different

geographical regions. This would also be observed as nodes found on different branches of a

phylogenetic tree. (iii) The existence of silent mutations, where a change at the nucleotide level

(or codon), does not results in a subsequent change in the amino acid or the function of the

overall protein. The threshold for identifying significant mutations can be set arbitrarily as

done in [22] for the spike protein. However, by employing generalized linear models (GLMs)
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we reach an informed way to select mutations and provide additional information that is not

evident from standard statistics or mutation frequencies alone. Subsequently, we select infor-

mative mutations and perform structural and conformational predictions of mutated and ref-

erence (according to initial Wuhan strain) proteins in order to investigate their effect on

tertiary and quaternary protein structure. We propose two interesting mutations found in the

nucleocaspid (N) (P13L) and ORF3a (Q57H) genes; that appear to be significantly associated

with either increased or decreased deaths and cases per million according to our GLMs. More-

over, we show that the predicted conformations of the mutated protein are substantially differ-

ent to the predicted reference structure.

Results

Statistical modelling for predicting key mutations for SARV-COV-2

The approach employed in this study provides an informed way of selecting mutations by

applying GLMs fitted on various outcome and predictor variables. These include outcome var-

iables: (i) deaths and (ii) cases per million information derived from the GISAID metadata file;

and the predictor variables: (i) percent of occurrence of each mutation in strains found across

different countries, (ii) binary mutation information (“0” absence of mutation, “1” presence of

mutation), and (iii) country austerity measure response time. Our models are specifically

designed to provide statistical evidence for fitting outcome variables that characterize the effi-

ciency of the viral strains (e.g. death rates, transmission rates) with predictor variables such as

the specific mutation occurrence found in populations and genotype information across all

available strains. We are aware that genetic factors such as mutations frequencies are not the

only variables that govern country death rates and transmission rates. Therefore, in addition

to the aforementioned predictor variables, we also consider the individual countries’ austerity

measure response time as reported by the Oxford COVID-19 Government Response tracker

data [23]. Two different types of models were constructed using: a) cases per million as the

outcome variable and b) deaths per million as the outcome variable. Both generated unique

results and ranked mutations in different order. Differences between model predictions pro-

vide valuable information on specific mutations (see next sections). We report the results from

using both models types (a,b). Observing the top scoring mutations (see Tables 1 and 2) and

analysing them with respect to their frequency across populations, provides valuable informa-

tion with respect to their effect on viral virulence (see next section). In addition, excluding the

response time from our predictor variables significantly alters the top ranked mutations and

Table 1. Significant mutations according to our GLM of type a, which utilizes cases per million as outcome variable and including response time as a predictor

variable.

Mutation ID Codon Genomic Position Gene P-value

Mut9699 13 28311 N 0.002194766

Mut8612 57 25563 ORF3a 0.007292035

Mut7944 614 23403 S 0.007319234

Mut1515 924 3037 ORF1ab 0.007523798

Mut5088 314 14408 ORF1ab 0.00818189

Mut766 265 1059 ORF1ab 0.008613815

Mut4923 88 13730 ORF1ab 0.013379563

Mut8101 789 23929 S 0.016250144

Mut2610 2016 6312 ORF1ab 0.017059216

Two protein mutations of interest are and highlighted in light blue (see sections below for details).

https://doi.org/10.1371/journal.pone.0238665.t001
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furthermore results in omission of some mutations from the top ranked significance lists seen

in Tables 1 and 2 (see S1 and S2 Tables and for full list of ranked mutations using GLMs

excluding response time from the predictor variables). To provide GLMs that characterize the

circumstances responsible for changes in deaths and cases per million as accurately as possible,

we decided to include response time as a predictor variable in all of our GLM fitting applica-

tions. We justify this choice by performing a Wilcoxon test for all models and generating

Akaike information criterion (AIC) scores for both model types (a,b) including (x) and exclud-
ing (y) response time as a predictor variable. Results show that AIC distributions are signifi-

cantly different for both model types (p-values < 2.2e-16). Furthermore 95% confidence

interval calculations result in pseudomedian values of -0.29 and -0.76 for model types a and b
respectively. Thus indicating that there is a tendency of x-y to be less than 0, overall agreeing

with lower AIC scores for the models with the response time included in the fitting. A good

model being the one with the minimum AIC among all the other models.

Analysis of model results

The top ranking mutations highlighted by our GLMs that have been the centre of multiple

recent research studies [22, 24, 25]. These include mutations that appear as major high fre-

quency peeks in genomic plots for the SARS-CoV-2 virus strains [26]. Notable examples

include: 1) Mutations at position 14408 (codon 314), 3037 (codon 924) and 11083 (codon

3606) on the ORF1ab [25], that show a high frequency of occurrence (0.65, 0.65 and 1.3 respec-

tively) across viral strains sequenced to date. 2) The very cosmopolitan mutation on position

23403 (codon 614 [22], frequency 0.65) of the S protein (see Fig 1). 3) The highest frequency

peeks found in the N protein at positions 28881–28883 [25] (codons 203, 204 respectively). 4)

Table 2. Significant mutations according to our GLM of type b, which utilizes deaths per million as outcome variable and including response time as a predictor

variable.

Mutation ID Codon Genomic Position Gene P-value

Mut1515 924 3037 ORF1ab 7.26E-05

Mut7944 614 23403 S 7.71E-05

Mut5088 314 14408 ORF1ab 0.000115

Mut3461 2839 8782 ORF1ab 0.003728

Mut9636 84 28144 ORF8 0.003881

Mut4154 3606 11083 ORF1ab 0.004302

Mut9699 13 28311 N 0.00463

Mut8877 251 26144 ORF3a 0.006989

Mut5205 446 14805 ORF1ab 0.008682

Mut5329 619 15324 ORF1ab 0.019863

Mut8101 789 23929 S 0.021618

Mut4923 88 13730 ORF1ab 0.022187

Mut2610 2016 6312 ORF1ab 0.022238

Mut9924 203 28881 N 0.035819

Mut9925 203 28882 N 0.036078

Mut9926 204 28883 N 0.03638

. . . . . . . . . . . . . . .

Mut8612 57 25563 ORF3a 0.479085

Two selected protein mutation of interest highlighted in light blue (see sections below for details).

https://doi.org/10.1371/journal.pone.0238665.t002
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Well known high frequency mutations found in the ORF3a gene such as mutation at position

26144 (codon 251) [25].

Mutations of interest for studying the efficiency of SARS-COV-2

What we consider as the most significant contribution of our model, is that it also highlights

less studied mutations that appear to correlate with death and contamination rates. We high-

light two mutations of relatively low global frequencies (see Fig 1): 1) Mutation at position

28311 characterized by a P to L change on codon 13 (P13L) in the N protein. 2) Mutation at

position 25563 on codon 57 of the ORF3a protein characterised by a Q to H (Q57H) amino

acid change. These mutations were selected because of their highly significant ranking accord-

ing to our GLMs (see Tables 1 and 2). In the case of P13L, this mutations attained high signifi-

cance (p-values: 0.002 and 0.005) according to our models. In addition, what rendered this

mutation interesting for further analysis, was its negative correlation with both deaths and

cases per million (see Fig 2A and 2B). Albeit it showed a lower frequency of occurrence across

different countries and in the general population (see Fig 1). In the case of Q57H, this muta-

tion showed high significance according to type a models (p-value: 0.007) however, it was not

deemed significant according to type b models. It was, however, selected due to its unique cor-

relation patterns showing opposing decreasing and increasing death and transmission rates

Fig 1. Global genomic frequency plot. Mutations of interest, P13L and Q57H, are labelled in the plot together with

the D614G mutation for comparison.

https://doi.org/10.1371/journal.pone.0238665.g001

Fig 2. Analyses plots for N protein mutation at position 28311 (P13L). A. Regression model line showing the

simplified fit for mutations percentage across countries and the deaths per million for each country. Pearson’s

correlation is shown by the R value accompanied by the p-value of the correlation coefficient. B. Similar regression fit

for mutations percentage across countries this time showing cases per million for each country. Pearson’s correlation is

shown by the R value accompanied by the p-value of the correlation coefficient. C. Detailed histogram of the

percentage occurrence of the mutation across different countries. These values make up the “percent” predictor

variable utilized in our model (see Materials and Methods). Countries are sorted with increasing deaths per million.

https://doi.org/10.1371/journal.pone.0238665.g002
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respectively (see Fig 3A and 3B). Q57H has an elevated frequency level across countries and in

the overall population (see Fig 1). Our highlighted mutations were also compared to the well-

studied D614G mutation in our consecutive detailed analyses (see S1 Fig).

The P13L mutation tracking analysis

The P13L mutation is characterized by a change from C-to-T,Y (C or T), G base change at

position 28311 in the Wuhan reference strain. It is a highly significant mutation according to

our GLMs and moreover appears to be significant even when taking in consideration the

country austerity measures response time. P13L is being tracked by the GISAID, we refer to

the clade of sequences that constitute this mutation as the “P13L” clade (see S2 Fig for the

P13L phylogenetic clade position on our ML tree). It is present in 1.9% of the global samples,

and shows a global distribution appearing in Asia, America and Australia and the UK. It has

not yet been analysed in depth and we propose an important role for this mutation in viral sta-

bility and overall virulence. The data available for study (12/05/2020) are in accordance with a

founder effect in Asia, followed by an increase in Australian samples. During March and April,

sampling of the data from GISAID showed that the mutation frequency was further spreading

in Asia and then shifting to the UK and the Americas. The observed geographic spread is con-

sistent with that of a mutation showing early signs of an expanding global frequency (Fig 4A).

Mutation tracking across countries with available adequate sampling revealed a consistent

pattern of mutation spreading. In countries where sequences were sampled before March (e.g.

Korea, Australia, UK, USA), the reference P13L (REF-P13L) form appeared to be dominate in

this early period of the pandemic (Fig 4A). The introduction of alternate P13L (ALT- P13L) in

the population, was followed by a rise in its frequency, and in some cases ALT-P13L consti-

tuted ~50% of the population (Fig 4A).

In the UK, the ALT-P13L form began circulating later in the pandemic (April). Through

March, ALT-P13L became documented in South America, and it constituted a substantial per-

cent of contemporary sampling (Fig 4A). In North America, initial infected samples across the

continent showed an establishment of the original REF-P13L form, as the pandemic

Fig 3. Analyses plots for ORF3a protein mutation at position 25563 (Q57H). A. Regression model line showing the

simplified fit for mutations percentage across countries and the death rate per million for each country. Pearson’s

correlation is shown by the R value accompanied by the p-value of the correlation coefficient. B. Similar regression fit

for mutations percentage across countries this time showing cases per million for each country. C. Detailed histogram

of the percentage occurrence of the mutation across different countries. Countries are sorted with increasing deaths

per million.

https://doi.org/10.1371/journal.pone.0238665.g003
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progressed, the ALT-P13L appeared in both USA and Canada, becoming a well-documented

form in both nations by the end of March.

Australia follows a similar transition pattern, from REF-P13L to ALT-P13L, as described

above, however the introduction of the mutation in the Australian population appears to have

preceded that of USA and Canada. In fact the earliest ALT-P13L mutation outside of Asia was

identified in Australia (NSW25.2020.EPI_ISL_417388.2020.03.05.Oceania). This can account

for the much higher frequencies (~10 times) of the ALT-P13L form observed in Australia com-

pared to the former two countries. Most Asian samples showed a dominance of the original

Wuhan REF-P13L form in early in the pandemic (February), however for Asian countries out-

side of China, the ALT-P13L form was well-documented and becoming established by March

(Fig 4A). It is difficult to track the P13L mutation in China due to the lack of available Chinese

sequences in GISAID after March 1st. Sparse sampling, as observed in South America and

Africa, can affect mutation tracking, and this has to be taken under consideration when analys-

ing frequency plots (Fig 4A). In summary, our analysis of the data shows that the REF-P13L

Fig 4. Mutation tracking relative frequency plots. A. P13L transmission in months from its first occurrence in Asia

(Korea) to its transmission across other countries and continents. B. Q57H transmission in months from its first

occurrence in Europe (France) to its transmission across the globe.

https://doi.org/10.1371/journal.pone.0238665.g004
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form may be under selective advantage as shown by persistent, recurring transitions to the

ALT-P13L form in multiple regional geographical location throughout the pandemic.

The Q57H mutation tracking analysis

The Q57H mutation has previously been studied in detail [24] so we do not perform a detailed

mutation tracking for this mutation. For completion we show relative frequencies of the muta-

tion across time (Fig 4B) consistent with its founder effect in Europe and its transmission

across the globe. Although previously studied, the Q57H mutation has not been associated

with virulence and the precise mechanism for its selective advantage and increased frequency

across populations has not been investigated. It has a relatively high frequency of occurrence

according to the GISAID data analysed in this study (>0.26). The observed opposing correla-

tions with deaths and cases reported per million according to demographic data, presented in

our study may provide clues for the increased frequency of this mutation. As previously men-

tioned, the choice for highlighting this mutation is: 1) a consequence of the significant scores

obtained by Q57H by both our model types (see Tables 1 and 2) its unique pattern of correla-

tion with respect to death and transmission rates. Notably, this mutation is one of the few (4/

100) top significant mutations that exhibit a negative correlation with deaths per million and a

positive correlation with cases per million. This is a suitable pattern for delineating viral muta-

tion fitness, as preferably a competent virus should have high transmission rates and relatively

moderate death rates to secure its persistence.

For comparison, mutation tracking of the well-studied D614G mutation [22] is also per-

formed (S3 Fig).

P13L and viral transmission and virulence

We hypothesize that if the P13L mutation can affect transmissibility and death rates, it might

also impact severity of disease. High-throughput clinical outcome data for COVID are not

readily available at the moment, therefore we focused on geographic regional data reporting

death and transmission rates according to the Worldometers.info website. Populations har-

bouring the mutation show a higher mean death rate compared to the converse. Statistical

analysis of the populations with and without the P13L mutations shows substantial evidence

that the two distributions are significantly different (Wilcoxon test–p-value 2.2e-16) (see Fig

5A). This is in contrast to the results obtained by our model. This discrepancy can be attrib-

uted to the differences between performing univariate statistics to using GLMs. Our models

have the additive advantage to incorporate multiple quantitative factors in consideration, such

as the percent value for each country, while box plot statistics only looks at presence or absence

of mutation in a population. For example Spain has a high death rate shifting the mean up but

only a small percent (0.35%) of the mutation is actually present throughout the population.

Our GLMs are specifically suited to quantify this type of information and provide a more accu-

rate depiction of the quantitative realm studied here. For comparison reasons we also perform

the analysis on the D614G mutation. A similar trend was observed, whereby the population

comprising the mutation showed significantly different (Wilcoxon test–p-value 6.1e-15)

increased death rates compared to the referenced-based population (see S4 Fig). Similar phe-

nomena where observed when comparing results using the cases per million parameter to

assess the different distributions (see Fig 5B, and S4B Fig).

Q57H and viral transmission and virulence

The transmissibility and death rates patterns of Q57H mutation are consistent with the high

contamination and low lethality of SARS-CoV-2. Geographic regional data reporting deaths
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and cases per million show that populations harbouring this mutation exhibit higher mean

death rates compared to reference populations. However, statistical analysis of the deaths for

populations with and without the Q57H mutations shows evidence that the two distributions

are marginally not different (Wilcoxon test–p-value 0.069—see Fig 6A). The converse was

observed when comparing results using the cases per million parameter to assess the different

distributions (Wilcoxon test–p-value 1.6e-8—see Fig 6B). Results here are in total agreement

Fig 5. Boxplot distributions with and without the P13L mutation. A. Deaths per million for countries with the P13L

mutation and the reference mutation. B. Cases per million for countries with the P13L mutation and the reference

mutation. Keep in mind that each data point can represent more than one country. C. Deaths per million for countries

with the P13L mutation and the reference mutation including response time separation. C denotes the number of

unique countries in the group and S is the number of strains in the group. D. Cases per million for countries with the

P13L mutation and the reference mutation including response time separation. C and S are as denoted for panel C.

https://doi.org/10.1371/journal.pone.0238665.g005

Fig 6. Boxplot distributions with and without the Q57H mutation. A. Deaths per million for countries with the

Q57H mutation and the reference mutation. B. Cases per million for countries with the Q57H mutation and the

reference mutation. C. Deaths per million for countries with the Q57H mutation and the reference mutation including

response time separation. C denotes the number of unique countries in the group and S is the number of strains in the

group. D. Cases per million for countries with the Q57H mutation and the reference mutation including response time

separation. C and S are as denoted for panel C.

https://doi.org/10.1371/journal.pone.0238665.g006
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to our model which predicts a correlation with mutation percent found in each country and

cases per million, while a negative correlation with the deaths per million.

To investigate patterns of the effect of country response time with respect to the death and

transmission rates as well as the mutation genotype, we performed a similar distribution analy-

sis including the response time in months. The overall analysis for the Q57H mutation showed

both death and transmission rates increased with response times, however there was signifi-

cant drop in deaths per million for populations with the ALT-Q57H compared to cases per

million (see Fig 6C and 6D). This decrease in death rates was especially documented for the

12–25 month response group, which also comprised of most of the countries studied (see Fig

6C). A phenomenon which was observed at a much lesser effect when investigating cases per

million (see Fig 6D). Moreover, it is clear that countries that delayed their response time ulti-

mately attained more cases and deaths per million [23]. It is evident that these countries also

had a higher occurrence of the ALT-Q57H mutation. This can possibly be attributed to the

increased number of cases in these countries, providing the virus with greater opportunity for

natural selection to act upon this specific mutation.

P13L and potential mechanisms for enhanced fitness

In order to provide an explanation for the reasons why the P13L mutation appears to be

associated with decreased transmission and death rates, we turn to structural prediction and

docking tools. P13L is located on the surface of the Nucleocapsid (N) protein known to form

helical ribonucleocapsids (RNPs) with the positive-sense, single-stranded RNA genome of the

SARS-CoV-2 virus. It also interacts with virus membrane (M) protein and subsequently plays

a fundamental role during virion assembly. The QHD43423 structure of the N protein and

QHD43419 structure of the M protein, were retrieved from the I-TASSER repository contain-

ing the 3D structural models of all proteins encoded by the genome of SARS-CoV-2. Struc-

tures of the REF-P13L and ALT-P13L mutations, exhibited significant differences in protein

stability, with the later presenting a decrease in stability, compared to the REF-P13L com-

pound (ΔΔG = 0.629±0.012kcal/mol). Both amino acids are exposed to the surface with RSA

values 76.4% and 75.6% for the neutral Proline (P) and hydrophobic Leucine (L) residues,

respectively.

The native 7mer-RNA duplex (PDB ID: 4U37) was used for RNA-protein docking, as

described by Dinesh et al. [27]. RNA-protein docking with HDOCK and MPRDock algo-

rithms, revealed changes on the assembly of RNP complexes (RMSD 2.719±3.068Å) (Fig 7A

and 7B). Investigation of the N-M interaction was also carried out. The REF-P13L –M protein

complex exhibited an increase of the binding affinity (ΔG -13.050±0.495kcal/mol and Kd

2.95E-10±2.192E-10M) compared to the ALT-P13L –M protein complex (ΔG -12.750

±0.212kcal/mol and Kd 4.600E-10±1.270E-10M). In addition, structural changes are evident

as demonstrated upon structural alignment (RMSD 1.018±1.027Å) (Fig 7C and 7D).

Q57H and potential mechanisms for enhanced fitness

Structural prediction analysis for the Q57H mutation provides evidence to support its associa-

tion with decreased death rates and increased transmission. The ORF3a protein forms homo-

tetrameric potassium sensitive ion channels (viroporin) and may modulate virus release. The

Q57H mutation is located on the outer surface of the protein and specifically in the binding

domain that is directly involved in the tetramerization process. We performed a structural

analysis using I-Tasser [28] and created high quality tertiary and quaternary structure predic-

tions for the ORF3a protein (C-score = -3.14, Estimated TM-score = 0.36±0.12, Estimated

RMSD = 13.5±4.0Å). The Gln57 residue is a charge-neutral, polar amino acid, which resides 2
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amino acids far the transmembrane region (35–55) of the ORF3a protein. The ALT-Q57H is

defined by a substitution to a positively-charged and polar Histidine (His). Comparison of the

structures obtained using the REF-Q57H mutation and the ALT-Q57H (see Fig 8A and 8B)

show significant differences both in structural conformation as well as stability. With the later

exhibiting a more stable (-29.0ΔG, Kd = 5.6E-22M) structure affinities for the overall ORF3a

viroporin compared to the former (-26.8ΔG, Kd = 2.3E-20M). Further, in depth molecular

analysis reveals disruption of hydrogen bonds and hampering and shifts in other inter-molec-

ular interactions in the ALT-Q57H compared to the REF-Q57H structure of the protein (see

Fig 8C and 8D). The ORF3a protein is known to be involved in the pathway implicated in pore

formation in the host cellular membrane and is crucial in viral budding and release into the

external cellular space. The generation of a more stable structure that can ultimately lead to a

more sustainable viral cycle can be the functional aetiology for observing a greater correlation

with transmission of the virus. However, the fact that the ORF3a protein is not involved in

host receptor recognition and binding, could be the reasoning behind the observation that

overall death rates are not increased as a consequence of this mutation.

Discussion

Investigating viral strain mutation virulence can be a delineating factor in predicting viral

transmission and mortality at a population level. Diagnostic tests that can sequence targeted

Fig 7. Aligned tertiary and quaternary structural predictions of the complex between the Nucleocapsid (N)

protein and RNA (PDB ID: 4U37). A. Protein-RNA HDOCK docking simulations’ result. B. Protein-RNA MPRDock

docking simulations’ results. REF-P13L complexes colored in red, ALT-P13L complexes colored in green. C. Protein-

protein ClusPro docking simulations’ result of aligned tertiary and quaternary structural predictions of the complex

between the Nucleocapsid (N) protein and membrane (M) proteins. D. The same analysis shown in panel C performed

using protein-protein HDOCK docking simulations. REF-P13L complexes colored in red; ALT-P13L complexes

colored in green.

https://doi.org/10.1371/journal.pone.0238665.g007
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viral genomic regions for specific mutations can provide invaluable information to countries

for taking fast and efficient actions in dealing with a pandemic such as that created by the

SARS-CoV-2. This study shows that regression models can be used to provide information at

the SNP level that allows inferences on how mutations are correlated with death rates and

transmission rates. Frequency level information can only provide information on more cos-

mopolitan mutations and less frequent mutations are largely neglected. The use of generalized

linear regression models presented in this study allows for the assessment of all mutations irre-

spective of their current frequency, highlighting mutations of interest that are correlated or

anti-correlated with viral virulence. This permits inference on mutations that are on the rise

and potentially can alter strain virulence affecting the overall progression of the virus across

populations. Moreover, external (non-genetic factors) such as countries’ response times to

reach stringent austerity measures can be incorporated in the models, allowing for an accurate

examination of the genetic factors under investigation. A less frequent mutation, such as the

P13L mutation on the N protein of SARS-CoV-2, is highlighted using the GLMs constructed

in this study and shows a negative correlation with respect to country deaths and cases per mil-

lion. The crystal structure of the N protein has been the focus of other studies revealing poten-

tial drug targeting sites [29]. RNA-protein docking performed in this study show a potential

impact of the ALT-P13L on RNA binding affinity. Furthermore, investigation of the N-M

Fig 8. Tertiary and quaternary structural predictions of ORF3a protein. A. Structural prediction with REF-Q57H.

B. Structural prediction with ALT-Q57H. The location of the 57th amino acid in both structures is denoted in grey. C.

Detailed molecular structural conformational changes of ORF3a protein showing the REF-Q57H. D. Same molecular

analysis for the structure with ALT-Q57H. Hydrogen bonds in red, weak hydrogen bonds in orange, halogen bonds in

blue, ionic interactions in yellow, aromatic contacts in light-blue, hydrophobic contacts in green, carbonyl interactions

in pink, VdW interactions in grey.

https://doi.org/10.1371/journal.pone.0238665.g008
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interaction reveals that the ALT-P13L –M protein complex exhibited a decrease in binding

affinity. These observational allude to a possible effect on virion assembly.

The more frequent but not so well studied Q57H mutation shows patterns that are in accor-

dance to optimal viral fitness and persistence. At present time statistical analysis comparing

different populations, with and without the aforementioned mutation, appear to agree with

our GLMs in accordance to non-parametric tests, it will be interesting to track this mutation

in future population distributions and examine whether they will exhibit similar patterns.

Moreover, structural analysis of the Q57H shows significant conformational changes in the

ORF3a protein. According to free energy calculations, these are potentially accountable for a

more stable quaternary structure of the protein, possibly leading to an enhanced release of

viral particles, in accordance to its role in host cell pore formation and budding.

Taking the frequently occurring D614G as an example it is evident that this mutation is

becoming the dominant mutation across populations and its rapid spread denotes a natural

selection pressure that shows increased fitness for this mutation. Fitness for a viral mutation

can be governed by factors such as increase of viral transmission, such as that observed for

D614G. However, a successful virus will not evidently kill its host, so increased contamination

rates have to be coupled with decreased deaths rates. This is exactly what is observed for the

Q57H and P13L mutations, which provide a counter balance to mutations (e.g. D614G) that

are positively correlated with both death rates and transmission rates. We should emphasize

here that there are multiple factors governing the ability of the mutant virus to spread in a

human population as compared to the original virus strain. The reasons for the mutant virus

rapidly outnumbering the starting viral strain in a mixed virus population are complex. In

accordance to our data, we propose two modes of selection pressure for specific viral muta-

tions, (i) a fast mode of selection that is exhibited by mutations (e.g. D614G) that are directly

correlated with a rapid increase in viral transmission, but also accompanied by increased

deaths. Such mutation may lead to the peaks in viral impact observed across countries and

then may begin to drop in frequency over time due to increased number of deaths; and (ii) a

slower mode of selection that is portrayed by mutations (e.g. Q57H and P13L) with increased

transmission but decreased deaths. Such mutations may be responsible for prolonged viral

longevity and its more permanent establishment in the shared human-microbial niche.

Materials and methods

Datasets

Sequence data for all available SARS-COV-2 strains were obtained from The Global Initiative

for Sharing All Influenza Data (GISAID), at https://gisaid.org. Individual country austerity

measure responses were obtained from the Oxford COVID-19 Government Response tracker

data [23].

Overall approach

Full genomic SARS-CoV-2 sequences of high sequencing resolution were obtained from

GISAID. The nextstrain [26] pipeline was downloaded locally and the commands for filtering,

aligning and constructing phylogeny were used according to the nextstrain’s best practices.

MAFFT [19] was used to construct a multiple sequence alignment (MSA). Phylogeny was esti-

mated using the RAxML [20] maximum likelihood algorithm for phylogenetic tree construc-

tion. The vcf was generated using the snp_sites tool available through github (https://github.

com/sanger-pathogens/snp-sites). The vcf file is available as S3 Table.

Generalized linear model (GLM) construction (see Eqs 1 and 2), statistical analysis and tree

visualizations was performed using R packages: dplyr, tidyr, ggplot2, ggtree, phytools,

PLOS ONE Virulence-specific mutations in SARS-CoV-2

PLOS ONE | https://doi.org/10.1371/journal.pone.0238665 January 26, 2021 13 / 17

https://gisaid.org/
https://github.com/sanger-pathogens/snp-sites
https://github.com/sanger-pathogens/snp-sites
https://doi.org/10.1371/journal.pone.0238665


phangorn, lme4, dfoptim, car, reshape2, ggplot2, gridExtra, PredictABEL, dplyr, tidyr, scales,

ggpubr.

Model ¼ glmðDeaths Per Mil � Percent þ Response timeþMutations; data ¼ dataÞ ð1Þ

Model ¼ glmðCases Per Mil � Percent þ Response timeþMutations; data ¼ dataÞ ð2Þ

The Percent for each country i denotes the percentage occurrence for a specific mutation

for that country and is calculated using the following formula:

Percenti ¼ StrMUTi=StrMUTi þ StrMUTiþ1 .. þ StrMUTiþn� 100 ð3Þ

Where: StrMUT are the number of strains with the specific mutation for country i and n is

the number of countries with at least one strain with the underlining mutation.

Mutation tracking analyses

Relative frequencies across countries with at least one occurrence of the selected mutations of

interest was visualized as bar plots across time (months). This provides an indication of the

spread of the studied mutations across the general population. Analysis was performed using

R (see packaged above).

Additional statistical analyses

Distributions of deaths per million for countries with the selected mutations and the reference

mutation were visualized using box plots. Further statistical analysis was performed using stan-

dard non-parametric Wilcoxon test for comparing paired groups. The same analysis was per-

formed for cases per million. Similarly, we performed the box plot visualizations for the same

data but further separated by response time. We then applied the Kruskal–Wallis test for non-

parametric method for testing whether the multiple groups originated from the same distribu-

tion. Analyses were performed using R (see packaged above).

Structural prediction

Comparative structural modelling was carried out for unknown protein structures using the

template-based web server, I-TASSER [28]. The accuracy of the method was assessed based on

the I-TASSER confidence score (C-score), which indicates the quality of the predicted models.

The C-score is calculated based on the significance of the sequence to structure alignments

and the parameters of convergence obtained by the structure assembly simulations. It typically

ranges between -5 and 2, and a value higher than -1.5 signifies a high accuracy of the predicted

model [28]. I-TASSER was selected for protein structure modelling, since it outperformed

other servers according to results from the 13th Community Wide Experiment on the Critical

Assessment of Techniques for Protein Structure Prediction (CASP13) [30]. Protein structures

were fixed, global energy (ΔG) was lowered when necessary, and mutagenesis was performed,

using the FoldX4.0 suite (http://foldxsuite.crg.eu/). The PyMOL software (https://pymol.org/

2/) was used for the visualization of the protein molecules.

RNA-protein docking simulations were carried out using the HDOCK [31] and MPRDock

[32] algorithms. For docking simulations, as active and passive residues we selected residues

described as such by Dinesh et al. [27]. Protein-protein complexes were constructed using the

ClusPro (v2.0) [33] and HDOCK [31] algorithms and binding affinities were calculated using

the PRODIGY webserver [34]. Relative solvent accessibility (RSA) was calculated using the

Missense3D [35] algorithm. Structural alignment was performed using the align tool of
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PyMOL and all-atom RMSD values were calculated without any outliers’ rejection, with zero

cycles of refinement.

The DynaMut webserver [36], was used to visualize non-covalent molecular interactions,

calculated by the Arpeggio algorithm [37]. SymmDock, a geometry-based docking algorithm

for the prediction of cyclically symmetric complexes, was used for symmetric docking simula-

tions of the REF-Q57H and ALT-Q57H homotetramers [38]. All docking simulations were

performed in triplicates. Finally, binding affinities and dissociation constants (Kd) were calcu-

lated using the PRODIGY webserver [34].
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