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Despite some significant therapeutic breakthroughs leading to immunotherapy, a high
percentage of patients with non-small cell lung cancer (NSCLC) do not respond to
treatment on relapse, thus experiencing poor prognosis and survival. The unsatisfying
results could be related to the features of the tumor immune microenvironment and the
dynamic interactions between a tumor and immune infiltrate. Host–tumor interactions
strongly influence the course of disease and response to therapies. Thus, targeting host-
associated factors by restoring their physiologic functions altered by the presence of a
tumor represents a new therapeutic approach to control tumor development and
progression. In NSCLC, the immunogenic tumor balance is shifted negatively toward
immunosuppression due to the release of inhibitory factors as well as the presence of
immunosuppressive cells. Among these cells, there are myeloid-derived suppressor cells,
regulatory T cells that can generate a tumor-permissive milieu by reprogramming the cells
of the hosts such as tumor-associated macrophages, tumor-associated neutrophils,
natural killer cells, dendritic cells, and mast cells that acquire tumor-supporting
phenotypes and functions. This review highlights the current knowledge of the
involvement of host-related factors, including innate and adaptive immunity in
orchestrating the tumor cell fate and the primary resistance mechanisms to
immunotherapy in NSCLC. Finally, we discuss combinational therapeutic strategies
targeting different aspects of the tumor immune microenvironment (TIME) to prime the
host response. Further research dissecting the characteristics and dynamic interactions
within the interface host–tumor is necessary to improve a patient fitness immune response
and provide answers regarding the immunotherapy efficacy, with the aim to develop more
successful treatments for NSCLC.
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INTRODUCTION

Lung cancer has become a leading cause of cancer death
worldwide. The global incidence sees polarized differences
according to the economic development of different countries.
There is a decrease in the incidence among men in high-income
countries due to public health measures and a gradual and
progressive increase in both genders in low-income countries
where public health initiatives for smoking cessation have lagged
and access to healthcare is scarce (1–3). During the first decade of
the present century, the outcomes of at least a subset of patients
have seen substantial improvements, thanks to a general
understanding of disease biology, the application of predictive
biomarkers, and refinements in specific treatments (4).

Non-smal l cel l lung cancer (NSCLC) represents
approximately 85% of all lung cancer cases. It includes three
major histologic classifications: adenocarcinoma (ADC),
representing the most common subtype of lung cancer,
followed by squamous-cell carcinoma (SCC) and large-cell
carcinoma (LCC) (5).

Treatment is highly dependent on many parameters of the
patient, particularly their general functional status,
comorbidities, the tumor stage, and the molecular features of
the disease. The primary treatment for stages I and II and in
selected cases for stage III A disease is curative surgery,
chemotherapy, radiation therapy (RT), or a combined modality
approach. Postoperative adjuvant cisplatin-based chemotherapy
is recommended in patients with completely resected stage II–
IIIA disease and selected patients with stage IB disease (6).
However, this therapy is associated with only a 16% decrease
in the risk of disease recurrence or death; for 5 years, it is
associated with a 5% decrease in the risk of death (7, 8).

Systemic therapy is pursued in the cases of patients with stage
IV disease and in presence of metastases or in the presence of
relapse after initial management.

Over a median follow-up of approximately five years, the
percentage of patients who have disease recurrence or who die
after surgery remains high (ranging from 45% among patients
with stage IB disease to 76% among those with stage III disease),
regardless of the use of postoperative chemotherapy (8). The
opportunity for improving survival is pronounced in early-stage
disease and is driving studies integrating targeted therapies and
immune checkpoint inhibitors (ICIs). As a result, after the
revolutionary data on the metastatic setting of epidermal
growth factor receptor (EGFR) inhibitors (9–13), we,
nowadays, have the impressive results of the Adaura trial,
which led to an important improvement of disease-free
survival (DFS) in a subset of patients with EGFR-mutated
early-stage lung cancer when osimertinib was added as an
adjuvant treatment to the main treatment for the duration of 3
years (14). Unfortunately, this subgroup is limited to only
patients with EGFR-targetable mutations.

From the past decade to the present, with additional
activating genomic alterations such as those affecting anaplastic
lymphoma kinase (ALK), ROS1 proto-oncogene receptor
tyrosine kinase, class 1 B-Raf proto-oncogene (BRAF)
mutations (V600), mesenchymal-epithelial transition factor
Frontiers in Immunology | www.frontiersin.org 2
(MET), and neurotrophic receptor tyrosine kinase (NTRK)
ALK, ROS1, B-Raf V600, MET, and NTRK alterations and the
availability of an increasing number of specific tyrosine-kinase
inhibitors (TKIs) of various generations, the proportion of
patients with an improved prognosis has further increased
(15–17).

The second pilar of the modern treatment of metastatic
NSCLC is taken by immunotherapy (PD-1 and PD-L1
monoclonal antibodies), which is nowadays in the frontline of
treatment in oncogenic driver–negative NSCLC and has
produced response and survival rates that were unreachable a
few years ago (18, 19).

Patients whose tumors express PD-L1 in at least 50% of the
cells are more likely to attain a response and survive longer if
treated with these compounds.

After breakthrough immune checkpoint inhibitor data in an
advance setting, we now have the first results of immunotherapy
in an adjuvant setting. The study IMpower 010 (20) addressed
some of the unmet needs for adjuvant treatment oncodriver-
negative tumors, adding immunotherapy in the plethora of new
approvals in the early setting of NSCLC for patients expressing
PD-L1 >1% on tumor cells (20).

In the meantime, immunotherapy continues to demonstrate a
significant overall survival (OS) benefit in advanced NSCLC. In
particular, pembrolizumab or atezolizumab monotherapies are
superior to first-line chemotherapy in tumors with a higher
expression of the PD-L1 molecule (21, 22). Interestingly,
different chemo-immunotherapy combinations have been
shown to be superior to chemotherapy, regardless of PD-L1
expression (23, 24).

Even though immunotherapy can produce great and long-
lasting results, not all NSCLC patients seem to benefit from this
approach (25). Many attempts have been made to identify
predictive biomarkers to select responding patients who would
benefit from ICIs. Tumor mutational burden (TMB) is a critical
predictive factor for response to immunotherapy, but the
available results need further confirmation in prospective
randomized trials (26). A critical factor underlying the poor
response to immunotherapies is the heterogeneity in the immune
cell response to NSCLC and the existence of multiple
mechanisms mediating tumor immune suppression (27).
Indeed, a limited knowledge of the characteristics of the TME,
to a great extent, hinders the development of new targets for
immunotherapy. Here, we review the biological functions of
immune cells within the tumor immune microenvironment
(TIME) and their roles in cancer immunotherapy and discuss
the perspectives of the basic and translational studies for
improving the effectiveness of the clinical use.
OVERVIEW OF NSCLC TUMOR
IMMUNE MICROENVIRONMENT

Taking advantage of new technologies (e.g., single-cell RNA
sequencing), multiple ongoing studies are now identifying new
subtypes of tumor-associated immune cells to predict the clinical
efficacy of different immunotherapy approaches. The study of
July 2022 | Volume 13 | Article 914890
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immune tumor cell contexture in cancer patients to target the
multiple immune-suppressive factors might ameliorate response
rates and contribute to develop the era of personalized immune-
based therapies. The immune cell populations present in the
TIME possess both tumor-killing potentials and may
alternatively promote or suppress immune cell activity.
Tolerogenic immune cell populations such as regulatory T cells
(Tregs) and myeloid-derived suppressor cells (MDSCs) create an
immune-suppressive milieu that, in turn, favors the polarization
toward a protumor phenotype of other immune cells such as
neutrophils, dendritic cells (DCs), and natural killer (NK) cells
(Figure 1 and Table 1). Understanding these immunologic states
and the mechanisms underpinning them may provide the key to
restore an effective anti-tumor immune response and improve
the survival rate of NSCLC patients.

Neutrophils
Neutrophils are considered the first line of innate immune
defense and are recognized as a critical targetable cellular
feature of NSCLC TIME (28). Several preclinical and clinical
studies have linked neutrophil trafficking and degranulation with
various stages of tumor progression and the attenuation of
Frontiers in Immunology | www.frontiersin.org 3
treatment efficacy (29, 30). A high neutrophil/lymphocyte ratio
(NLR) is now considered as a useful predictor associated with a
negative clinical outcome, as well as with poor responsiveness to
PD-1-/PD-L1 inhibitors (30). In accordance, Gentles et al.
discovered that the neutrophil transcript signature was the
strongest predictor of mortality and major infiltrating immune
cells in adenocarcinoma NSCLC patients (31). In attempts to
provide a clear description of the immune cell types present in
NSCLC, Kargl et al. implicated neutrophils as the most abundant
and dominant immune-suppressive factors associated with the
depletion of CD4+ and CD8+ T lymphocytes within TIME (32).
Consistent with previous findings, another study demonstrated a
positive correlation between an increased tumor burden, high
levels of neutrophil-related cytokines, and a dampened T-cell
response associated with reduced CD3+CD8+ T-cell infiltration
(33). However, the recruitment of neutrophils to the tumor
microenvironment might depend on NSCLC subtypes and the
smoking status, and larger studies are needed to define their role
and association with survival (34).

Neutrophils in cancer consist of multiple heterogeneous cell
populations and retain plasticity. A high expression of lectin-type
oxidized LDL receptor 1 (LOX-1) distinguishes PMN-MDSCs
FIGURE 1 | Immunosuppressive milieu within the tumor immune microenvironment (TIME) of NSCLC. Immunotherapy resistance is marked by an immunosuppressive TIME
and includes tumor-derived factors, infiltration of T regulatory cells (Tregs), myeloid-derived suppressor cells (MDSCs), and mast cells that, in turn, favor the polarization toward
a protumor phenotype of other immune cells such as neutrophils, dendritic cells (DCs), and natural killer (NK) cells. Figure created with http://biorender.com.
July 2022 | Volume 13 | Article 914890



TABLE 1 | NSCLC immune landscape: anti- and pro-tumorigenic phenotypes and activities of immune cell populations within the tumor microenvironment.

Anti-tumor properties Pro-tumor properties

IFN-g, IL1 and TNF-a-mediated stimulation of immune response;
ROS-mediated tumor killing;

Promote CD4+ T cell responses

NA

NA MMP9, NE, VEGF-mediated tumor metastasis and invasion;
IL10, TGF-b, ARG1, NETs-mediated immune suppression;
Suppression of NK cells and CD8+ T cells immune response

NA

MMPs, VEGF -mediated angiogenesis, invasiveness and
metastasis; IL10, TGF-b, IDO, ARG1, and PGE-mediated
immunosuppression; Suppression of NK cells, DCs the

functions; Suppression of CD8+ T cells antitumor response;
Tregs differentiation and expansion

Cytotoxic-mediated apoptosis of cancer cells;
DCs maturation by releasing IFN-g;

NA

NA Anergic NK cells-mediated tumor immune evasion;
Angiogenesis induction releasing VEGF, PlGF, CXCL8;

Suppression of DCs and CD8+ T cells functions

Killing of CD1d+ tumor cells; IFN-g-mediated stimulation of CD8+

T cells immune response; Activation of NK cells
NA

IFN-g-mediated suppression of tumor growth IL13-mediated immunosuppression

Th1 cytotoxic immune response;
Stimulation of CD8+ T cells immune response;

NA

Antigen presentation to T cells Immunosuppression

NA Suppression of CD8+ T cells mediated immune response

Promote CD4+ T cell responses MMPs, chymase and tryptase-mediated metastasis;
VEGFA-mediated angiogenesis

genase; LOX-1, Lectin-like oxidized low-density lipoprotein (LDL) receptor-1; mDCs, mature dendritic cells; MDSCs, Myeloid-
traps; NK, natural killer; NKT, natural killer T; PMN-MDSCs, Polymorphonuclear-MDSCs; TANs, tumor-associated neutrophils;
tor-alpha; Treg, Regulatory T; VEGF, vascular endothelial growth factor; a-GalCer, glycolipid a-galactosylceramide.
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Tumor immune
microenvironment

(TIME)

Cell
subpopulations

Cell markers

Neutrophils

N1 TANs CD11b+, CD66b+, CD15+, CD16+, HLA-DR−, TNF-ahigh, CXCR2low,
CXCL8low

N2 TANs CD11b+, CD66b+, CD15+, CD16+, HLA-DR−, TNF-alow, CXCR2high,
CXCL8high, ARG1high

MDSCs

M-MDSCs CD11b+, CD15−, CD14+, HLA-DR−/low, S100A9+, CD33+, ILT3high

PMN-MDSCs CD11b+, CD14−, CD15+, CD66b+, HLA-DR−/low, Lox-1+

NK cells

Cytotoxic
NK cells

CD56dim, CD16+, Perfhigh, GRZhigh, TNF-ahigh, IFN-ghigh, NKG2Dhigh

Immature/
decidua-like
NK Cells

CD56bright, CD16low/−, Perf low, IFN-g low, TNF-alow NKG2Ahigh, NKG2Dlow,
CTLA-4+, PD-1+, CD9+, CD49a+, CXCL8+

NKT cells
Type I NKT TCR binding with a a-GalCer, CD3+, CD4+, CD8+, CD56+, CD161+

Type II NKT TCR bindings with sulfatide-loaded CD1d, CD3+

DCs
mDCs HLA-DR+, CD80+, CD83+, CD86+, CD208/DC-LAMP+

iDCs HLA-DRlow, CD80low, CD83low, CD86low, CD208/DC-LAMPlow

Tregs
CD3+, CD4+, CD25+, FoxP3+, CTLA4+, CD127low, PD-1+,

CTLA-4+, CD39+, CD73+

Mast cells FcϵR1a+, FcgRIIb/CD32+, CD117/c-kithigh, CD203c+, Tryptase+, CD103+

ARG1, arginase-1; HLA, human leukocyte antigen; iDCs, immature dendritic cells; IDO, indoleamine 2,3-dioxy
derived suppressor cells; MMP-9, matrix metalloproteinase-9; NA, not applicable; NETs, neutrophil extracellular
TGF-b, Transforming growth factor-beta; TIME, Tumor immune microenvironment; TNF-a, tumor necrosis fac
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from neutrophils (Table 1) (35). LOX-1+ PMN-MDSC numbers
increased with anti-PD-1 therapy in non-responders, suggesting
immunosuppressive functions in patients with NSCLC (36). A
poor NSCLC prognosis and recurrence after surgery have been
associated with increased circulating CD15+ LOX-1+ PMN-
MDSCs, thus displaying potential as a diagnostic marker for
NSCLC. In patients with advanced stages of lung cancer, there
have been reports of the accumulation of low-density neutrophils
(LDNs), CD66b+ PMNs, a subset of circulating neutrophils based
on their sedimentation properties (37). Following tumor tissue
infiltration and under specific tumor microenvironment cues,
TANs can acquire a tumor- suppressive (N1) phenotype or
become tumor-promoting/tolerogenic (N2) (Figure 1 and
Table 1). At the early stages of tumor development, N1 TANs
predominate. A cytotoxic action of TANs and tumor regression
was reported in a recent work employing a patient-derived
xenograft (PDX) mouse model of early-stage NSCLC that
received anti-PD-1 ICI, as a monotherapy or with cisplatin (38).

However, tumor growth, together with a shifted balance between
IFN-b and TGF-b, can favor N2 neutrophils and/or PMN-MDSC
accumulation. The release of tumor recruitment–soluble factors,
such as CXCL8, CXCL1, CXCL5, CXCL7, IL-6, and IL-1b,
enhances immunosuppressive neutrophil chemotaxis through
CXCR2 sensing, found to be highly expressed in NSCLC patients
(39, 40). In a murine lung cancer model, CXCR1/2 neutrophil
receptor inhibition granted access to CD8+ T cells to the
malignant tumor. Notably, the IFN-g signature was restored, thus
overcoming neutrophil-mediated immunosuppression and an
associated mitigation of the effectiveness of PD-1-targeted
immunotherapy (41). N2 TANS enhances the immunosuppressive
milieu by expressing high levels of PD-L1, arginase-1 (ARG1),
reactive oxygen species (ROS), nitric oxide (NO), IL-10, and TGF-
b1, shaping the tumor landscape and impairing T-cell-mediated
cytotoxicity (42) The expression of both CXCL8 and Arg-1 by
neutrophils is correlated with ICI therapy failure and poor prognosis
in NSCLC (43, 44). N2 TANs also increase angiogenesis by releasing
pro-angiogenic factors such as vascular endothelial growth factor
(VEGF), enhance extracellular matrix (ECM) remodeling, and
foster a pre-metastatic niche formation by directly acting as the
primary source of proteolytic enzymes (45, 46). High levels of an
MMP9:tissue inhibitor of metalloproteinase-3 (TIMP-3) ratio
have been found significantly elevated in NSCLC biopsies.
Furthermore, neutrophil elastase (NE) and myeloperoxidase
(MPO) high degranulation induce the formation of neutrophil
extracellular traps (NETs), directly implicated in metastasis (47,
48) (Figure 1). Accordingly, NETs are involved in a vascular
endothelium injury mediated by an inflammatory response (48),
as well as the wrapping and shielding of tumor cells from
cytotoxicity mediated by CD8+ T cells and NK cells (47, 49).
The Inhibition of NETosis sensitizes tumors to PD-1 plus CTLA-4
inhibition (47).

Several therapeutic strategies to suppress N2 tumor-
promoting phenotypes or reactivate their cytotoxic features
toward cancer cells are in preclinical and clinical phases of
evaluation (28). Main neutrophil- targeting approaches
neutralize tumor-derived chemokines, promoting their influx
Frontiers in Immunology | www.frontiersin.org 5
within the tumor microenvironment and conversion to an
MDSC-like phenotype/N2 TANS. Two recent studies suggested
that targeting MDSCs via the antagonism of GM-CSF and fatty
acid transport protein 2 (FATP2) by using lipofermata decreased
ROS and PGE2-levels and their immunosuppressive functions in
tumor-bearing mice (50, 51). Importantly, FATP2 enhanced
anti-PD-L1 tumor immunotherapy and inhibited tumor
progression (50, 51). Metformin also targets FATP2, disabling
the suppressive capacity of granulocytic myeloid-derived
suppressor cells eliciting Th1 and cytotoxic T lymphocytes
(CTLs) responses (52). Retrospective studies suggest the
synergist ic actions of metformin and conventional
chemotherapy, improving the survival and outcomes
o f pa t i en t s wi th NSCLC (53 , 54) . Targe t ing key
immunosuppressive factors in TIME such as TGF-b1 and
chemokine receptors CXCR1/2 through pharmacological
antagonists represent some of the strategies to block the
immunosuppressive milieu, leading to tumor growth and the
nonsuccess of immunotherapies.
Myeloid-Derived Suppressor Cells
Myeloid-derived suppressor cells (MDSCs) represent a group of
heterogeneous cells derived from immature myeloid progenitors
with strong immunosuppressive features and functions.
According to their phenotypic and morphological features,
MDSCs have been classified into two major subsets: monocytic
MDSCs (M-MDSCs) expressing CD14 and granulocytic or
polymorphonuclear (PMN-MDSCs) expressing CD15 and
CD66b; both types express CD33 in addition to CD11b with
the absence of HLA-DR (Table 1). Even though PMN-MDSCs
and neutrophils share similar phenotypic cell surface markers in
humans, they have a distinct unique transcriptomic/phenotypic
profile and functions that reflect the different roles within the
tumor setting: PMN-MDSC but not neutrophils display
immunosuppressive activities (55–57). A specific expression of
LOX-1, fewer granules, and a reduced expression of CD16 can
distinguish PMN-MDSCs phenotypically from neutrophils
(Table 1) (35, 57, 58). In addition, neutrophils are high-density
cells, whereas PMN-MDSCs are enriched in a low-density
mononuclear cell fraction (55, 59). On the other hand, M-
MDSCs can be distinguished from monocytes by detecting
MHC class II, expressed only on monocytes (HLA-DR+) (60).

M-MDSCs and PMN-MDSCs share similar features; both
enable immune response suppression but use different
immunosuppressive mechanisms. For instance, PMN-MDSCs
express high levels of ROS and low levels of NO, whereas M-
MDSCs are the opposite. M-MDSCs preferentially exert their
immunosuppressive functions by releasing IL-10, TGF-b, iNOS,
and Arg-1 (56, 61).

Several studies have reported an accumulation of M-MDSCs
in NSCLC patients (62–64). An increased pool of
CD11b+CD14⁻CD15+CD33+ MDSCs and decreased CD8+ T
cytotoxic lymphocytes have been reported in the peripheral
blood of NSCLC patients (65). Another study reported a
correlation between a subset of MDSC CD14+S100A9+, T-cell
July 2022 | Volume 13 | Article 914890
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suppression mediated by arginase, iNOS, IL-13/IL-4Ra axis, and
poor response to chemotherapy (66). Goeje et al. described
increased levels of MDSCs expressing immunoglobulin-like
transcript 3 (ILT3), identified as CD11b+CD14− CD33+CD15+

HLA-DR−ILT3high, associated with the immunosuppressive
function of ILT3 on DCs and with reduced survival (67).

MDSCs are recruited to the tumor site via chemokines such as
CCL2 and CXCL8 (68, 69). Of notice, CXCL8 is linked to the
recruitment and activation of MDSCs and neutrophils. Indeed,
the serum levels of CXCL8 may predict the responses to
immunotherapies (68, 70, 71). TGF-b signaling has also been
reported to promote the recruitment of MDSCs into tumors (72)
and directly induce the generation of CD39+CD73+ myeloid cells
in NSCLC patients via the activation of mTOR-HIF-1 signaling
(73, 74) (Figure 1). CD39+CD73+ MDSCs are a distinct
immunosuppressive subset, and their frequency in NSCLC
patients may be sufficient to predict the chemotherapeutic
response (74).

MDSCs are the largest producer of indoleamine 2,3-
dioxygenase (IDO), directly acting on the immunosuppressive
pathway of anti-tumor CD8+ T lymphocytes and the increase of
Treg cell activity in the lung tumor microenvironment (75)
(Figure 1). In a preclinical model of lung cancer, it was
demonstrated that MDSC-associated IDO modulates the in
vivo and ex vivo differentiation of B regulatory cells (Bregs), an
IL-10 producing subset of B cells, found to be reduced in tumor-
bearing IDO deficient mice (IDO-/-) (76). The anti-immune
functions of MDSCs involve different mechanisms such as the
production of NO, ROS, and the elimination of arginine required
for T lymphocyte functions. In a KrasG12D GEMM of a lung
adenocarcinoma model, the suppression of MDSC arginase
activity by an ARG1 inhibitor restored T-cell function by
increasing arginine (77). MDSCs could also enhance
angiogenesis and metastasis through the production of MMP9
and VEGF (Figure 1). A tight association of PMN-MDSC
number with a patient response to the ICI anti-PD-1 has been
reported (36). An enhanced APC activity and increased
frequency of CD8+ T or NK intracytoplasmic expression of
IFN-g, perforin, and granzyme were found following MDSC
depletion (36). Accordingly, another study demonstrated an
increased number and function of NK- and T-cell effectors in
the tumor and enhanced therapeutic vaccination responses after
the depletion of MDSCs (78). Therefore, the inhibition of MDSC
functions represents the key therapeutic solution to restore anti-
tumor T lymphocyte effector responses and successful
immunotherapy. Until today, only a few preparations endorsed
by the U.S. Food and Drug Administration (FDA) have been
described to have prominent effects on the recruitment and
function of MDSCs (e.g., ATRA, vitamin D, gemcitabine, and
bevacizumab). Considering the promising results of targeting
MDSCs in murine models of lung cancer, various clinical trials
are now ongoing in NSCLC patients (NCT02922764;
NCT03846310; NCT03801304; NCT04262388). Breakthroughs
in this research area should promote the rational design of new
strategies to target MDSCs to improve clinical responses to
current immunotherapies.
Frontiers in Immunology | www.frontiersin.org 6
Natural Killer Cells
NK cells represent innate effector lymphocytes with abilities to
counteract or limit both tumor cells and virus-infected cells (79).
In humans, the cell surface expression of the CD56 marker is the
main phenotype marker for NK cells in association with a
negative lineage-defining signature (CD3−, CD14−, CD19−, and
TCR−), whereas in mice, it is the NK1.1 marker. NK cells do not
need specific antigen stimulation but are activated toward
neoplastic or stressed cells through the fine balance between
multiple invariant activating and inhibitory receptors. The major
inhibitory receptors are represented by the killer cell
immunoglobulin–like receptor (KIR) family, which represents
17 distinct genes endowed with a high polymorphism, and the
CD94/NKG2A heterodimer. Recognizing MHC Class I (MHC-I)
molecules on a target cell, inhibitory receptors block NK cell
activation (80).

When MHC-I are lost, or their expression is diminished, and
this is the case of most tumor developments, NK cells become
more susceptible to activation through the involvement of
multiple activating receptors such as NKp30, NKp46, NKp44,
CD16, NKG2D, DNAX accessory molecule1 (DNAM1), 2B4,
and NKp80. Human peripheral blood NK cells can be classified
into two subsets in relation to the expression of CD56 and CD16
markers: CD56dimCD16+ NK cells (comprising 90%–95% of total
blood NK cells), characterized by their cytotoxic activity exerted
by perforin and granzyme release and mediating antibody-
dependent cellular cytotoxicity (ADCC) and CD56brightCD16–

NK cells (5%–10% of total circulating NK cells), endowed with
the capacity of proinflammatory cytokine production, such as
IFN-g and TNF-a and regulatory cytokines like IL-10 (81).

In NSCLC, it has been reported that intratumor NK cells
profoundly modify their phenotype and functions, with the
expansion of a CD56brightCD16– NK cell subset, impairment of
cytotoxicity, inhibition of IFN-g release, and acquisition of pro-
angiogenic features (Table 1) (82, 83). This tumor-dependent
NK cell subset has similarities with a different NK cell subset
termed decidual NK (dNK) cells that was identified within
dec idua . Th i s dNK ce l l subse t was iden t ified as
CD56superbrightCD16– NK cell, and it was shown to be an
important regulatory cell in the maternal–fetal interface
because of its ability to release not only several pro-angiogenic
cytokines and growth factors such as VEGF, PlGF, and CXCL8
but also IFN-g, which are essential to driving the spiral artery
formation during the embryo development (84).

Also, in the context of other types of solid cancers, NK cells
accumulating within the tumor microenvironment had immature
features and a CD56brightCD16low/−Perflow phenotype (Table 1).

Several soluble factors derived from tumor cells or
neighboring innate immune or stromal cells can inhibit and
alter NK-cell functions such as TGF-b, PGE2, IDO, adenosine,
and IL-10 (85).

We were the first to characterize the decidual-like
CD56brightCD16− of NSCLC patients with the ability to release
pro-angiogenic factors: VEGF, PlGF, and CXCL8 (Figure 1)
(Table 1). The NK-cell subset had the in vitro ability to trigger
human umbilical vein endothelial cell (HUVEC) migration and
July 2022 | Volume 13 | Article 914890
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the formation of capillary-like structures (86, 87). These peculiar
functions are not restricted to the intratumoral NK cells but are
also present in their peripheral blood counterpart, suggesting
that vascular network induction occurs at a systemic level, too.
Moreover, these pro-angiogenic features were detected at a
higher intensity in NK cells from patients with squamous cell
carcinomas than those with adenocarcinomas. Interestingly, the
expansion of pro-angiogenic and decidual-like NK cells was also
detected in malignant pleural effusions, colorectal cancer, and
prostate cancer patients (88–90).

Recently, Russick et al. analyzed the gene expression profile of
intratumoral NK cells and found that in comparison to non-
tumorous NK cells, immune cells had a significant decrease of
sphingosine-1-phosphate receptor 1 (S1PR1) and CX3CR1 with
a concomitant increase of CXCR5 and CXCR6. Intriguingly, they
also showed that intratumoral NK cells express inhibitory
molecules: CTLA-4 and killer cell lectin like receptor (KLRC1),
together with a high expression of CD69 and NKp44, conferring
inhibitory capabilities in the context of TIME (91). Indeed, the
co-culturing of purified NSCLC NK cells with tumor cells and
CD11c+ peripheral blood autologous DC in the presence of LPS
resulted in the impairment of DC maturation expressed as a
percentage of MHC class II and CD86 on DCs. Interestingly, this
phenomenon was partially counteracted by the addition of
CTLA-4-blocking antibodies. However, the precise mechanism
is still not clear, and beyond CTLA-4 expression, other
mechanisms could be involved, such as yet-unidentified
secreted molecules from NK-cell-derived tumor cells. However,
in a tumor mouse model, another possible mechanism of NK-
cell-dependent DC inhibition has been identified via PD-L1 with
PD-1 expressed on DCs (92).

Moreover, a high intratumor density of NK cells is correlated
with an improved clinical outcome only in patients with a low
infiltration of CD8+ T cells, while in patients with elevated CD8+

T lymphocyte counts, NK cells conferred a negative impact (91).
At later stages, lung tumoral NK cells showed significantly
attenuated cytotoxicity, the reduction of levels of granzyme B,
perforin, CD107a, IFN-g, TNF-a, cytotoxic receptor CD27,
activating receptor NKG2D, and a higher expression of the
inhibitory receptor NKG2A (93).

Natural Killer T Cells
Natural killer T cells (NKT) cells are a subset of heterogeneous
innate-like T lymphocytes CD1d-restricted, recognizing lipid
antigens and co-expressing both the T-cell receptor and NK-
cell markers, such as CD56, CD16, and NKp46 in humans and
NKp46 and NK1.1 in mice. NKT cells can be subdivided into two
major subsets: type I and type II NKT cells according to TCR
rearrangements and glycolipid reactivity (94, 95).

Type I or invariant NKT (iNKT) cells are cytotoxic cells that
express an invariant TCRa chain rearrangement, whereas TCRb
chains present a restricted repertoire. These cells include several
subsets called NKT1, NKT2, and NKT17, with similarities to
Th1, Th2, and Th17 T-cell subsets, respectively. Type II NKT
cells, conversely, display a more diverse repertoire of Va
rearrangements (96, 97). Whereas it is well documented that
iNKT cells participate in the anti-tumor response (98), type II
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NKT cells, on the contrary, enhance tumor growth and
metastasis, thus indicating a pro-tumor activity.

The predominant anti-tumor feature of iNKT cells mainly
resides in their capacity to release large amounts of Th1
cytokines, such as IFN-g, in addition to their ability to kill
CD1d-positive tumor cells (99, 100) (Table 1).

Several studies have shown a relationship between the
number and activity of iNKT cells and clinical outcomes,
making these cells an interesting therapeutic tool against
cancer development and metastasis (99, 101).

However, in NSCLCs, it has been shown that iNKT cells were
diminished both in blood and in bronchial lavage samples from
patients (102). Moreover, the lung CD1d expression is lowered in
NSCLC patients and weak CD1d mRNA expression is
significantly associated with poor prognosis. Together, this
could indicate a role played by these cells in immunity against
NSCLC (102). In vitro studies using DNA methyltransferase and
histone deacetylase inhibitors on two CD1d-negative NSCLC cell
lines: A549 and SK-MES-1, showed the induction of CD1d
expression and cytotoxicity directed toward them by iNKT
cells, making epigenetic manipulation an interesting
immunotherapeutic approach against NSCLC.

A study protocol was mentioned in an ongoing exploring
phase I/II clinic trial on 30 patients with EGFR mutation–
positive stage III/IV NSCLC that will evaluate the efficacy and
safety of using allogeneic CD3+CD8+ iNKT cells in combination
with EGFR-TKIs such as gefitinib (103).

Dendritic Cells
Dendritic cells (DCs) are antigen-presenting cells (APCs) and
consist of three major subsets: myeloid conventional DC1s
(cDC1s), myeloid conventional DC2s (cDC2s), and
plasmacytoid DCs (pDCs) (104). Several lines of evidence
point out that all DC subsets have the capacity to trigger anti-
tumor T- cell responses and that DC1s need cooperativity with
the other DC subsets (105). Interestingly, it has been shown that
DC1s regulate the response to ICIs in mouse models and
correlated with better OS in patients with cancer; however,
DC1s can be expanded in tumors that resist checkpoint
treatment, suggesting that these cells may be altered in their
functions (106). Maier et al., using single-cell RNA sequencing in
human and mouse NSCLC specimens identified a type of DCs
nominated “mature DCs abundant in immunoregulatory
factors” (mregDCs), which possessed both immunoregulatory
genes (Cd200, Cd274, and Pdcd1lg2) and maturation genes
(Cd40, Ccr7, and Il12b). The mregDC function was detected in
both DC1 and DC2 subsets upon interaction with tumor
antigens and can exert a dual role, both regulatory and
immunogenic. It has been shown that the two key steps crucial
for regulatory effects driven by mregDCs were the upregulation
of PD-L1 and of IL-12, the first was under the control of the
receptor tyrosine kinase AXL while the second under the control
of IL-4 signaling (106).

Moreover, immature DCs (imDCs), which are present
sometimes in high numbers in the tumor microenvironment,
can coordinate an immunosuppressive microenvironment
together with other innate cells, such as Tregs, MDSCs, and
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TAMs (Figure 1 and Table 1) (107, 108). Several lung patients
could present tertiary lymphoid structures in the stroma of
NSCLC, representing a well-organized compartment with
lymphocytes and a rise in the density of DC-LAMP+ mature
DCs, suggesting that these structures might participate in
antitumoral immunity. Indeed, several studies showed that
these structures were associated with a favorable clinical
outcome, together with a Th1 cytotoxic immune response and
effective infiltrating CD8+ T cells (109, 110).

Interestingly, Inoshima et al. reported an immunohistochemical
study in which they analyzed 132 lung cancer specimens showing
that a high expression of VEGF and microvessel density is
associated with low intratumoral DC infiltration and worse
prognosis, whereas low VEGF and high DC are correlated with a
better prognosis (111). VEGF that could be produced not only by
tumor cells but also by TAMs and NK cells, in addition to having a
role in tumor vascular formation, also has a role as an inhibitory
molecule for several classes of immune cells, including DCs.
Therefore, the subtle regulatory mechanisms involved in the
TIME between NK and DC interactions, not yet fully elucidated,
as seen above via CTLA-4 or PD-1 on NK cells, could underlie the
divergent functions of DCs and, in some cases, therefore lead to
negative outcomes for the immune response, that is, the expansion
of TAMs and Tregs, with a protumoral effect (91, 92).
Mast Cells
Mast cells are bone marrow–derived immune cells with multiple
protective functions against invading microorganisms and
harmful agents. These long-lived immune cells exert their
regulatory functions in immunity and inflammation by
producing key inflammatory mediators, such as tryptase,
VEGF, IL-10, TGF-b1, and MMP9, and the relevant data of
their anti-tumor or pro-tumor features have been reported
(Figure 1 and Table 1). Interestingly, Fontanini et al.
investigated the relationship between tumor angiogenesis and
survival in 407 NSCLC patients (112). In this study, a worse
prognosis was significantly correlated with the increase of the
tumor blood vessel network. However, in 2007, a meta-analysis
did not confirm an independent prognostic role of vascular
density in patients with non-metastatic-treated NSCLC
patients (113). The expression of VEGF-A, VEGF-C, and
VEGFR-1 was associated with a worse outcome in patients
with NSCLC (114). A significant prognostic value of the
overexpression of FGF-2 has been reported in patients with
operable NSCLC (115). Mast cells are correlated with
angiogenesis and a poor outcome in lung adenocarcinoma
(116, 117). Angiogenesis assessed by microvessel counts is
related with a poor outcome in stage I NSCLC (112, 118–120).
Other authors have shown no significant correlations with
respect to survival in patients with NSCLC for microvessel
density or mast cell infiltration. (121–127). Niczyporuk et al.
did not show any correlation between the mast cell count,
microvascular count, and survival rate in NSCLC (128). There
is no correlation between intratumoral mast cells and
angiogenesis in NSCLC (129) and between mast cells and
survival in NSCLC (125).
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Mast cells present in tumor cell islets are correlated with a
marked survival advantage in NSCLC (130). Indeed, whereas
mast cell numbers are similar in the tumor stroma of patients
with surgically resected NSCLC with no difference to their
survival status, there is a substantial survival advantage when
mast cells are localized within the clusters of tumor epithelial
cells or tumor cell islets (130, 131).

Furthermore, Tomita et al. (132) and Welsh et al. (130)
determined a strict correlation between the number of mast
cells and a good prognosis in NSCLC. Mast cells have a pro-
tumorigenic effect on lung tumor cell lines and an anti-
tumorigenic effect in vivo (133). Conversely, Stoyanov et al.
(133) have reported a significant effect of mast cells and
histamine in enhancing NSCLC cell proliferation in vitro,
whereas in the Lewis lung mouse carcinoma model, they have
found that mast cells are crucial negative regulators of
cancer development.

Tregs
Regulatory T lymphocytes (Tregs) are involved in the
homeostasis of the immune system, inhibiting autoimmune
disorders. Moreover, these cells collaborate with other cells and
factors in establishing immunosuppressive TIME (Figure 1)
(134–136).

The transcription factor forkhead box P3 (FoxP3) is crucial
for peripheral naïve T cells to become competent Treg cells
(Table 1). In lung cancer, Foxp3+ Tregs, which suppress auto-
reactive T cells to maintain immunological self-tolerance and
inhibit autoimmunity, are associated with advanced tumor
growth and poor prognosis (137–139). In patients with
NSCLC, augmented numbers of blood and intratumoral Tregs
are correlated with worse prognosis and a higher risk or
recurrence (140).

Several investigations reported significantly higher percentages
of CD4+CD25+FoxP3+ Tregs in patients with advanced metastatic
NSCLC compared to healthy donors (141–144), whereas the high
percentage of CD152+CD4+CD25highFoxP3+ Tregs is correlated
with a more advanced stage of disease (141, 145). Moreover, two
studies reported a prognostic value of blood CD4+FoxP3+ Tregs in
stage I–III NSCLC patients (146, 147).

In NSCLC patients, CD4+CD25+ Treg subtype functions were
associated with their FoxP3, CTLA-4, and IL-7Ra expression,
and their blood levels were correlated with the clinical outcome
of the patients. Conversely, no difference was found in the
percentage of CD4+CD25+FoxP3+ Treg between the entire
NSCLC patients and healthy donors (148). Interestingly Tao
et al. (139) demonstrated that in NSCLC, there was no significant
relationship between the Treg number and the tumor Foxp3
status. However, increased numbers of Tregs were associated
with worse overall and relapse-free survival, whereas there was
no correlation between the tumor FoxP3 status and survival. In
the meantime, when FoxP3+ cells were detected within the
tumor, the Treg expansion was correlated with the attenuation
of worse prognosis. Conversely, the patients in which there was
no tumor FoxP3 expression and elevated Treg count had
significantly worse overall and relapse-free survival.
Collectively, these findings suggest that tumor FoxP3
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expression has a better prognostic potential in NSCLC and that,
in combination with intratumoral Tregs, the absence of the
tumor FoxP3 is correlated with high-risk patients.
THE LUNG TIME AS A TARGET
FOR THERAPY

The microenvironment of lung cancers is heterogeneous and
plays an important role in determining the outcome. The lungs
present a unique milieu in which tumors progress in synergy
with the TIME, as evidenced by the regions of aberrant
angiogenesis, inflammation, and hypoxia. The altered
vasculature seen in lung cancers contributes to hypoxia and
makes it difficult to efficiently deliver agents through the
bloodstream. Hypoxia is associated with an increased risk of
metastases as well as resistance to radiation therapy and perhaps
chemothe r apy . Neu t roph i l s domina t e th e tumor
microenvironment of NSCLC, suppressing T cells and
promot ing immunosuppress ion . The mul t i f ace ted
microenvironment of lung tumors represents many potential
targets for the development of novel anticancer agents. As with
other cancers, in NSCLC, chronic inflammation represents a
major risk factor for the development and progression of cancer.

Tumor-infiltrating CD8+ T lymphocytes were associated with
improved anti-tumor immunity, as well as with better prognosis
in the advanced stage of NSCLC patients (149). Other cell types,
such as TAMs and TANs and their subtypes, have their own
prognostic effects in NSCLC (150). Furthermore, Tuminello et al.
demonstrated the positive role of CD8+ T cytotoxic cells, CD20+

B cells, and NK cells with survival in patients with early
resectable NSCLC (151).

The assessment of tumor inflammation is also of interest, but
again, various approaches are being pursued, including a
histological assessment of immune cell infiltrates and the
mRNA-based expression signatures of immune-related genes.
Increased numbers of antitumor CD8+ and CD4+ T cells have
been associated with responding tumors and improved survival,
whereas elevated frequencies of Tregs render tumors refractory
to immune effector cells (152). The altered vasculature in NSCLC
contributes to hypoxia and makes it difficult to efficiently deliver
agents through the bloodstream. We have a variety of clinically
applicable agents that can modulate the TIME in a way that
might improve the response to cytotoxic therapy.

Molecular-targeted therapy represents a fundamental aspect
in the treatment of advanced NSCLC. In the past few years, the
identification of new molecular subtypes, the search for tumor
driver gene mutations, and the development of molecular
targeted drugs, such as agents that are able to suppress tumor
angiogenesis and regulate tumor immune response, have been
the main directions of NSCLC research, clinical diagnosis,
and treatment.

In metastatic NSCLC, cytotoxic chemotherapy has been
replaced with targeted therapy or immunotherapy. The gene
mutation status of EGFR in the tumor tissues of NSCLC is closely
related to the efficacy of the TKIs. Getifinib was the first EGFR-
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TKI tested in patients with advanced NSCLC. The discovery of
EGFR mutations provided the biological explanation for the
clinical predictors of response to EGFR-TKIs (153). Virtually, all
EGFR mutation patients developed acquired resistance to
therapy. EMT is implicated in mediating resistance to EGFR
inhibitors, chemotherapy, and other targeted drugs in lung
cancer (154). In NSCLC, invasive tumor growth is associated
with a desmoplastic stroma reaction and the upregulation of
EMT markers at the invasive front (155). The inflammatory
component of the tumor microenvironment stimulates EMT in
lung cancer by contributing to hypoxia, angiogenesis, and the
different regulations of miRNAs (156).

Second-generation EGFR TKIs, including afatinib,
dacomitinib, and neratinib, have been developed with the
intent to delay or overcome acquired resistance (157). Afatinib
and dacomitinib resulted in more efficacy than gefitinib in terms
of progression-free survival (PFS) and the response rate, whereas
gefitinib is associated with fewer side effects (157).

Immunotherapy with anti-PD-1/PD-L1 antibodies has
modified the treatment of locally advanced and metastatic
NSCLC. The approval of the anti-PD-1 agent pembrolizumab
as a standard-of-care first-line treatment in selected patients has
made PD-L1 immunohistochemistry a mandatory test in all
patients with advanced NSCLC. Immunotherapy alone
(pembrolizumab) or in combination with chemotherapy
(pembrolizumab or atezolizumab) is the standard of care for
first-line therapy in stage IV NSCLC.

In the mouse models of lung cancer, the anti-PD-L1 approach
is associated with a rise in exhausted CD8+ T lymphocytes (158).
At the same time, enhanced numbers of PD-1+CD8+ T
lymphocytes were correlated with reduced survival in stage II
and III patients (149). The increased expression of CD38 on T
cells after PD-1/PD-L1 ICI favors to acquired resistance by
inhibiting CD8+ T lymphocyte proliferation and inducing an
exhausted phenotype (159). Koh et al. (160) analyzed the
correlation between Foxp3+ T cells with clinical outcomes
before and after anti-PD-1 immunotherapy in patients with
advanced NSCLC and found that a higher frequency of blood
Tregs 1 week after immunotherapy was associated with
prolonged PFS and OS when compared with patients with a
low frequency of Tregs. In the meantime, a high expression of
TGF-b was correlated with high levels of Tregs and with a
favorable clinical outcome.
ANTI-ANGIOGENIC THERAPIES

Angiogenesis has been strictly related with occurrence,
proliferation, and metastasis (161). Targeting the angiogenesis
process has been reported to be efficacious in diverse types of
cancers, including NSCLC (22). Abnormal vasculature
participates in the tumor escape. Anti-angiogenetic agents can
normalize blood vessels and thereby reset the TIME from
immunosuppressive into immunoreactive. Therefore,
combining immunotherapy with anti-angiogenics seems to be
a promising strategy for cancer treatments.
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The mechanisms appear to be complex and quite a vicious circle
where the abnormality of angiogenesis causes an increase in acidity,
hypoxia, and interstitial pressure (161, 162), which, later on, are
associated with modifications at the molecular and genetic level in
blood vessel formation and proliferation, and thus exacerbating and
feeding a hostile tumor microenvironment.

In clinical terms, we already have a few monoclonal
antibodies approved by the FDA and EMA for the treatment
of various cancer types (bevacizumab-binding to VEGF-A,
ramucirumab-targeting VEGFR2). By inhibiting the interaction
between the VEGF and VEGFR or targeting downstream
signaling, these compounds could block tumor angiogenesis.
Their efficacy has been proven as a combination therapy with
other cytotoxic agents (carboplatin and paclitaxel plus
bevacizumab (163), or docetaxel plus ramucirumab (164);
meanwhile, as a monotherapy, it showed a limited therapeutic
effect in cancer treatment (165).

Ideally, anti-angiogenesis reduces thevascular supply, and
thereby impairs tumor cell replication by starving the tumor,
but this phenomenon could also decrease the delivery of
combination drugs.

Some recent attempts have been taken to solve this paradox.
“Vessel normalization” stands at the basis of resetting the
perfusion function and structure, enhancing the antitumor
immune response by implementing immune cell infiltration
(165–168). This procedure gives promises for anti-angiogenesis
combined therapies.

Nonetheless, due to the cancer heterogeneity and the multiple
aspects of the TIME, the global response rates to ICI therapy are
still limited (169). One major factor decreasing the efficacy of ICIs
seems to be the elevated recruited numbers of immunosuppressive
cells and scarce infiltration of effector cells into the TIME (170).

Latest studies have indicated that pro-angiogenic factors in
the tumor microenvironment favor and trigger the development
of immunosuppressive cells, and in the meantime, neo vessels
impair the infiltration of immune effector cell cancer (171–173).

The use of ICIs in combination with anti-angiogenic agents is
hypothesized to be a promising strategy to enhance the global
therapeutic efficacy.

There is a progressive and increased understanding on the
possible effectivity of anti-angiogenic and IO combination.
Nowadays, there are many preclinical and clinical trials
suggesting that angiogenesis affects the TIME toward an
immunosuppressive state by modifying the recruitment of
immune cells (174–178). Later, clinical studies supported that
the inhibition of the VEGF/VEGFR signaling can restore the
anti-tumor T effector response (172). The use of bevacizumab
(avastin) resulted in enhanced cytotoxic T lymphocyte functions
in NSCSL as well as in CRC patients (179, 180).

It is well established that TIME is a complex, time-evolving
ecosystem consisting not only of tumor cells but also of immune
cell blood vessels, stroma cells, and different soluble factors,
which turn off antitumor immune responses and favor ineffective
immunotherapies (181).

Overstimulation by VEGF signaling in cancer leads to
abnormal angiogenesis characterized by increased interstitial
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fluid pressure, hypoxia, and acidosis. This phenomenon leads
to the suppression of the antitumor response through multiple
distinct mechanisms (182, 183).

Hypoxia facilitates the infiltration of suppressive immune
cells (Tregs, MDSCs, TAMs, and imDCs) by inducing the
expression of chemokines (like CSF1, GM-CSF, IL-6, and IL-
10) that recruit these immune cells (184); on the other hand, it
also inhibits the infiltration of effector T cells through the
activation of VEGF (185).

The stimulation and regulation of several key immune cells of
TIME such as DCs, MDSCs, Tregs, and TAMs are under the
control of VEGF signaling (186, 187). Immunosuppressive
factors IL-10, IDO, and TGF-b released by these suppressive
immune cells increase even more the immunosuppressive status
of TIME (188).

Noteworthy, the inhibition of the VEGF signaling impairs the
recruitment of suppressive cells into the tumor microenvironment
and, at the same time, increases the infiltration of effector T cells
(189). This fact implies that anti-VEGF/VEGFR therapy not only
targets the blood vessel function but has the capacity to reactivate
antitumor immune responses (173).

In addition to the above negative effects played by VEGF,
another effect is related to their capacity to influence an
enhanced expression of PD-1, Tim3, and CTLA-4 on activated
CD8+ T lymphocytes (190). Moreover, VEGF inhibition could
result in enhanced IFN-g production and consequently the
induction of PD-L1 expression on tumor cells. This
phenomenon provides a strong promise for the anti-angiogenic
and ICI drug combined treatment (172, 173).

Currently, we already have the clinical data of a phase III trial
Impower 150 (191), which showed a clinical benefit of the
combination of IO and bevacizumab plus chemotherapy in
NSCLC; in the meantime, other clinical trials are ongoing to
assess the safety and efficacy of this new combination therapy in
NSCLC (NCT01454102 (CM 012), NCT03689855 (RamAtezo-
1), NCT03836066 (TELMA), and others.
IMMUNOTHERAPEUTIC APPROACHES

Current ICIs directed to CD28-CTLA4/B7 and PD-1/PD-L1 can
unleash the power of T cells toward cancer cells by eliminating
negative signals that block T-cell functions (192) (193, 194).

Several immune cells such as T cells, NK cells, B cells, and
monocytes express PD-1 (195).

Monoclonal antibodies against PD-1, PD-L1, and CTLA-4 are
the most used ICIs for NSCLC patients. A number of PD-1, PD-
L1, and CTLA-4 inhibitors, including pembrolizumab (196),
nivolumab (197), atezolizumab (198), durvalumab (199),
avelumab (200), and ipilimumab (201), have been approved
for the treatment of advanced NSCLC.

The anti-PD-1 agent pembrolizumab is approved for use as
first- and second-line therapy in patients with advanced NSCLC
whose tumors express PD-L1 in immunohistochemistry analysis.
Nivolumab (anti-PD-1) and atezolizumab (anti-PD-L1) are both
indicated for use as second-line therapies regardless of PD-L1
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expression. Durvalumab (anti-PD-L1) is approved as a
maintenance therapy in patients with unresectable stage III
NSCLC whose disease has not progressed following concurrent
platinum-based chemoradiotherapy.

Five randomized phase II–III trials testing three ICIs
(nivolumab, pembrolizumab, and atezolizumab), all showed a
clinically and statistically significant advantage over the same
standard comparator docetaxel (21, 22, 197, 202, 203)

ICIs were tested in locoregional NSCLC. A phase III trial
demonstrated that adjuvant durvalumab in stage III NSCLC
non-progressing after concomitant chemo-radiotherapy
improved not only PFS but also OS (204).

Pembrolizumab and nivolumab approval is strictly related
with a positive PD-L1 expression.

Checkpoint inhibitors can be used as a combination therapy
or as a monotherapy in first- and second-line treatments. The
Pacific trial (205) brought immunotherapy in a locally advanced
setting and later on, with the publication of IMpower 010 (20),
immunotherapy will probably be a practice changing even in
early-stage lung cancer.
CHALLENGES AND FUTURE DIRECTIONS

A prognostic role of many TIME biomarkers is not yet part of the
current clinical practice, so further investigations that include
larger patient cohorts will be necessary.

ICI alone or in combination with chemotherapy or in
combination with other ICIs should be the first-line treatment
of choice for patients with advanced NSCLC who do not have
contraindications to immunotherapy and whose tumors do not
harbor actionable driver mutations. Advances with
immunotherapy have offered patients with lung cancer
substantial improvements in survival and the quality of life.
However, better predictive biomarkers are required to ameliorate
the benefit of immunotherapy, and further investigations are
needed to find out the mechanisms of resistance to ICIs and how
to overcome it. Whereas the PD-1 and PD-L1 ICIs have received
accelerated FDA approvals, the development of predictive and
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prognostic biomarkers for these agents have lagged far behind
and remains a crucial area for future research.

The ability to increase the clinical benefit for higher numbers
of NSCLC patients and preventing drug resistance will be
essential prerequisites to achieve in the near future and related
to the acquisition of more knowledge of the induced mechanisms
underlying effective antitumor effector responses. The next step
will be to better identify patients at the risk of primary or
acquired resistance and use increasing amounts of translational
research data to develop more effective combination therapies,
making the promise of ICIs available to all patients with NSCLC.
This is the only way to achieve further advances in cancer
immunotherapy and succeed in making the promise of ICIs
for all patients.
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