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Primary progressive multiple sclerosis (PPMS) shows a highly variable disease
progression with poor prognosis and a characteristic accumulation of disabilities
in patients. These hallmarks of PPMS make it difficult to diagnose and currently
impossible to efficiently treat. This study aimed to identify plasma metabolite profiles
that allow diagnosis of PPMS and its differentiation from the relapsing-remitting subtype
(RRMS), primary neurodegenerative disease (Parkinson’s disease, PD), and healthy
controls (HCs) and that significantly change during the disease course and could
serve as surrogate markers of multiple sclerosis (MS)-associated neurodegeneration
over time. We applied untargeted high-resolution metabolomics to plasma samples
to identify PPMS-specific signatures, validated our findings in independent sex- and
age-matched PPMS and HC cohorts and built discriminatory models by partial least
square discriminant analysis (PLS-DA). This signature was compared to sex- and age-
matched RRMS patients, to patients with PD and HC. Finally, we investigated these
metabolites in a longitudinal cohort of PPMS patients over a 24-month period. PLS-
DA yielded predictive models for classification along with a set of 20 PPMS-specific
informative metabolite markers. These metabolites suggest disease-specific alterations
in glycerophospholipid and linoleic acid pathways. Notably, the glycerophospholipid
LysoPC(20:0) significantly decreased during the observation period. These findings
show potential for diagnosis and disease course monitoring, and might serve as
biomarkers to assess treatment efficacy in future clinical trials for neuroprotective MS
therapies.
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INTRODUCTION

Primary progressive multiple sclerosis (PPMS) affects a subgroup
of multiple sclerosis (MS) patients and shows a highly variable
disease progression with poor prognosis (Katz Sand, 2015). While
patients rarely present with clinical relapses as present in the
more common relapsing-remitting subtype (RRMS), progressive
accumulation of disabilities is characteristic. These hallmarks of
PPMS make it difficult to diagnose and treat (Ontaneda et al.,
2017).

Diagnosis of MS is currently based on the revised McDonald
criteria (Polman et al., 2011) that include clinical assessments and
MRI. However, diagnosis, subtype stratification, or assessment of
disease progression by imaging, clinical, and biological markers
is not yet reliable (Tremlett et al., 2005; Koch et al., 2009;
Stellmann et al., 2014). Due to their accessibility and overall
stability, surrogate blood metabolite markers of neuronal injury
could substantially improve our mechanistic understanding and
our ability to quantify neurodegeneration in MS (Botas et al.,
2015) and could be applied to neuroprotective treatment trials to
assess efficacy (Fox et al., 2012; Friese et al., 2014). Untargeted
metabolomics is a high-throughput technology that allows
for simultaneous semi-quantitative measurements of various
metabolite species in complex samples such as biological fluids
(Patti et al., 2012). Therefore, this is a suitable technology to
obtain a comprehensive view of the functional state of the human
organism (Xiao et al., 2012; Want et al., 2013; Contrepois et al.,
2015). In addition, the high sensitivity and reliability of this
technology makes it suitable for monitoring metabolite changes
over time (Floegel et al., 2011).

By analyzing blood plasma with high-resolution mass
spectrometry (HRMS), our study set out to discover metabolic
profiles specific for PPMS. We identified a panel of 20 metabolites
which discriminated PPMS from RRMS, Parkinson’s disease
(PD), or healthy control (HC) and one metabolite which
consistently decreased during a 24-month PPMS disease course.

MATERIALS AND METHODS

Standard Protocol Approvals,
Registrations, and Patient Consents
All participants (healthy donors, patients, or guardians of
patients) provided written informed consent and the study was
approved by the local ethics committee (Board of Physicians,
Hamburg, Nos. PV4405 and PV3961). The PD study was
approved by the Ethics Committee of the Faculty of Medicine at
the University of Tübingen (26/2007BO1 and 497/2009BO1).

Patient Recruitment and Diagnosis
Primary progressive multiple sclerosis (n = 33) and RRMS
(n = 10) patients and HC (n = 33) were recruited at
the University Medical Center Hamburg-Eppendorf. The
participants underwent clinical assessment and provided plasma
samples independent of meals. All HC in the study consist of
both spouses and volunteers, which were recruited based on
providing ‘matched pairs’ to patients with regard to age and

sex. All HC underwent clinical assessment and reported no
known autoimmune or neurological disease. All MS patients
fulfilled the revised 2010 McDonald criteria (Polman et al., 2011)
and had an Expanded Disability Status Scale (EDSS) below 7.0.
RRMS patients, PPMS patients, and HC were recruited as a
cross-sectional cohort, while additional PPMS patients were
participating in a prospective observational longitudinal cohort
study with annual visits and sampling of biomaterial. PPMS
and RRMS patients have been off medication for at least three
months. PD (n = 40) patients and HC (n = 20) were recruited at
the Faculty of Medicine of the University of Tübingen, following
equal procedures for blood withdrawal, processing, and storage
as reported for the MS patients. PD diagnosis was based on the
UK Brain Bank Society’s criteria for PD (Hughes et al., 1992).
Of note, 15 out of 40 PD patients received levodopa (L-Dopa)
treatment. Non-MS/PD-specific medication was absent, was not
reported or was specific to single patients included in the study
(one RRMS patient reported L-thyroxine supplementation). No
patient or healthy donor reported diabetes as a comorbidity.
The demographic and clinical features of patients with MS,
PD, and healthy controls (HCs) are summarized in Table 1.
A detailed list of all participants investigated can be found
in Supplementary Table S1. Inter-cohort age and gender
(sex) dependencies have been determined by chi-square test
(sex) and one-way ANOVA (age, disease duration (DD), and
EDSS; Supplementary Table S2). Of note, all biosamples
were collected between 8 and 12 am and donors were not
fasted.

Human Sample Preparation
Peripheral blood was collected in S-Monovette R© 9 ml, K3 EDTA,
92 × 16 mm test tubes (Sarstedt, 02.1066.001) and centrifuged
for 8 min at 1200× g at 4◦C. The supernatant was centrifuged at
4◦C for an additional 10 min at 4300× g. The supernatant of the
second centrifugation step was aliquoted, shock frozen in liquid
nitrogen and stored at−80◦C until further analysis.

LC/MS and MS/MS Analysis
The analysis workflow is summarized in Supplementary
Figure S1. Plasma metabolites were extracted using 90%
MeOH and 10% water spiked with internal standards with
constant shaking for 15 min at 37◦C (1000 rpm). Modified
hydrophilic interaction chromatography (HILIC) was employed
in combination with HRMS. Samples were pseudonymized
twice and third-party concealment of the origin of respective
specimens (HC or MS) was achieved by using uniquely coded
vials. Samples were randomized on an Agilent 1290 UHPLC
system (Agilent, Santa Clara, United States) with a ZIC-HILIC
column (10 cm × 2.1 mm, 3 µm, Sequant, Merck) coupled
to a high-resolution 6540 QTOF/MS detector (Agilent, Santa
Clara, United States) operated in both positive and negative
ESI mode in a detection range of 50–1700 m/z at 2 GHz in
an extended dynamic range. The LC solvent consisted of (A)
95% 10 mM ammonium acetate with 5% acetonitrile pH 6
and (B) 95% acetonitrile with 5% 10 mM ammonium acetate
with a multi-step gradient (15 min runtime: 5% B from start
to 1 min, to 35% B at 8.5 min, to 95% B at 9.5 min, to
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TABLE 1 | Cohort statistics.

Cross-sectional cohorts

PPMS cohort A PPMS cohort B RRMS cohort Parkinson’s cohort

PPMS HC PPMS HC RRMS HC PD HC

Number (n) 13 13 20 20 10 10 40 20

Females (n, %) 8 (61.5) 7 (70) 7 (35) 7 (35) 7 (70) 7 (70) 16 (60) 13 (65)

Age (year ± sd) 52.5 ± 8.7 51.8 ± 8.7 51 ± 7.3 51.3 ± 6.7 44.2 ± 9.9 48.0 ± 10.0 64.8 ± 8.94 65.9 ± 7.13

Disease duration
(year ± sd)

8.7 ± 5.9 7 ± 7.3 3.2 ± 7.5 7.0 ± 2.92

EDSS (mean ± sd), median
[range]

4.3 ± 1.3, 3.75 [2.5–6.5] 3.7 ± 1.3, 3.5 [2.0–6.0] 2.4 ± 0.9, 2.25 [1.5–4.0] – –

T25FW (s, mean ± sd),
median [range]

6.5 ± 1.8, 5.7 [4.5–9.4] 6.3 ± 3, 5.1 [3.9–15.5] 4.9 ± 1.8, 4.15 [3.3–8.8] – –

6MWT (m, mean ± sd),
median [range]

356.6 ± 108.8, 375 [230–530] 407.3 ± 107, 407 [180–590] n.a. – –

SDMT (mean ± sd),
median [range]

−0.4 ± 1.4, 0 [−3.0–1.5] −0.8 ± 1, −0.5 [−3.0–0.5] −0.4 ± 1.3, 0 [−2.5–1.5] – –

Hoehn and Yahr stage
(mean ± sd, [range])

– – – 1.3 ± 0.69, [1–3]

UPDRS total score
(mean ± sd, [range])

– – – 25.2 ± 11.98, [6–57]

Longitudinal cohort (PPMS)

Month 0 Month 12 Month 24

Number (n) 15

Females (n, %) 5 (33.3)

Age (year ± sd) 54.9 ± 6.9

Disease duration
(year ± sd)

7.8 ± 5.4

EDSS (mean ± sd), median
[range]

3.8 ± 1.4, 3.5 [2.0–7.0] 3.9 ± 1.5, 3.5 [1.5–7.5] 3.9 ± 1.5, 3.5 [1.5–7.0]

T25FW (s, mean ± sd),
median [range]

6.3 ± 2.9, 5.6 [4.0–15.5] 6.5 ± 3.8, 5.1 [3.9–18.9] 6.3 ± 2.6, 5.6 [4.3–14.8]

6MWT (m, mean ± sd),
median [range]

391.9 ± 91.9, 423.5 [180–500] 398.6 ± 106.8, 430 [120–520] 375.3 ± 139.3, 420 [160–500]

SDMT (mean ± sd),
median [range]

−0.5 ± 1.1, −0.5 [−3.0–1.0] −0.4 ± 1.0, −0.5 [−2.5–1.5] −0.3 ± 1.0, −0.5 [−1.5–1.5]

Demographic and clinical features of PPMS patients, RRMS patients, PD patients and HCs in cross-sectional cohorts, PPMS patients and HCs in the longitudinal PPMS
cohort. Abbreviations: MS, multiple sclerosis; HCs, healthy controls; EDSS, Expanded Disability Status Scale; T25FW, Timed-25-Foot Walk Test; 6MWT, Six Minute Walk
Test; SDMT, Symbol Digit Modalities Test; PD, Parkinson’s disease; UPDRS, Unified Parkinson’s disease rating scale.

5% B at 12.01 min until 15 min). One microliter of sample
was injected at 30◦C column temperature and the flow rate
was kept constant at 300 µl/min. Chromatographic peaks,
signal reproducibility, and analyte stability were monitored by
assessment of biological quality controls, which were analyzed
periodically throughout the batches. The DualAJS ESI source
was set to the following parameters: Gas temperature 200◦C,
drying gas 8 l/min, nebulizer 35 psi, sheath gas temperature:
350◦C, sheath gas flow 11 l/min, VCAp 3.5 kV, and nozzle
voltage of 0 V. Online calibration of the instrument was
performed with the Agilent ESI-TOF Reference Mass Solution
Kit. MS/MS spectra were acquired in positive and negative
ionization modes in a data-dependent and targeted manner
with fragmentation energies of 0, 10, 20, and 40 V, respectively.
Precursor isolation windows varied between narrow (1.3 m/z),

medium (4 m/z), and wide (9 m/z; performed with Agilent
MassHunter software).

Metabolomics Data Analysis
Raw data were converted to mzXML and chromatogram peaks
extracted with XCMS (Smith et al., 2006), which were optimized
by using the IPO R-package (Libiseller et al., 2015). Mzmatch.R
was used for peak filtering based on minimum detectable
intensity (2000), peak shape filtering (codadw > 0.9) and
for the annotation of related peaks (Scheltema et al., 2011).
Additional filtering was performed by excluding peaks with
lower median peak intensities per group in biological samples
compared to blanks (extraction solvent only). The remaining
data were normalized based on multiple internal standards
applying Normalization using Optimal selection of Multiple
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Internal Standards (NOMIS; Sysi-Aho et al., 2007) and Cross-
Contribution compensating Multiple standard Normalization
(CCMN; Redestig et al., 2009) normalization. IDEOM software
was used1 (Creek et al., 2012) to eliminate noise and artifacts
and for putative peak annotation by exact mass within ±10 ppm
against the Metabolomic Discoveries (MD) in-house metabolite
library in negative and positive ESI modes, respectively. The
MD metabolite database consists of ∼100 k metabolites from
various classes such as lipids, peptides, and amino acids.
Metabolite identification was performed as previously reported
(Stoessel et al., 2018). Briefly, to aid metabolite annotation,
retention time prediction was applied (Creek et al., 2011).
Identities were confirmed by available authentic standards
(validation level 1) and MS/MS spectra matched with online
databases (e.g., Metlin and MassBank; validation level 2) or
with in silico fragmentation spectra (validation level 3) from
Metfrag (Ruttkies et al., 2016), CFM-ID (Allen et al., 2014),
and/or CSI:FingerID (Duhrkop et al., 2015). Precursor mass
accuracy was set to 20 ppm and fragment accuracy to 0.01 Da.
Quantification of each metabolite was calculated using the
raw peak height. Respective MSMS fragments were used for
peak identification (Supplementary Table S3). Extracted ion
chromatograms (EICs) of the determined PPMS markers can be
found in Supplementary Figure S2. To allow for inter cohort
comparisons, different run days have been normalized to zero
mean differences between biological quality controls for peak
intensities of the PPMS marker panel. These quality controls were
injected before every batch.

Statistical Analysis
Univariate statistical analyses utilized a Welch’s t-test (p = 0.05)
and multivariate analyses utilized the metabolomics R package
(De Livera and Bowne, 2014). Univariate area under the curve
(AUC) measures and 95% confidence intervals (CIs) using
500 bootstrappings were calculated utilizing MetaboAnalyst
(Xia et al., 2015) and Rmisc R package (Hope, 2013). Class
discrimination and membership prediction was performed for
subgroups of PPMS cohorts A and B by using 70% of all
individuals for model training and the remaining 30% for blinded
model testing. To ensure reproducibility of these results, patients
were randomly selected for model testing and training 100 times.
Additional class discrimination and membership prediction was
performed by training a four-component PLS-DA model with
all individuals from the PPMS cohort A and validating it in
the blinded PPMS cohort B. Performances were gauged by
the measures AUC, positive predictive values (PPVs), negative
predictive values (NPVs), R2X/R2Y (fraction of the variation of
the X/Y variables explained by the mode), Q2(cum), and accuracy
of the calculated model. The datasets were scaled (zero mean,
unit variance) prior to model building. For model prediction and
AUC analysis, R-packages ROCR (Sing et al., 2005) and caret
(Kuhn et al., 2016) were used. Furthermore, ‘variable importance
in the projection’ (VIP) scores were computed and Welch’s t-test
was applied to determine discriminatory variables in the dataset.
The VIP is an estimation of the importance of each variable

1http://mzmatch.sourceforge.net/ideom.php

in the projection used in the partial least square discriminant
analysis (PLS-DA) model as a quantitative estimation of the
discriminatory power of each individual feature. Variables with
a VIP score of ≥1 were considered important in the PLS-DA
model. To investigate for potential confounding factors, these
putative markers were tested for sex dependencies (Welch’s t-test)
in PPMS cohort A and PPMS cohort B, and for age dependencies
in PPMS cohort A, PPMS cohort B, RRMS cohort, and the
PD cohort by linear regression. Moreover, to test whether these
metabolites were able to discriminate PPMS from RRMS and
PD, all PPMS patients and PD patients were combined. For the
comparison of PPMS vs. RRMS, all individuals of the PPMS
cohort A were used in combination with all RRMS patients to
balance for class differences and potential gender dependencies.
PLS-DA models were built using a random split of 70% of
all individuals for model training and the remaining 30% for
blinded model testing for each comparison. Again, to ensure
reproducibility of these results, this random split was performed
100 times. To ensure that the obtained AUC, PPV, and NPV and
accuracy values were higher than by chance, subject labels were
randomly shuffled 100 times in the comparisons PPMS cohort
A vs. HC, PPMS cohort B vs. HC, PPMS cohort A combined
with PPMS cohort B vs. PD and PPMS cohort A vs. RRMS and
empirical p-values were calculated. Univariate p-values for the
comparison of PPMS vs. PD vs. RRMS were obtained using one-
way ANOVA followed by Tukey’s post hoc test, which includes
p-value adjustment for multiple comparisons. Additional p-value
adjustments for multiple metabolites were carried out by using
Benjamini and Hochberg (1995) false discovery rate (FDR)
adjustment. Moreover, all p-values from paired and unpaired
Welch’s t-tests were corrected for multiple testing (FDR).

Partial least square discriminant analysis computations were
performed using the mixOmics (Le Cao et al., 2015) and ROPLS
R-package (Le Cao et al., 2009; Thevenot et al., 2015). Suitable
markers were selected, which enabled discrimination between
HC and PPMS patients in the longitudinal cohort and time
points 0 month (baseline), 12 months and 24 months utilizing
paired t-test statistics (p < 0.01). These levels were also compared
to levels of HC from our PPMS cohorts and RRMS and PD
patients using one-way ANOVA followed by Tukey’s post hoc
test. Significant levels in MetaboAnalyst pathway analysis were
based on hypergeometric tests and the pathway impact values
determined by relative-betweenness centrality (Xia et al., 2015).

RESULTS

Plasma Metabolites Distinguish PPMS
Patients From Healthy Controls
In order to identify metabolites that differentiate PPMS from
HCs, we first employed a comparative untargeted metabolomics
approach in plasma of HC (n = 33) and PPMS patients (n = 33),
which we separated in two cohorts, cohort A (n = 13 per
group, exploration cohort) and cohort B (n = 20 per group,
validation cohort) (Supplementary Figure S1A). After individual
measurements, we combined peak extraction procedures on the
raw data for PPMS cohorts A and B to maximize the amount
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of overlapping mass peaks. Overall, 19,233 peaks in positive
and 10,805 peaks in negative ionization modes were present in
PPMS cohorts A and B. The within experiment technical and
analytical variations were monitored based on periodic analysis
of biological quality control samples in all cohorts. The median
relative standard deviation (RSD) as an indicator for analytical
reproducibility was <10%, which is within acceptable limits for
metabolomics (Kirwan et al., 2014). Successive noise filtering,
putative peak annotation, and combination of both ionization
modes resulted in nomination of 534 putative metabolites
(Supplementary Table S4). Identified metabolite classes and
their prevalence are summarized in Supplementary Figure S1B.
We analyzed the data by a supervised, multivariate classification
technique (PLS-DA) to separately assess the overall segregation
of the samples for PPMS cohorts A and B. Notably, this
analysis allowed us to reproducibly separate HC from PPMS
samples in both cross-sectional PPMS cohorts (Supplementary
Figures S1C,D). In addition to this global and exploratory
analysis that included all individuals, we tested whether the
measured metabolites had a robust predictive value. Cohorts
were split into training and test sets for deriving a PLS-DA-
based model and to test its predictive performance, respectively
(see section “Materials and Methods” for details). We used
receiver operating characteristics (ROC) analysis of the training
and testing model and determined a mean AUC of 79% (95%
CI = 76–82), a mean PPV of 0.75 (95% CI = 0.72–0.78), and
a mean NPV of 0.84 (95% CI = 0.80–0.88) for cohort A. In
our PPMS cohort B, we could determine a mean AUC of 73%
(95% CI = 72–74), a mean PPV of 0.69 (95% CI = 0.66–0.72),
and a mean NPV of 0.70 (95% CI = 0.66–0.73). In addition, we
used a PLS-DA model trained on PPMS cohort B data including
all subjects to predict class memberships of the blinded PPMS
cohort A. This cross-cohort test yielded an overall AUC of 70%
(95% CI = 48–80), accuracy of 0.65, PPV of 0.65, and NPV
of 0.65 (Figure 1). Random shuffling of subject labels in each
cohort in this cross-cohort test indicates that the obtained model
parameters were significantly larger than expected by chance
(p-value ≤ 0.05). Detailed parameters for all tested models can be
found in Supplementary Table S5.

PPMS Patients Differentiate From
Healthy Controls, RRMS, and PD
Patients
Based on the PLS-DA models for each PPMS cohort, we extracted
metabolites that contributed significantly to the differentiation
between PPMS and HC in cohort A (R2X = 0.24, R2Y = 0.98,
Q2(cum) = 0.68) and cohort B (R2X = 0.09, R2Y = 0.86,
Q2(cum) = 0.45) by using VIP scores as a quantitative estimation
of the discriminatory power of each individual metabolite.
VIP scores were extracted for components 1 and 2 since
they separated HC and PPMS almost to the same extent
(Supplementary Figures S1C,D). Overall, 20 metabolites with a
VIP score greater than 1 were reproducibly determined in both
the PPMS cohorts A and B (11% of all metabolites with VIP ≥ 1
in PPMS cohort A and 12% of all metabolites with VIP ≥ 1
in PPMS cohort B) with univariate AUC values ≥60% (Table 2

FIGURE 1 | Representative PLS model shows good discrimination power in
both cross-sectional PPMS cohorts. ROC curve of combined PLS model
showing the true negative rate (specificity) vs. true positive rate (sensitivity).
Green: Representative PLS model for cohort A (n (HC) = 13, n (PPMS) = 13),
blue: representative PLS model for cohort B (n (HC) = 20, n (PPMS) = 20),
black: PLS model of cohort B tested against blinded cohort A, orange: PLS
model of PPMS patients from cohort A/B tested against RRMS patients
(n = 10), purple: PLS model of PPMS patients from cohort A/B tested against
PD patients (n = 40), and dashed gray line indicates 0 discrimination
(AUC = 50%). Error bars indicate the standard deviation of the sensitivity and
specificity over 100 iteration steps.

and Supplementary Table S6). Random shuffling of subject
labels in each cohort yielded an empirical value of p = 0.004
for the number of 20 commonly found informative metabolites
indicating that the overlap between cohorts is significantly larger
than expected by chance. Of note, all of these metabolites were
diminished in PPMS patients compared to HC and several were
also significantly altered in either one or both PPMS cohorts
(Welch’s t-test FDR ≤ 0.05; Figure 2A). To determine the
specificity of these 20 metabolites for PPMS, we measured these
metabolites in an independent cohort of 10 RRMS patients
and 10 HC and an independent cohort of 40 PD patients and
20 HC. In our inter-disease comparison, we found levels of
LysoPE(18:2) and LysoPC(20:0) to be significantly lower in PPMS
compared to RRMS and PD (one-way ANOVA p ≤ 0.05 with
Tukey’s post hoc test). Moreover, tiglylcarnitine was found to
be significantly higher in PPMS compared to RRMS (one-way
ANOVA p ≤ 0.05 with Tukey’s post hoc test; Figure 2B and
Supplementary Table S7). Of note, these differences appeared
to be only significant (FDR ≤ 0.05), when p-value correction
was performed for comparison of multiple groups. Compared
to HC, we found some of the metabolites to be consistently
downregulated in all diseases analyzed, indicating a general
signature of neurodegeneration, but also found clear disease-
specific differences, e.g., a downregulation of the metabolites
gamma-Linolenic acid, (L)-tryptophan, and LysoPC(20:0) in
PPMS and an upregulation of these analytes in RRMS and PD
(Figure 2B and Supplementary Tables S8, S9).

Multivariate analysis of these 20 metabolites for the
discrimination compared to RRMS (R2X = 0.79, R2Y = 0.93,
Q2(cum) = 0.93) led to a mean AUC of 78% (95% CI = 75–82),
mean PPV of 0.72 (95% CI = 0.68–0.76), mean NPV of 0.77
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FIGURE 2 | Metabolites contributing to the specific PPMS signature. Twenty features (i.e., metabolites) with VIP scores > 1 for components 1 and 2. (A) Summary
with respective log2 fold changes (diseased/healthy). Green: PPMS cohort A, blue: PPMS cohort B, orange: RRMS, and purple: PD. ∗Significant change (Welch’s
t-test FDR ≤ 0.05), log2 fold change > 0: upregulation, log2 fold change < 0: downregulation. Error bars indicate standard deviations. (B) Comparison of PPMS
patients from cohort A (green) and PPMS patients from cohort B (blue) to RRMS (orange) and PD (purple) patients. ∗Significant change (one-way ANOVA with
Tukey’s post hoc test p ≤ 0.05 (∗∗p ≤ 0.01), p-value adjusted for multiple comparisons).

(95% CI = 0.73–0.81), and a mean accuracy of 0.68 (95%
CI = 0.65–0.71). Multivariate discrimination relative to PD
(R2X = 0.69, R2Y = 0.56, Q2(cum) = 0.56) to a mean AUC of
80% (95% CI = 78–82), mean PPV of 0.75 (95% CI = 0.73–0.77),
mean NPV of 0.71 (95% CI = 0.68–0.73), and a mean accuracy
of 0.71 (95% CI = 0.70–0.73; Figure 1). Again, random shuffling
of subject labels in each comparison indicates that the obtained
model parameters are significantly larger than expected by
chance (p ≤ 0.05). Overall, the identified markers indicate a
PPMS-specific plasma signature.

PPMS-Specific Metabolites Profile
Suggest Alterations in
Glycerophospholipid Metabolism
Based on human metabolome database (HMDB; Wishart et al.,
2013) and KEGG identifiers of the 20 altered PPMS-specific

metabolites, we set out to perform pathway analysis utilizing
MetaboAnalyst (Xia et al., 2015). Overall, our untargeted
metabolic profiling revealed several significant perturbations,
which allowed identification of multiple significant biochemical
pathways in particular in the glycerophospholipid pathway and
linoleic acid metabolism (FDR ≤ 0.05; Figure 3).

Levels of LysoPC(20:0) Decline During
the Disease Course of PPMS
Finally, we investigated the ability of the determined metabolite
profile to monitor disease course by analyzing a longitudinal
PPMS cohort (n = 15) over 24 months. Patients were clinically
investigated and their plasma was sampled at baseline, after
12 and 24 months. Notably, 18 of 20 determined metabolites
showed no significant change between baseline (0 months),
12 months, and 24 months disease course (paired t-test
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FIGURE 3 | Pathway analysis of altered metabolites using MetaboAnalyst shows perturbations in glycerophospholipid and linoleic acid pathways. Twenty
significantly deregulated metabolites identified were subjected to MetaboAnalyst (Xia et al., 2015) to assess association of each metabolite with defined pathways.
X-axis presents pathway impact values (based on relative-betweenness centrality) and the Y-axis presents the respective p-values (based on hypergeometric test).
∗p-value ≤ 0.05 after FDR correction. The largest and significant impact was found in glycerophospholipid and linoleic acid pathways.

p < 0.01). However, the glycerophospholipid annotated as
LysoPC(20:0) showed a significant reduction when comparing
12 months and 24 months values (p-value = 0.0034, FDR-
adjusted p-value = 0.0576; paired t-test), fold change (12
months/24 months) = 1.59) or baseline (0 month) and 24
months values (p-value = 0.0044, FDR-adjusted p-value = 0.0888
(paired t-test), fold change (0 month/24 months) = 1.84;
Figure 4 and Supplementary Table S10). Therefore, our data
show a strong association of LysoPC(20:0) with the PPMS
disease course over time. Moreover, LysoPC(20:0) baseline
values were found significantly lower compared to HC in
PPMS cohort A (p-value = 0.0316), HC in PPMS cohort B
(p-value = 0.0036), RRMS patients (p-value = 7.27 × 10−5),
and PD patients (p-value = 1.49 × 10−6, one-way ANOVA
and Tukey’s post hoc test). Since none of the recorded
clinical measures (EDSS, SDMT, and walking tests) showed
a significant change over the investigated time of the PPMS
disease course (ANOVA p-value ≤ 0.05), we were restricted
in performing further correlative analysis. Recent evidence,
however, suggests that significant changes in clinical parameters
are unlikely to manifest during a 24-month time period in
PPMS (Signori et al., 2017). We could not find a correlation
between LysoPC(20:0) levels and corresponding patient’s age
(linear regression, p-value = 0.22).

Analysis of Confounding Factors
A number of tests were performed to rule out confounding
factors in our analysis. We reduced the sex bias in MS (Voskuhl

and Gold, 2012) by comparing equal sex distributions in the
different cohorts (HC, PPMS, RRMS, PD, and longitudinal
cohort). In addition, we compared strictly age-matched cohorts.
RRMS patients are on average younger than PPMS patients
and the cohorts analyzed in this study represent ‘real life’
patients who visit our outpatient clinics. Nevertheless, the
age was not significantly different between PPMS cohorts A
and B and the RRMS cohort (Supplementary Table S8).
Therefore, we decided not to normalize for age differences
between these two cohorts. Furthermore, we tested for an
age-related bias in the analysis, which we could refute for
LysoPC(20:0) (age difference not significant according to
ANOVA, p ≤ 0.05, Supplementary Figure S3). Furthermore,
age-related dependencies could only be identified for gamma-
Linolenic acid (negative correlation) and LysoPC(20:1) (positive
correlation; Supplementary Figure S3). We also tested for any
sex-related bias in this analysis. Overall, several metabolites
appeared to show significantly (ANOVA, p ≤ 0.05 with Tukey’s
post hoc test) different levels between males and females in
PPMS cohorts A and B (Supplementary Figure S4). To compare
equal gender distributions among groups for our PPMS vs.
RRMS comparison, we used PPMS patients from PPMS cohort
A when tested for specificity against RRMS patients. Since the
individuals in our PD cohort were significantly older (ANOVA
p ≤ 0.05) than our PPMS patients, we also tested for potential
age-related trends of the identified 20 metabolites in the PD
cohort. We only observed significant negative correlations (linear
model p < 0.05) for gamma-Linolenic acid and (L)-tryptophan
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FIGURE 4 | Intensity levels for glycerophospholipid LysoPC(20:0) show relative differences in abundance in patients during PPMS disease course. PPMS cohort A:
Decreased LysoPC(20:0) levels in PPMS patients compared to HC, black: HC (n = 13), green: PPMS patients (n = 13). PPMS cohort B: LysoPC(20:0) levels lower in
PPMS patients compared to HC, black: HC (n = 20), blue: PPMS patients (n = 20). PPMS progression: Data from the disease course cohort showing decreasing
levels of LysoPC(20:0) (0, 12, and 24 months: n = 15), red: baseline (0 month), dark blue: PPMS 12 months, and green: PPMS 24 months. RRMS: Black: HC
(n = 10), yellow: RRMS patients (n = 10). PD: black: HC (n = 20), purple: PD patients (n = 40). LysoPC(20:0) is significantly elevated in PD and elevated in RRMS
patients compared to HC. ∗FDR ≤ 0.05, ∗∗FDR ≤ 0.01, ∗∗1FDR ≤ 0.1, ∗1p-value ≤ 0.05 without FDR correction.

(Supplementary Figure S5). Since these metabolites do not show
any significant differences between PPMS and PD, we decided
not to normalize for these effects. In addition, we could not
identify any significant age-related trends in the RRMS cohort
(Supplementary Figure S6). Finally, even though 15 out of 40 PD
patients received L-Dopa, this treatment showed no significant
effect when compared to treatment-naive PD patients on any
of our 20 PPMS metabolites (data not shown, Welch’s t-test
p-value ≤ 0.05).

DISCUSSION

PPMS Metabolite Panel Discriminates
From HC, RRMS, and PD
Primary progressive multiple sclerosis is a clinically highly
variable inflammatory neurodegenerative disease and is
associated with a poor prognosis and continuous accumulation
of neurological symptoms and disabilities (Antel et al., 2012).
Currently, no reliable molecular biomarker-based diagnosis
or monitoring of disease course is available. These would,
however, be of utmost importance for the development
of novel therapeutic options tackling PPMS-associated
neurodegeneration.

Untargeted metabolomics allows for the simultaneous
identification and quantification of a wide range of metabolites
in biofluid samples which can be used to differentiate between
‘healthy’ and ‘diseased’ and can lead to the discovery of pathways
involved in pathogenesis. The generated PLS-DA models showed
a moderate discriminatory power to segregate PPMS patients
and healthy individuals. The PLS-DA model trained with
PPMS cohort B was tested on blinded cohort A and achieved
an AUC of 70%. While significantly better than randomly
expected, also corroborated by the significant correlation of
metabolite VIP scores between the two cohorts (Figure 1), this
performance does not yet allow to conclude general diagnostic

utility of the PLS model. Aside from the limitations in set
size, this may be indicative of unique metabolic signatures
in each cross-sectional PPMS cohort most likely caused by
cohort effects such as differences in sample storage duration and
physiological variance between individuals. Also, performing
sampling at defined time points of the day, preferably from
fasted individuals, would have been optimal for this study but is
difficult to achieve in clinical practice. Nonetheless, a subset of
20 significantly altered metabolites was determined reproducibly
with a good separation between the investigated PPMS patients
and HC, RRMS, and PD. Thus, they can be considered PPMS
specific.

A potential medication bias in the study presented was
eliminated by (a) including treatment naïve patients (RRMS
samples), by (b) including PPMS patients which have been off
medication for at least three months prior to sampling, and by (c)
excluding patients with known metabolic diseases in our clinical
cohorts. Based on the given medication, it was not possible to
build a significant PLS-DA model indicating that medication was
no confounding factor in our identified marker profile. Moreover,
analysis for our different PPMS, RRMS, and PD cohorts as well as
corresponding controls was not biased as equal procedures for
blood withdrawal, processing, storage, analytics, data acquisition,
and analysis were applied to all samples. Overall, these results
indicate that sex, gender, and medication appear to have no effects
as confounding factors on our PPMS marker profile. Differences
in age appear to be disease specific. Even though, our selection
of 20 significantly changed metabolites overlapping between both
PPMS cohorts appears to be lower than expected by chance, the
set of the top 25 metabolites in both PPMS models (i.e., a larger
candidate set than the 20 metabolites selected for stricter reasons
and now based on their weighted VIP scores alone) reaches
significance (p-value = 0.0182). Thus, applying a multivariate
prediction model (PLS-DA), the metabolites detected relevant
in one cohort proved informative in the second cohort as
well.
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Pathway Alterations in PPMS
Even though the main objective of our study was to identify
novel metabolite-based biomarkers for PPMS diagnosis that
change during disease course our study also informs on the
pathophysiology of the disease by the identification of alterations
in distinct metabolite pathways (Supplementary Figure S7).
We identified reduced levels of five phosphatidylcholines
(PC), four lysophosphatidylcholines (lysoPC), and one
glycerophosphatidylcholine (GPC) in PPMS patients. PC
lipids and a large range of phospholipids are represented in
the majority of eukaryotic cellular membranes. The PLA2
superfamily of enzymes catalyzes the hydrolysis of sn-2 ester
bonds of glycerophospholipids (including PCs), resulting
in the production of free fatty acids and lysophospholipids
(including lysoPCs; Murakami and Kudo, 2002). PLA2
products including lysoPCs are involved in a multitude of
downstream pathways, orchestrating signal transduction
via second messenger generation, driving biosynthesis of
inflammatory mediators, neurotransmitter release, cell growth,
differentiation, and apoptosis (Farooqui, 2009). Evidence
of a deregulation of PLA2 and its products in disease has
accumulated over the last decades and has been reported for
several diseases including primary neurodegenerative diseases,
such as Alzheimer’s disease (AD), PD, amyotrophic lateral
sclerosis (ALS), ischemia, and spinal cord injury (Farooqui
and Horrocks, 2006). Interestingly, our findings of reduced
lysoPC and PC species are supported by previous reports of an
altered phospholipid metabolism in serum of MS patients (Del
Boccio et al., 2011). Since both concentration and activity of
lipoprotein-associated phospholipase A2 (Lp-PLA2) are similar
in plasma of PPMS patients and controls (Sternberg et al.,
2012), an attractive hypothesis is a disease-specific functional
impairment of brain-specific PLA2, which could account for
lysoPC depletion. Alternatively, lysoPC species are generated
by the enzyme lecithin:cholesterol acyltransferase (LCAT),
which catalyzes the transfer of a fatty acyl residue from the
sn-2 position of phosphatidylcholine to the 3-beta-hydroxy
group of cholesterol, resulting in the formation of cholesteryl
esters. Early studies, however, have suggested an increased
LCAT activity in plasma of progressive MS patients compared
to HC which is contradictory to our findings (Andreoli et al.,
1973).

Our untargeted metabolomics approach revealed some
additional statistically significant changes in 2(R)-HOT and
gamma-Linolenic acid, products of linoleic acid metabolism.
These metabolites are essential for the production of several
omega-3 fatty acids, which in turn inhibit the actions of
arachidonic acid and its pro-inflammatory derivatives.
A randomized, double-blind, placebo-controlled, proof-of-
concept clinical trial treating RRMS patients with omega-3
fatty acids supplementation has reached the primary endpoint
(reduction in annual relapse rate; Pantzaris et al., 2013). These
findings are in line with the hypothesis of a deregulated linoleic
acid metabolism in MS patients.

Of note, a deregulation of (L)-tryptophan in cerebrospinal
fluid (CSF) and plasma of MS patients was reported several times
and is consistent with our findings (Monaco et al., 1979;

Rudzite et al., 1996; Sandyk, 1996; Cocco et al., 2016).
(L)-tryptophan is a substrate in the kynurenine pathway
which is of particular interest in neuroinflammatory diseases
because it contributes to immune regulation and generates both
neurotoxic and neuroprotective mediators. Evidence of the link
between the kynurenine pathway and MS pathogenesis is already
well established and targeting crucial enzymes in this pathway
could be a future treatment option (Lovelace et al., 2016; Lim
et al., 2017).

In addition, we found depleted levels of citrulline. Citrulline
plays a role in arginine biosynthesis and is also generated by
arginine conversion. Perturbations in protein citrullination, in
particular in citrullination of myelin basic protein (MBP), have
been reported in MS and enzymes responsible for arginine
citrullination (peptidyl arginine deiminases, PADs) have been
discussed as potential molecular targets for MS therapy (Yang
et al., 2016). To what extend freely circulating citrulline in
the peripheral blood mirrors aberrantly citrullinated proteins
in the central nervous system remains speculative at this
point.

LysoPC(20:0) Declines Over PPMS
Disease Course
Notably, almost all metabolites that led to a discrimination
between HC and PPMS patients showed decreased
concentrations in the latter and were stable over the investigated
time course (24 months). The lipid annotated as LysoPC(20:0)
is a notable exception since it significantly declines over
the 24-month disease course. In contrast, elevated levels of
LysoPC(20:0) were found in RRMS, PD patients, and compared
to their matched HCs indicating PPMS specificity. Taken
together, the significantly altered metabolite species reported
here could allow for their future diagnostic application soon after
disease onset. Whether LysoPC(20:0) could serve as a surrogate
marker for DD and/or for the extent of neurodegeneration
remains to be explored in a prospective cohort, preferably also
including a longitudinal HC study arm. Moreover, to further
investigate LysoPC(20:0) as a potential progression marker, its
levels should be fully quantified in PPMS patients and HC over
time.

CONCLUSION

In conclusion, metabolic profiling of plasma was found to be
a promising technology for non-invasive diagnosis of PPMS.
The results of this study led to the identification of a potential
marker panel for PPMS diagnosis, which is decreased in plasma
concentration compared to HC, RRMS, and PD. This also
provides insights into specifically altered glycerophospholipid
and linoleic acid metabolisms in PPMS patients. In future studies,
it will be necessary to investigate the discriminatory power of
the reported potential PPMS marker(s) in specimen of equally
well-characterized larger clinical cohorts. Our results open a new
line of investigation to specifically monitor phosphatidylcholine
species as potential biomarkers for disease diagnosis and disease
course progression.
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FIGURE S1 | Workflow and summary of metabolomic profiling. (A) General
workflow in data analysis. (B) Pie chart illustrating the percentage of putatively
identified metabolites from each metabolite class, classified according to KEGG,
Lipidmaps and HMDB. In total 534 metabolites were analysed. (C) PLS-DA
scores plot of all 534 metabolites in HC cohort A (n = 13) (black) and PPMS cohort
A (n = 13) (green). (D) PLS-DA scores plot 534 metabolites identified in the HC
cohort B (n = 20) (black) and PPMS cohort B (n = 20) (blue). Data in (C,D) show
clear a separation between PPMS patients and HC. Ellipses assume a multivariate
Gaussian distribution (2 sigma).

FIGURE S2 | Extracted ion chromatograms of metabolites contributing to the
specific PPMS signature.

FIGURE S3 | Linear model fit of PPMS marker levels and age of all analyzed
individuals in PPMS cohorts A and B. Utilized linear model to fit correlation
between PPMS marker levels and ageing. Black: Linear model for all data points,
light red: linear model for HC cohort A, green: linear model for HC cohort B, blue:
linear model for PPMS cohort A, purple: linear model for PPMS cohort B. Grey
areas around the lines indicate the 0.95 confidence interval. Metabolites with
significant (p-value < 0.05) age and level correlations are highlighted with a red
rectangle.

FIGURE S4 | PPMS marker levels and sex dependency in all individuals analyzed.
Utilized one way ANOVA with Tukey’s post hoc test to compute differences
between PPMS marker levels and sex in all groups. ∗Metabolites with significantly
different levels between males and females (p-value < 0.05), ∗∗Metabolites with
significantly different levels between males and females (p-value < 0.01).

FIGURE S5 | Linear model fit of PPMS marker levels and age of all individuals
analyzed in the PD cohort. Utilized linear model to fit correlation between PPMS
marker levels and ageing. Black: Linear model for all data points, green: linear
model for HC, purple: linear model for PD. Grey areas around the lines indicate the
0.95 confidence interval. Metabolites with significant (p-value < 0.05) correlations
between age and level are highlighted with a red rectangle.

FIGURE S6 | Linear model fit of PPMS marker levels and age of all analyzed
individuals in the RRMS cohort. Utilized linear model to fit correlation between
PPMS marker levels and ageing. Black: Linear model for all data points, green:
linear model for HC, orange: linear model for RRMS. Grey areas around the lines
indicate the 0.95 confidence interval. Metabolites with significant (p-value < 0.05)
age and level correlations are highlighted in a red rectangle.

FIGURE S7 | Pathway analysis of identified changes in PPMS patients compared
to healthy controls (HC). Pathway information retrieved from KEGG. Significantly
altered metabolites are highlighted in dark red rectangles including the
corresponding KEGG ID. Grey font indicates involved enzymes, dashed grey line
indicates additional reactions which are not displayed. The substrates and
products of reactions are shown in grey rectangular boxes. Green boxes indicate
possible cellular function of observed changes in each pathway, decreased levels
of metabolites compared to HC are indicated by blue arrows. Possible products
and substrates are only partially displayed. Lysophosphatidylcholines
lysoPE(18:1), lysoPE(18:2), and lysoPE(22:4) without reported KEGG ID (proposed
KEGG ID C00438).

TABLE S1 | Cohorts. Patient information from investigated RRMS, PPMS, PD
cohorts including age and gender. A disease duration of 0 corresponds to less
than 1 year (∗.xlsx file).

TABLE S2 | Inter-cohort dependencies determined by chi-square test for gender
and one-way ANOVA for age, EDSS and disease duration (DD). Comparisons with
significant p-values (p-value < 0.05) are highlighted in bold red.

TABLE S3 | MS/MS fragments used for PPMS marker identification. Identities
confirmed by available authentic standards (validation level 1). MS/MS spectra
were matched against online databases such as Metlin and MassBank (validation
level 2) or against in silico fragmentation spectra (validation level 3) retrieved from
Metfrag, CFM-ID and/or CSI:FingerID with precursor mass accuracy of 20 ppm
and fragment accuracy of 0.01 Da.

TABLE S4 | Plasma metabolites identified in PPMS cohorts A and B (∗.xlsx file).

TABLE S5 | Model parameters for the tested models and their corresponding
p-values after sample-label permutation test.

TABLE S6 | Metabolites with significant changes between HC and PPMS patients
(A and B cohorts) their corresponding AUC values and VIP score ranks for
component 1 and 2. Univariate AUCs and 95% CI (500 bootstrapping) calculated
using MetaboAnalyst.

TABLE S7 | PPMS marker in PPMS patients compared to RRMS and PD
patients. First p-value is determined by one-way ANOVA with Tukey’s post hoc
with correction for multiple testing per metabolite. Metabolites with p-values
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< 0.05 are highlighted in bold green. Second p-value has been corrected (FDR)
for all comparison including all metabolites.

TABLE S8 | PPMS marker measured in RRMS, intensity levels in the RRMS
cohort. P-values determined by Welch’s t-test, p-value adjustment for multiple
comparison using Benjamini and Hochberg (FDR) adjustment (∗.xlsx file).

TABLE S9 | PPMS marker measured in PD, intensity levels in the PD cohort.
P-values determined by Welch’s t-test, p-value adjustment for multiple
comparison using Benjamini and Hochberg (FDR) adjustment (∗.xlsx file).

TABLE S10 | Metabolite levels with significant changes between HC and PPMS
patients measured in the longitudinal PPMS cohort (∗.xlsx file).
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