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Various carbon materials were used as support of polyvinylpyrrolidone (PVP)-capped Pd

nanoparticles for the synthesis of catalysts for the production of hydrogen from formic

acid dehydrogenation reaction. Among investigated, MWCNT-supported catalysts were

the most promising, with a TOF of 1430 h−1 at 80◦C. The presence of PVP was shown

to play a positive role by increasing the hydrophilicity of the materials and enhancing the

interface contact between the reactant molecules and the catalytic active sites.

Keywords: hydrogen, formic acid, palladium nanoparticles, MWCNT, polyvinylpyrrolidone, capping agent

INTRODUCTION

Formic acid, the simplest carboxylic acid (HCOOH, FA), has recently received great interest as a
hydrogen carrier molecule (Enthaler et al., 2010; Grasemann and Laurenczy, 2012; Navlani-García
et al., 2019a; Valentini et al., 2019). The increasing literature reporting on that topic is particularly
notorious in the last decade, when numerous approaches to design efficient catalysts to boost the
dehydrogenation of FA have been considered. That reaction produces H2 and CO2 in a molar ratio
of 1 to 1. However, the side dehydration reaction is responsible for the formation of CO, and
hence should be avoided, which motivated the search for selective catalysts. Among the possible
compositions of the catalysts, Pd-based heterogeneous catalysts have been the most investigated so
far, which is due to their suitable performance under mild conditions, in terms of both conversion
and selectivity. Many aspects have already been tackled, which encompass the optimization of
the morphology of the nanoparticles (Navlani-García et al., 2015b, 2016b) and their composition
(Mori et al., 2013; Qin et al., 2013; Wang et al., 2013; Navlani-García et al., 2016c, 2018a), as well
as the evaluation of the properties of the support material (Navlani-García et al., 2015a; Mori
et al., 2017a; Wu et al., 2017). At this point, it is already well-known and widely reported that
catalysts with basic character tend to result in enhanced performance toward the dehydrogenation
of FA, which is either ascribed to their interaction with FA molecules or the stabilization of metal
nanoparticles with small size and narrow size distributions (Mori et al., 2013; Navlani-García et al.,
2018b). The incorporation of nitrogen functional groups has widely been reported as a fruitful
strategy to achieve high-performance catalysts and it has been applied to supports of diverse nature
[i.e., carbon materials (Bulushev et al., 2016a,b; Navlani-García et al., 2018b; Podyacheva et al.,
2018; Golub et al., 2019; Sun et al., 2019), silica (Mori et al., 2019), resins (Mori et al., 2015,
2017b), metal-organic frameworks (Wen et al., 2017), etc.]. However, due to their versatility and
outstanding features, carbon materials have been the most extensively investigated supports so far.

Concerning the synthetic approaches used for the preparation of N-doped carbon materials,
they can be classified as in-situ and post-synthesis doping methods, depending on whether the
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N-doping and the synthesis of the carbon material take
place in one or in consecutive steps (Salinas-Torres et al.,
2019). The preparation of N-doped carbon material-supported
metal catalysts frequently requires multiple synthesis steps
(i.e., preparation of the carbon material, incorporation of N-
functionalities, metal loading, metal reduction, etc.).

The standard impregnation method commonly used in the
synthesis of metal nanoparticles frequently results in large
nanoparticles and/or wide nanoparticles size distribution, which
hampers the proper assessment of the catalytic activity. In
this line, the synthesis of colloidal nanoparticles has been
postulated as a useful tool for the preparation of size and
shape-controlled nanoparticles with narrow size distribution
(Navlani-García et al., 2019b). In particular, the reduction-by-
solvent method [so-called polyol method (Fiévet et al., 2018)]
has fruitfully been applied for the preparation of noble metal
nanoparticles used in countless applications (i.e., hydrogenation
reactions Domínguez-Domínguez et al., 2006, 2008; Tsung et al.,
2009; Navlani-García et al., 2017, preferential CO oxidation
reaction Miguel-García et al., 2015; Navlani-García et al., 2016a,
biosensing Quintero-Jaime et al., 2019, carbon-carbon bond-
forming reactions Ohtaka et al., 2015, etc.). Such a method
usually requires the use of a capping agent, mainly polymers,
which serve as a stabilizing agent. Moreover, the capping
agent can also modify the properties of the resulting metal
nanoparticles due to the interaction with the different functional
groups present in the polymer molecules. Among all the
possible capping agent, poly(N-vinyl-2-pyrrolidone) (PVP) is
the most extensively used in the synthesis of colloidal metal
nanoparticles, which is due to its higher protective character
as compared to that of other polymers (Navlani-García et al.,
2019b). Due to the chemical composition of its monomers (N-
vinylpyrrolidone), PVP can strongly interact with the resulting
capped nanoparticles.

The present study tackles the development of nitrogen-
containing Pd-based carbon-supported catalysts by a simple
and scalable synthetic protocol. Here, we address for the first
time the use of PVP-capped Pd nanoparticles utilized as a
strategy to synthesize N-containing Pd-based catalysts for the
dehydrogenation of FA. Furthermore, the effect of the carbon
material was also checked by using alternative supports to
the most commonly investigated activated carbon [i.e., carbon
black and multi-walled carbon nanotubes (MWCNTs)]. The
counterpart PVP-free catalysts were prepared to check the effect
of N-containing polymer in the system. The present study might
pave the way for the future development of new catalysts in which
the surfactants not only act as stabilizing agents in the synthesis
of the metal nanoparticles, but they can also participate in the
incorporation of new functional groups to the resulting catalysts.

EXPERIMENTAL

Synthesis of PVP-Capped Pd
Nanoparticles
The synthesis of PVP-capped Pd nanoparticles was performed
by a well-reported methodology (Domínguez-Domínguez et al.,

2006; Miguel-García et al., 2010), using Pd(OAc)2 as the metal
precursor, polyvinylpyrrolidone (PVP, 40K) as a capping agent,
and ethylene glycol as both solvent and reducing agent. The
PVP/Pd molar ratio used in the synthesis was 10/1 and the
reduction temperature was fixed at 100◦C.

Preparation of Carbon-Supported
Catalysts
Supported catalysts were prepared by the impregnation method
with the as-synthesized nanoparticles and the selected supports
(CD-6008 carbon black (CB) from COLUMBIAN CHEMICALS,
commercial XC-72F Vulcan carbon black (Vulcan) from Cabot
Corporation, and multiwall carbon nanotubes (MWCNT) from
COLUMBIAN CHEMICALS). For that purpose, the supports
were added to the adequate volume of colloidal nanoparticles
to have a final metal loading of 3 wt.% and the mixtures
were stirred for 2 days at room temperature. After that, the
solvent was evaporated at 60◦C and the collected solids were
washed several times with a mixture of ethanol/water (50/50%
v/v). The samples were dried overnight, and the resulting
catalysts based on CB, Vulcan, and MWCNT were denoted as
Pd/CB, Pd/Vulcan, and Pd/MWCNT, respectively. To assess the
effect of PVP molecules on the final catalytic performance, the
counterpart PVP-free catalysts were prepared. For that, Pd/CB,
Pd/Vulcan, and Pd/MWCNT catalysts were treated at 450◦C
(with a heating rate of 10◦C/min) under nitrogen atmosphere
for 10min. The obtained PVP-free catalysts were denoted as
Pd/CB(t), Pd/Vulcan(t), and Pd/MWCNT(t), respectively.

Characterization
The textural characterization of the samples was carried out
using N2 adsorption at −196◦C (Autosorb 6, Quantachrome).
Before the adsorption measurements, the samples were
outgassed under vacuum at 200◦C for 4 h to remove any
possible adsorbed impurity. Apparent surface area values and
total micropore volumes (VDR) were calculated using BET
equation (SBET) and the Dubinin–Radushkevich (DR) equation,
respectively. Thermogravimetric analysis was performed using
a TA Instruments SDT Q600 thermobalance and with a N2

flow of 100 mL/min and heating the catalysts up to 450◦C and
keeping that temperature for 20min. Transmission electron
microscopy (TEM) images of the catalysts were obtained by
using a JEOL (JEM-2010) transmission electron microscope
equipped with an EDS analyzer (OXFORD, model INCA
Energy TEM 100) operating at 200 kV with a space resolution
of 0.24 nm. Palladium content was determined by ICP-OES
(inductively coupled plasma-optical emission spectroscopy) with
a Perkin-Elmer Optima 4,300 system. The metal extraction was
performed by oxidative treatment with aqua regia for 48 h. XPS
(X-ray photoelectron spectroscopy) analysis was carried out in
a VG-Microtech Multilab 3000 spectrometer equipped with a
semispherical electron analyzer and a Mg Kα (hν = 1253.6 eV)
300W X-ray source. Binding energies were referenced to the
C 1s line at 284.6 eV. Pd(0) and Pd(II) relative contents were
determined from the integrated intensities of the spectra.
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FIGURE 1 | N2 adsorption-desorption isotherms of supports (A) and catalysts (B); Pore size distribution of supports (C) and catalysts (D).

Catalytic Test
The catalytic activity toward the decomposition of FA was
evaluated by monitoring the gas evolution profiles achieved with
the time while performing the reaction at 80◦C. For that, 0.15 g
of powder catalyst were placed in a reactor and a solution of
formic acid and sodium formate, in a molar ratio of 9/1 and
total concentration of 1M, was added. The gas produced was
measured by using a burette system. TOF values (h−1) were
calculated with the following equation:

TOF
(

h−1)
=

produced H2 (mole)

Pd content
(

mole
)

×time (h)
(1)

where the H2 produced (mole) was measured after 1min of
reaction and the Pd content (in mole) is the total number of
moles added, which was calculated considering the mass of
catalyst used in the test and the metal loading determined by
ICP-OES analysis. TOF was also calculated considering the mole
of surface Pd as determined from TEM. To this end, first, the
average Pd nanoparticle diameters (dTEM) were calculated for
each catalyst by counting a large number of nanoparticles in the
TEMmicrographs and using the following equation:

dTEM =

∑

nidi
∑

ni
(2)

From the dTEM, Pd nanoparticle dispersion (DTEM, defined as
the number of metal atoms on the sample surface divided by
the total number of metal atoms) was estimated by assuming
spherical nanoparticle geometry and using the following
equation (Domínguez-Domínguez et al., 2008):

DTEM=1021
6Mρsite

ρPdNdTEM
(3)

Where M is the atomic weight, ρsite is the Pd surface site density,
ρPd is the metal density, N is the Avogadro constant and dTEM is
the average diameter of the nanoparticles.

After that, the value of surface Pd atoms was calculated for
each sample by using the following expression, where the real Pd
loading determined by ICP was used:

Surface Pd atoms =
molePd

∗DTEM

100
(4)
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Finally, TOF values calculated on the bases of Pd surface atoms
were calculated as follows:

TOF
(

h−1)
=

produced H2 (mole)

Surface Pd atoms
(

mole
)

×time (h)
(5)

RESULTS

Characterization
The results of the N2 adsorption-desorption isotherms and pore
size distributions calculated by NLDFT method considering slit
shaped pores, for the three supports and the counterpart catalysts
are plotted in Figure 1. Table 1 contains the porous texture
parameters determined from the isotherms. As can be seen in
Figure 1A, Vulcan shows a Type II isotherm, with a low volume
of micropores, while CB and MWCNT have a certain degree of
mesoporosity. Interestingly, sample CB has a significant volume
of micropores (Table 1). In the case of Pd-containing catalysts
(Figure 1B), the isotherms evidenced a significant decrease of
porosity upon Pd loading, which might be due to a partial
blockage or filling of the pores of the carbon materials due to
the presence of Pd nanoparticles. Such observation is in good
agreement with the results of the porous texture characterization
included in Table 1. As can be seen, SBET values of the Pd-
containing catalysts are significantly lower than those of the
counterpart supports (SBET decreases around 79, 68, and 42%
for CB, Vulcan, and MWCNT-based catalysts, respectively).
That effect is also observed in the volumes of micropores and
mesopores. Figures 1C,D contain the pore size distribution of
supports and Pd-containing catalysts, respectively. In the case of
the supports, a bimodal distribution with a large contribution
of both micropores (< 2 nm) and mesopores (2–50 nm) was
observed. However, as can be seen in the results of VDR and
in Figure 1D, the contribution of the micropores considerably
decreased after Pd loading and, even though such decrease was
also observed for the mesopores, the effect is less marked. This
decrease in microporosity is clearly observed for sample CB,
whosemicropore volume decreases from 0.38 to 0.05 cm3/g. Such
porosity decrease observed in the catalysts as compared to the
counterpart supports might be ascribed to the blockage or filling
by Pd nanoparticles, being the blockage the most important
contribution in the case of microporosity. It must be taken into
account that the Pd nanoparticles are PVP protected and PVP
molecules may strongly interact with the supports, especially in
the microporosity, and may be detached from the surface of
the nanoparticles.

Concerning the heat-treated catalysts, the removal of PVP
molecules by the heat treatment performed at 450◦C was
evidenced using thermogravimetric analysis. As observed in the
mass loss profiles of the three catalysts under study (Figure 2), a
markedmass loss of∼10 wt. % took place upon heating at 450◦C,
which corresponds to the elimination of PVP molecules from the
samples. The results show that the PVP content is similar for the
three catalysts (the weight loss after heating at 450◦C is between
9.5 and 11 wt. %), what is in agreement with the preparation

TABLE 1 | Results of the characterization of the textural properties.

Sample SBET (m2 g−1) VDR (cm3 g−1) Vmeso (cm3 g−1)

CB 604 0.38 0.42

Pd/CB 126 0.05 0.20

Vulcan 255 0.10 0.12

Pd/Vulcan 79 0.03 0.07

MWCNT 253 0.10 0.29

Pd/MWCNT 146 0.06 0.24

method in which the same PVP/Pd ratio was used and with the
similar Pd content in the catalysts.

TEM analysis was used to get information about the Pd
nanoparticle size and distribution on the different catalysts under
study. For that, both sets of as-synthesized and treated catalysts
were analyzed to check the possible effect of the heat treatment
in the final morphology of the nanoparticles. Figure 3 includes
representative micrographs of the two series of catalysts. The
average nanoparticle size was determined by counting ∼100
nanoparticles for each sample. The colloidal Pd nanoparticles
used for the preparation of the catalysts had an average particle
size of 2.5± 0.7 nm and a very narrow size distribution.

The average nanoparticle size of the studied catalysts is listed
in Table 2. The resulting catalysts had an average nanoparticle
size of 3.3, 2.6, and 2.5 nm, for Pd/CB, Pd/Vulcan, and
Pd/MWCNT, respectively. The nanoparticles are well-dispersed
on the three supports (see Figure 3 and Figure S1) and, as
was previously reported for Pd-catalysts prepared from colloidal
nanoparticles, no aggregation was detected for the supported
particles, but a slight increase of the average particle size
was observed in some cases along with a partial loss of the
spherical shape of the nanoparticles as compared with the
unsupported colloidal counterpart. Such observation has already
been reported and it is ascribed to the existing interaction
between support and nanoparticles (Domínguez-Domínguez
et al., 2008; Miguel-García et al., 2010; Navlani-García et al.,
2016a). In the case of the treated catalysts, a small increase
in the average nanoparticle size took place for Pd/Vulcan(t)
and Pd/MWCNT(t), while it remained unchanged for Pd/CB(t)
[average nanoparticle size of 3.3, 3.5, and 4.0 nm for Pd/CB(t),
Pd/Vulcan(t), and Pd/MWCNT(t), respectively]. That could be
related to the larger surface area and micropore volume of CB
as compared to the other supports and the subsequent better
anchoring of the nanoparticles on its surface. The average Pd
nanoparticle size determined in all cases confirmed that, as
claimed from the analysis of the porous texture of the materials,
some nanoparticles might be located at the entrance of the
porosity or even within the porosity of the support, which would
ultimately give rise to the observed decreased SBET and pore
volumes. As for the Pd loading, 2.7, 3.0, and 2.4 wt. % was
determined for Pd/CB, Pd/Vulcan, and Pd/MWCNT, which is
close to the nominal metal content (see Table 2).

XPS analysis was performed to investigate the electronic
properties of the nanoparticles in the as-synthetized and PVP-
free catalysts. A typical XPS Pd 3d spectrum shows two bands
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FIGURE 2 | Thermogravimetric analysis profiles performed in N2 atmosphere.

FIGURE 3 | TEM micrographs of the as-synthesized and treated catalysts.
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TABLE 2 | Characterization of the catalysts.

Catalyst dTEM (nm) Pd loading

wt.% (ICP)

% Pd0 (XPS) % Pdδ+ (XPS)

Pd/CB 3.3 ± 0.9 2.7 43 57

Pd/CB(t) 3.3 ± 0.8 - 81 19

Pd/Vulcan 2.6 ± 0.7 3.0 57 43

Pd/Vulcan(t) 3.5 ± 1.6 - 82 18

Pd/MWCNT 2.5 ± 0.9 2.4 60 40

Pd/MWCNT(t) 4.0 ± 1.9 - 78 22

that correspond to the 3d3/2 (at higher binding energies) and
3d5/2 (at lower binding energies) transitions. Each band can
be deconvoluted into two different contributions, associated
with electronically different Pd species (Pd0 at lower binding
energies and oxidized Pd (Pdδ+) at higher binding energies) (see
Figure 4).

As observed in the results listed in Table 2, Pd in metallic
and oxidized forms are present in all cases. The relative
proportion of Pd0 increased considerably upon PVP removal,
which confirms the electron withdrawal effect exerted by PVP
molecules. Such an effect has also been observed in our previous
studies and it was attributed to the interaction between Pd
surface and PVP molecules via carbonyl group, which results in
the presence of electron-deficient states or Pdδ+ (Miguel-García
et al., 2010; García-Aguilar et al., 2016; Navlani-García et al.,
2016a,c). Therefore, the increase of the relative content of Pd0

in the surface of the nanoparticles observed for the heat-treated
catalysts is a consequence of the PVP removal from their surface.

Catalytic Activity
The catalytic ability toward the production of hydrogen from FA
was assessed by monitoring the gas evolution profiles achieved
with the as-synthesized and the heat-treated catalysts. Figure 5
includes the profiles obtained with the two sets of catalysts.
Concerning the as-synthesized (PVP-containing) catalysts, no
induction time was observed and the gas evolution proceeded
smoothly with time until reaching a gas production of 23.4,
35.1, and 71.5mL of gas after 30min of reaction for Pd/CB,
Pd/Vulcan, and Pd/MWCNT, respectively. The volume of H2

generated corresponds to initial TOF values of 229, 288, and
515 h−1, respectively. The TOF values with respect to the
measured surface Pd are 839, 833, and 1430 h−1, respectively.
The catalytic performance significantly decayed for the PVP-
free catalysts, achieving a gas production after 30min of the
reaction of 67.6mL for Pd/MWCNT(t), and 6.5mL for both
Pd/CB(t) and Pd/Vulcan(t). It must be noted that, even though
the performance of the Pd/MWCNT(t) catalyst is the closest
to the non-treated counterpart and very similar volume of gas
is generated at the end of the catalytic test with both samples,
the initial activity of Pd/MWCNT and Pd/MWCNT(t) is very
different [TOF values of 515 and 257 h−1 for Pd/MWCNT
and Pd/MWCNT(t), respectively], which evidences the superior
performance of the PVP-containing catalyst.

The better behavior shown by PVP-containing catalysts might
be related to several factors. On the one hand, the presence

of PVP molecules might endow the surface of the catalysts
with N-containing groups, which are beneficial to catalyze the
dehydrogenation of formic acid (Martis et al., 2013; Bulushev
et al., 2016a; Navlani-García et al., 2018b; Salinas-Torres et al.,
2019). The basic N-groups can increase the local concentration
of formic acid, thus increasing the reaction rate. It is expected
that the most probable interaction between PVP molecules and
the reactant is between the N-groups of PVP and the acidic
proton of formic acid molecules. On the other hand, the presence
of PVP would also increase the hydrophilicity of the materials,
favoring, therefore, their dispersion in the reaction medium and
enhancing the interface contact between the reactant molecules
and the catalytic active sites. An additional positive effect of the
PVP-containing catalysts might be the less accessible Pd atoms
on the surface of the nanoparticles due to the interaction with
PVP molecules. Such an interaction, which could be initially
considered as negative because of the partial blocking of the
possible active sites, would make more difficult the adsorption
of reaction intermediates (i.e., CO2, H2O, and/or HCOO−),
thus avoiding the repulsive adsorbate-adsorbate interaction and
enhancing the catalytic performance (García-Aguilar et al., 2016).

Although recent studies have reported higher TOF values
with some sophisticated catalytic systems and more tedious
experimental protocols used for the syntheses of catalysts, the
values achieved in the present study are competitive with those
addressed for other catalysts [Pd/C synthesized with citric acid:
64 h−1 at 25◦C (Wang et al., 2012); Pd/1.0Ti-g-C3N4: 77 h−1

at 30◦C (Wu et al., 2017); Pd/H-BETA(0.5): 59.2 h−1 at 50◦C
(Navlani-García et al., 2015a); commercial Pd/C: 339 h−1 at 60◦C
(Hu et al., 2014); Ag18Pd82@ZIF-8: 580 h−1 at 80◦C (Dai et al.,
2015); Pd–Au/C: 27 h−1 at 92◦C (Zhou et al., 2008), etc.].

To understand the tendencies displayed by the two sets of
catalysts, several factors should be considered. The difference in
the catalytic performance attained by a certain system is normally
related to their features (i.e., size and electronic properties of
the nanoparticles, porous texture of the catalysts, location of the
nanoparticles, accessibility to reactant and interaction with the
reaction products, etc.). It has been reported in other studies that
the size of the nanoparticles has an important impact on the
catalytic performance; however, different tendencies have been
observed (Navlani-García et al., 2016b; Kim and Kim, 2019).
In this case, better performances were observed for smaller
nanoparticles (TOF of 229, 288, and 515 h−1 for nanoparticles of
3.3, 2.6, and 2.5 nm, respectively) for the as-synthesized catalysts.
Nevertheless, such trend was not consistent with that displayed
by PVP-free catalysts, since Pd/MWCNT(t), with the largest
average nanoparticle size among investigated (4.0 nm), presented
the best activity within PVP-free set of catalysts, suggesting that
the size of the nanoparticles is not the main factor in governing
the catalytic performance of the systems under investigation.
Concerning the electronic properties of the nanoparticles, several
investigations have reported on the positive effect of electron-
rich Pd species in catalyzing the decomposition of FA, which
has been particularly emphasized by using Pd-based alloyed
nanoparticles (Mori et al., 2013; Navlani-García et al., 2016c;
Wen et al., 2019). In the present study, the larger relative
proportion of Pd(0) in Pd/MWCNTmight be related to the better
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FIGURE 4 | XPS spectra of Pd 3d.

performance displayed by that catalyst as compared to Pd/Vulcan
and Pd/CB. However, the catalytic activity decay seen for PVP-
free catalysts with larger relative proportion of Pd(0) compared
to PVP-containing counterpart might indicate that, under the
experimental condition used in this study, this aspect is not the
key factor in controlling the activity of the catalysts.

Apart from the properties of the nanoparticles, the nature
and properties of the support is another factor to bear in mind
while analyzing the performance of the resulting materials. The
apparent surface area of the support is a well-known factor
to be considered while aiming at synthesizing highly dispersed
supported nanoparticles. However, the importance of such factor
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FIGURE 5 | Gas evolution profiles achieved with (A) as-synthesized catalysts, and (B) PVP-free catalysts.

might be a bit blurred while using pre-synthesized colloidal
nanoparticles instead of standard impregnationmethods. Besides
the apparent external surface area, the porous texture (in terms
of pore size and pore size distribution) would be another point of
interest. In this line, previous studies evidenced the importance of
the presence of mesopores in attaining promising performance
in the decomposition of FA (Navlani-García et al., 2018b). If
porous texture was the only considered factor, Pd/CB catalyst
should display a better performance by virtue of the larger
apparent surface area and pore volume of CB as compared to
the other supports. However, attending to the decrease of the
SBET and volume of pores observed in Pd/CB as compared to
the bare CB support (SBET of 604 and 126 m2/g, and VDR of
0.38 and 0.05 cm3/g, and Vmeso of 0.42 and 0.20 cm3/g, for
CB and Pd/CB, respectively) it could be said that part of the
nanoparticles are partially blocking the pores of CB, which is
consistent with the changes observed in the pore size distribution
of CB upon Pd loading. It is important to note that while such
partial blockage or filling of the porosity is observed in the three
catalysts, the decrease in the apparent external surface area upon
Pd loading is much more significant for CB (decrease of SBET
after Pd loading of 79, 69, and 42% for Pd/CB, Pd/Vulcan, and
Pd/MWCNT, respectively).

According to the above results, Pd/MWCNT is the
most promising catalyst among investigated and under the
experimental conditions used in this study. The beneficial effect
of using MWCNTs as support might be mainly related to their
1D structure and high availability of the surface area, which
has previously been detected to be a key aspect in achieving
good catalytic activities toward the dehydrogenation of formic
acid (Masuda et al., 2018; Navlani-García et al., 2018b). The
lower contribution of micropores in Pd/MWCNT compared
to the other catalysts might result in less diffusion problems
and the subsequent better catalytic performance. It should be

mentioned that while the use of MWCNTs for the preparation of
metal-supported catalysts for the electrooxidation of formic acid
has been fruitfully investigated (Zhang et al., 2009; Chakraborty
and Raj, 2010; Chen et al., 2010; Morales-Acosta et al., 2010;
Winjobi et al., 2010), their use for the thermal decomposition
of formic acid is much less explored than in the case of other
carbon materials. The results herein enclosed indicate that
MWCNTs are a suitable candidate as support of Pd nanoparticles
for the preparation of efficient catalysts to produce hydrogen
from the thermal decomposition of formic acid. It was also
observed that the incorporation of PVP as a capping agent of
the supported metal nanoparticles could be an easy strategy for
the incorporation of N-groups in the catalysts while avoiding
more sophisticated and tedious experimental procedures.
Unfortunately, the catalysts studied in this work lack of good
stability under reaction conditions and, therefore, further
improvements are needed to achieve highly-performance and
stable catalysts for the dehydrogenation of formic acid.

CONCLUSIONS

Catalysts based on PVP-capped Pd nanoparticles supported on
various carbon materials have been synthesized and assessed in
the decomposition of formic acid in the liquid phase. Among
investigated, MWCNT-supported catalysts displayed the best
performance, which might be related to their 1D structure
and highly available external surface area. In addition, PVP-
Pd-based catalysts showed better activities compared to the
counterpart PVP-free samples, which could be ascribed to the
increase of hydrophilicity of the materials and interaction with
formic acid and the favored dispersion of the catalysts in the
reaction medium that ultimately enhances the interface contact
between the reactant molecules and the catalytic active sites.
It could be envisaged that the selection of different capping
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agents and catalytic supports with tailored porous structure
would give rise to promising catalytic systems for the present
application. Although much effort is still needed to achieve
the optimum catalysts and fully understand all the pivotal
factors to be considered while optimizing the catalysts for the
dehydrogenation of formic acid, it could be expected that the
present study will pave the way for the design of efficient
functionalized carbon-material-based catalytic systems prepared
by simple experimental protocols.
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