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A B S T R A C T   

The structure-activity analysis (SAR) and machine learning were used to investigate potential 
anti-S. aureus agents in a faster method. In this study, 24 oxygenated benzene ring components 
with S. aureus inhibition capacity were confirmed by literature exploring and in-house experi-
ments, and the SAR analysis suggested that the hydroxyl group position may affect the anti- 
S. aureus activity. The 2D-MLR-QSAR model with 9 descriptors was further evaluated as the best 
model among the 21 models. After that, hesperetic acid and 2-HTPA were further explored and 
evaluated as the potential anti-S. aureus agents screening in the natural product clustering library 
through the best QSAR model calculation. The antibacterial capacities of hesperetic acid and 2- 
HTPA had been investigated and proved the similar predictive pMIC value resulting from the 
QSAR model. Besides, the two novel components were able to inhibit the growth of S. aureus by 
disrupting the cell membrane through the molecular dynamics simulation (MD), which further 
evidenced by scanning electron microscopy (SEM) test and PI dye results. Overall, these results 
are highly suggested that QSAR can be used to predict the antibacterial agents targeting S. aureus, 
which provides a new paradigm to research the molecular structure-antibacterial capacity 
relationship.   

1. Introduction 

Staphylococcus aureus (S. aureus) is a food-borne pathogen widely in variable food products. It can produce Staphylococcal en-
terotoxins and further cause serious public health problems, for instance, gastroenteritis [1]. In the United States, there were 1019 
illnesses and 127 hospitalizations caused by S. aureus, which represented 12.8 % of all foodborne outbreaks [2]. Besides, the European 
Food Safety Authority highlighted Staphylococcal enterotoxins as one-fourth bacterial toxins which led to foodborne outbreaks in the 
European Union in 2020 [3]. It has been reported that S. aureus can contaminate many different types of foods, such as raw meat, milk 
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and milk products, and even the ready-to-eat foods, as well as frozen foods [4]. S. aureus has been considered a majority threat to public 
health. Therefore, it is urgent to limit the growth of S. aureus and reduce economic costs. 

Natural products with nontoxic properties and significant antimicrobial capacities have been considered as the substitutions for 
artificial bacteriostatic based on the recent demand by consumers. The antimicrobial properties of the secondary metabolites from 
plants have been proved by the FDA and applied in food, cosmetic, as well as pharmaceutical industries [5]. Among these, oxygenated 
benzene ring components formed with the aromatic structure showed significant bacteriostatic effects. For instance, eugenol, thymol, 
and carvacrol, which were structured as an aromatic ring with a hydroxyl group binding, were reported with a broad spectrum of 
antibacterial capacity [6]. Cinnamaldehyde was also proven with significant antimicrobial capacity and has already been applied in 
food preservation. It was suggested that the aldehyde structure containing may strengthen the antimicrobial capacity compared with 
carbonyl groups containing [7]. Besides, aromatic acids, such as cinnamic acid, gallic acid, and vanillic acid, also exhibited broad 
antibacterial capacity [8,9]. However, with the emergence of resistance of S. aureus, traditional methods of antibacterial agent 
screening required higher cost and longer time. Exploring a data-driven, sustainable, and expeditious approach toward discovering 
natural inhibitors against S. aureus represents a promising avenue for future research [10,11]. 

Quantitative structure-activity relationship (QSAR) is an alternative approach to reduce the cost and improve the efficiency of 
bacteriostatic findings [12]. QSAR model can be used for interpreting the relationships between the structure and the biological 
properties [13], and for predicting biological, chemical, as well as physical properties of specific structured components by machine 
learning [14]. In addition, natural products have been investigated and identified variable biological activities in food applications by 
the QSAR model [15]. The predicted model was applied to the inhibitory activity of oxygenated aromatic compounds against Geo-
trichum citri-aurantii [16]. In addition, the inhibitory effect of oxygenated aromatic compounds was suggested to be related to the 
number and position of hydroxyl, and aldehyde groups, as well as the length of ester chain in the structure-activity relationship (SAR) 
analysis. It further provided theoretical guidance for the design of anti-Geotrichum citri-aurantii drugs for the effective controlling of 
citrus sour rot. However, to the best of our knowledge, the SAR study has not been used to investigate the relationships between 
oxygenated benzene ring components and their anti-S. aureus activities. 

In this research article, there first aimed to set up a reliable QSAR model among the selected data, and then predict the potential 
bacteriostatic agents featured with oxygenated benzene ring structures through the QSAR model. The novel natural components were 
evidenced the investigated the anti-S. aureus activities and mechanisms, which also confirmed the efficiency of the QSAR model. 
Finally, there could be a new paradigm for researching the molecular structure− antibacterial capacity relationship. 

Fig. 1. Structure and pMIC value of 24 oxygenated benzene ring compounds (Notation: Me, methyl; Pr, propyl; i-Pr, isopropyl. Experimental data: 
in-house activity data). 
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2. Materials and methods 

2.1. Materials 

Hesperetic acid, 2-hydroxybenzene-1,4-dicarboxylic acid (2-HTPA), thymol, carvacrol, eugenol, cinnamaldehyde, salicylic acid, 
trans-cinnamic acid, and trans-ferulic acid, as well as ethanol were purchased from Shanghai Macklin Biochemical Co., Ltd. Tween 80 
was supplied by Beijing Solarbio Science & Technology Co., Ltd. LB broth was purchased from Beijing Aoboxing Bio-tech Co., Ltd. 
S. aureus 186335 was obtained from Beijing Beina Chuanglian Biotechnology Institute. Bacillus subtilis CMCC63501 (B. subtilis), 
Pseudomonas aeruginosa ATCC27853 (P. aeruginosa), and Escherichia coli ATCC25922 (E. coli) were purchased from Beijing Solarbio 
Science & Technology Co., Ltd. 

2.2. MIC test 

MIC test of thymol, carvacrol, eugenol, cinnamaldehyde, salicylic acid, trans-cinnamic acid, and trans-ferulic acid was processed in 
the 96-well plate method. The concentration of these components was diluted following the double dilution method. The antibacterial 
agents were completely mixed with S. aureus (1:1, v: v) and inoculated for 24 h at 37 ◦C [17]. The first clear well was recorded as the 
MIC value respectively. The results were further concluded with the data from online literature and converted to pMIC value [16], 
which was calculated for further model building, and sorted in Fig. 1. 

2.3. Literature data collection 

The online data of oxygenated benzene ring components with anti-S. aureus capacity was indexed from “Web of Science” and 
“PubMed” with the keywords “against S. aureus”, “antibacterial”, “antibacterial agent”, “against Staphylococcus aureus”, “Natural 
product antibacterial Staphylococcus aureus”, which was more than 100 papers in total. The certain MIC value of the target components 
against S. aureus was selected artificially and presented in Fig. 1. The expression of pMIC as a decimal logarithm was aimed to arrive a 
better mathematical value of biological activities in the model setting [18]. 

2.4. Machine learning 

2.4.1. Data set processing 
MIC of natural products structured with a benzene ring and substituted with oxygenated groups was collected and further con-

verted to pMIC value which was calculated by the following formula (1) [16]: 

pMIC= − log10

(
MIC

M

)

(1)  

where M referred to the molecular weight of the compound (g/mol), MIC was calculated to mg/mL. Higher pMIC values correspond to 
stronger anti-S. aureus capacity. 

2.4.2. Molecular descriptor processing 
Three descriptors: 2D, 3D, and RDKit were used for characterizing the oxygenated benzene ring components. The descriptors 2D 

and 3D were generated by the PaDEL tool, where the 2D descriptor contained 1444 descriptors (1D and 2D descriptors), and the 3D 
descriptor contained 431 descriptors. The supplementary materials explained the species and meanings of these descriptors. The open- 
source chemical information tool, RDKit, is used to read SMILES information and generate descriptors with 208 structural properties. 

2.4.3. Feature processing and QSAR model construction 
Feature processing and QSAR model construction were processed by Molaical software [19]. Genetic algorithm (GA) and elitism 

way were the multiple regression models to feature optimization and build leave-one cross-validation (Q2-LOO) [16]. The relative 
parameters in detail: mutation ratio is 0.5, population size is 200, cross-validation Q2-LOO is selected as the cross-validation index, 
number of evolutions is 150000, interval steps for repeating population generation are 100. In addition, to select the best model, the 
number of variables in the model ranges from 3 to 9, where 21 QSAR models were set up. 

2.4.4. Model evaluation and screening 
Q2-LOO, R2 

fitting, MSE, and MAE were used for calculating and screening the QSAR model. Q2 coefficient values between 0.5 and 
1.0 indicate that an acceptable model has been established; the closer the R2

fitting to 1, the better the model fitting and prediction ability. 
The smaller the MSE, and MAE values, the smaller the error of model prediction. 

2.5. Anti-S. aureus oxygenated benzene ring component screening 

The MolNatSim tool [20] was used to match the similarity of each oxygenated benzene ring component in this study to establish a 
clustering library of the target natural product compounds. To rapidly locate the most similar (MFS score >0.8) natural product 
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molecules and perform conditional screening. After that, the best QSAR model was used to predict the natural products based on the 
selected components. Besides, the activity of anti-S. aureus was provided according to the average value of pMIC within the 24 
structured components against S. aureus. 

2.6. The activity study of potential oxygenated benzene ring components against S. aureus 

The MIC test of hesperetic acid and 2-hydroxyterephthalic acid (2-HTPA) against S. aureus was the same as the method described in 
Section 2.2. The clear wells were further placed on plate account ager, where the concentration without colony growth on the plate 
was marked as the minimum bactericidal concentration (MBC) [21,22]. 

The inhibition zone of hesperetic acid and 2-HTPA was determined following the referenced method with some modification [23]. 
Briefly, S. aureus was cultured and diluted by sterile saline to 108 CFU/mL 100 μL of each suspension was spread on the culture plate, 
and holes were placed on the Petri dishes. After that, samples were added to the wells. The dishes were incubated at 37 ◦C for 24 h. The 
inhibition zones were further measured and taken photographs. Triplication was processed. 

2.7. Effects of hesperetic acid and 2-HTPA on bacterial morphology 

Hesperetic acid and 2-HTPA were added to bacterial suspension with 0.5 × MIC, 1 × MIC, 2 × MIC and inoculated at 37 ◦C for 2 h. 
The suspension was later centrifuged and washed with PBS, and fixed with glutaraldehyde (2.5 %) at 4 ◦C overnight [4]. The mor-
phologies of S. aureus followed processing with some modification [24]. Target bacteria were treated by each bacteriostatic agent at 
0.5 × MIC, 1 × MIC, and 2 × MIC for 4 h respectively. After that, the suspensions were centrifuged and rinsed with PBS twice. 
Glutaraldehyde (2.5 %) was added to fix bacterial cells at 4 ◦C overnight. The samples were further dehydrated in ethanol at different 
concentrations and evaporated for observation [25]. 

2.8. Electrostatic potential and molecular orbital calculation of molecular surface 

The ORCA program with the B3LYP(D3) def2-SVP def2/J functional was applied in the geometric optimization of Hesperetic acid 
and 2-HTPA, and the single point energies were calculated with B3LYP(D3) def2-TZVP def2/J. The electrostatic potential and mo-
lecular orbital (HOMO and LUMO) of the two antibacterial agents were calculated by the Multiwfn program, and visualized plot 
analysis was performed with VMD [26]. 

2.9. Molecular dynamics (MD) simulation 

The MD simulation was processed with the reference of Drew Bennett et al. (2016) [27]. The bilayer containing 170 lipid layers 
both above and below was constructed using CHARMM-GUI server and Membrane Builder, where DOPC and DOPG in the ratio of 1:1 
served as the simple cell membrane model [28–30]. In which, the topological parameters of DOPC and DOPG were obtained by using 
Amber14sb force fields. ORCA program with the r2 r2SCAN-3c functional was employed in the geometric optimization of hesperetic 
acid and 2-HTPA. Each single point energy was calculated by B3LYP/G D3 def2-TZVP def2/J RIJCOSX. Multiwfn was carried out to 
match the RESP charges and give GAFF topological parameters [31]. Then hesperetic acid and 2-HTPA molecules were placed on one 
side of the membrane as the model system, while the cell membrane was set up as the blank system. There consumed 300 ns in the MD 
simulation. All MD simulations were executed employing the GROMACS 21.6 package with the TIP3P explicit water model [32]. The 
electrical neutrality of each system was maintained through the incorporation of counterions, followed by 0.15 M sodium chloride. 
Energy minimization (1000.0 kJ/mol/nm) for each system was performed in 5000 steps which using the steepest descent method. 
Following this, the membrane structure underwent complete relaxation through six 500 ps restricted MD simulations in each system 
[29], which ensured the system maintained a constant temperature (310.5 K) and pressure (1.0 bar). Subsequently, 300 ns production 
simulations were conducted. The Nose-Hoover and the Parrinello-Rahman protocols were set up as the temperature and pressure 
control in the system [33,34]. Hydrogen bonds (H-bonds) were constrained using the default linear constraint (LINCS) solver algo-
rithm [35]. The Particle-Mesh Ewald (PME) method was applied in dealing with long-range interactions, as well as a 1.2 nm cutoff for 
van der Waals interactions [36]. After the MD simulation, the GROMACS package (version 21.6) was performed to analyze the 
trajectories. 

2.10. Statistical analysis 

The data were analyzed using OriginPro 2021. One-way analysis of variance (ANOVA) and Duncan’s new multiple-range tests were 
utilized to evaluate the significant differences among the data from different groups by SPSS Statistics 23. The differences were 
considered significant when p < 0.05 [37,38]. All experiments were conducted in triplicate. 

3. Results and discussion 

3.1. SAR analysis of the oxygenated benzene ring compounds 

The structure of 24 oxygenated benzene ring compounds and their pMIC values were listed in Fig. 1. The pMIC value was here to 
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suggest the antibacterial capacity and increased with the strength of the bacteriostatic effect. Seven oxygenated benzene ring com-
pounds have been evidenced with anti-S. aureus capacity in this research, where the pMIC value was between 2.0433 and 3.0798. 
Within these compounds, the pMIC value of carvacrol was 3.0798, it presented a much better inhibition activity on S. aureus, and only a 
little less than iso-eugenol, p-hydroxybenzoic acid, or gallic acid reported before [9,39,40]. The pMIC values of the other six 
oxygenated benzene ring compounds were higher than 2, which showed higher anti-S. aureus capacity than vanillic acid, α-meth-
yl-trans-cinnamaldehyde, hydroxycinnamic acid, and cuminaldehyde [8,41,42]. 

The SAR analysis of the oxygenated benzene ring compounds was further conducted in detail. In the oxygenated benzene ring 
compounds with isopropyl benzene as the parent nucleus, the position of the methoxy linkage had almost no effect on the anti-S. aureus 
activity, with the pMIC values of o-methyl-carvacrol and o-methyl-thymol were both 2.301, which may be contributed by the stronger 
hydrophobic property of the methoxy group. Notably, the anti-S. aureus activity was strengthened by the substitution of hydrophobic 
Me at R4 with the hydrophilic CH2OH group. It could be told that cumic alcohol presented a higher inhibition capacity on S. aureus 
than O-Methyl-thymol, with the pMIC of cumic alcohol was 2.699. Unlike the methoxy group, the connecting position of the hydroxyl 
group may affect the anti-S. aureus capacity significantly. The phenolic hydroxyl group can lose hydrogen electrons easily, and it 
therefore can exert the antibacterial effect as the electron donor [16,43]. In terms of phenolic hydroxyl positions, the hydroxyl groups 
close to the methyl position (carvacrol, pMIC = 3.0798) were more favorable to enhance the antibacterial activity of the oxygenated 
benzene ring components than those close to the isopropyl position (thymol, pMIC = 2.9828). This situation may be due to the iso-
propyl group at R2 producing higher hydrophobicity which attenuates the contribution of the phenolic hydroxyl group to antibacterial 
capacity. In addition, in the oxygenated benzene ring compounds with styrenic acid as the parent nucleus, the anti-S. aureus activity of 
caffeic acid with hydroxyl groups attached at both the R3 and R4 positions was superior to that of hydroxycinnamic acid with hydroxyl 
groups attached at the R4 hydroxyl group and trans-cinnamic acid, which does not contain hydroxyl groups. While, the pMIC value 
decreased when the hydroxyl group at R3 of caffeic acid was replaced by the methoxy group, which is similar to the SAR results of 
thymol and carvacrol. However, in the oxygenated benzene ring components with benzoic acid as the parent nucleus, the different 
positions of the hydroxyl group showed a significant effect on the anti-S. aureus activity. Compared to o-hydroxybenzoic acid, 
p-hydroxybenzoic acid showed more the anti-S. aureus activity (pMIC = 3.7423) with an increased pMIC of 1.699. However, the 
number of the hydroxyl groups did not show a direct correlation with anti-S. aureus activity. For instance, the anti-S. aureus capacity of 
β-Resorcylic acid with a hydroxyl group at R3 was lower, while further increased when substituted by OMe. Compared with 
β-Resorcylic acid, gallic acid with a hydroxyl group attached to both R3, R4, and R5 positions had the strongest anti-S. aureus effect and 
the pMIC value reached 3.9407. The difference may be correlated to the different antibacterial mechanisms of the different com-
pounds, such as disrupting the integrity of bacterial cell membranes and interacting with different targets of bacteria [16,44,45]. 

Table 1 
QSAR models based on three molecular descriptors (2D, 3D, and RDKit).  

Descriptor type Equation variable Q2-LOO External Q2 R2
fitting MAE MSE 

2D 3 0.2788 0.1577 0.4195 0.4848 0.4075 
4 0.3317 0.7915 0.5315 0.4801 0.3776 
5 0.4183 0.5703 0.6125 0.4754 0.3287 
6 0.4927 0.9018 0.6988 0.4560 0.2866 
7 0.4974 0.4689 0.6431 0.3855 0.2840 
8 0.5582 0.8010 0.7945 0.3735 0.2496 
9 0.7776 0.9404 0.8988 0.3091 0.1256 

MLR y = 218.98704 + (0.50735) * AATS7e + (− 122.97401) * SCH-6 + (− 0.63369) * MDEC-23 + (− 0.11651) * AATS3i + (− 49.62828) * 
SpMax1_Bhm + (− 3.73674) * PetitjeanNumber + (9.20161) * SpMin8_Bhm + (− 2.18225) * nHdCH2 + (− 0.00136) * ATSC8v 

3D 3 0.1661 − 1.6794 0.3687 0.5474 0.4712 
4 0.3112 0.3249 0.5270 0.4527 0.3892 
5 0.4161 0.5715 0.5971 0.4446 0.3300 
6 0.5056 0.1541 0.6721 0.4031 0.2793 
7 0.5171 0.5071 0.7000 0.4107 0.2728 
8 0.5290 0.2649 0.7851 0.3788 0.2661 
9 0.6983 0.5009 0.8682 0.3245 0.1705 

MLR y = − 112.00837 + (2.39451) *L2u + (− 0.00206) * TDB5v + (0.00683) * TDB6m + (− 0.24531) * RDF60u + (− 0.00316) * TDB7m +
(− 0.53723) * RDF60v + (− 0.25830) * TDB1m + (61.22847) * TDB2u + (0.01484) * DPSA-2 

RDKit 3 0.1429 0.7147 0.4046 0.5515 0.4843 
4 0.2862 0.8292 0.4921 0.4641 0.4033 
5 0.5138 0.5799 0.6792 0.3711 0.2747 
6 0.3897 0.8544 0.5731 0.3882 0.3449 
7 0.5974 0.8337 0.7774 0.3653 0.2275 
8 0.5915 0.7053 0.8146 0.3683 0.2308 
9 0.6690 0.8763 0.8776 0.3347 0.1870 

MLR y = 5.85428 + (0.09940) * EState_VSA10 + (− 0.15843) * EState_VSA4 + (− 0.82728) * fr_para_hydroxylation + (0.11647) * SlogP_VSA4 +
(0.05932) * VSA_EState3 + (3.50872) * HallKierAlpha + (0.16995) * EState_VSA1 + (0.72483) * VSA_EState7 + (− 0.32154) * fr_Al_COO 

Note: Equations referred to MLR equations with different molecular descriptors under nine parameter calculation. 
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3.2. MLR-QSAR analysis 

The three molecular descriptors characterized the structure of oxygenated benzene ring components, and 21 MLR-QSAR model 
with S. aureus inhibition activity was set up based on the optimized descriptors and the pMIC values by genetic algorithm. The 
validation parameters such as Q2-LOO, R2

fitting, MAE, MSE, etc. were used to evaluate the robustness and accuracy of the models and 
placed in Table .1. With the increase of equation variables, the R2

fitting of MLR-QSAR model constructed based on the three molecular 
descriptors increased, while MAE and MSE decreased gradually. In the consideration of smaller datasets, the overfitting of the model 
may be contributed by too many variables [20]. Therefore, in this study, there trained 3 to 9 variables of the MLR-QSAR model. In the 
MLR-QSAR model constructed by 9 variables, the 2D-MLR-QSAR model was superior to the 3D-MLR-QSAR and RDKit-MLR-QSAR 
models. Where the R2

fitting of 2D-MLR-QSAR was 0.8988, and Q2-LOO was 0.7776, indicating that the constructed model was 
acceptable [16]. The MAE and MSE of 2D-MLR-QSAR were 0.3091 and 0.1256 respectively, which were lower than 3D-MLR-QSAR 
(MAE = 0.3245, MSE = 0.1705) and RDKit-MLR-QSAR (MAE = 0.3347, MSE = 0.1870), which further explained the prediction 
error of 2D-MLR-QSAR was smaller (Fig. 2). Besides, the reasonability of the equation was evaluated by External Q2, which was 
calculated following equation (2) below: 

Q2
ext = 1 −

∑next
i=1(yi − fi)

2

∑next
i=1(yi − f i)

2 (2)  

Where yi, and fi, are experimental and predicted values in the test set, respectively. ӯӯ is the average value of train set data. When 
external Q2 is a negative value, it indicates that there are outliers in the data set [19]. The result indicated that the external Q2 of 
2D-MLR-QSAR, 3D-MLR-QSAR, and RDKit-MLR-QSAR constructed by 9 variables were greater than 0, and the external Q2 of 
2D-MLR-QSAR was 0.9404, which indicating that the constructed model achieved the examination and can be used for further pre-
diction [46]. Similar results were also obtained in Potdar’s study, where the new synthesis components were evaluated and the 
3D-MLR-QSAR model was selected and provided the binding sites with their characteristics [47]. 

3.3. Key descriptor analysis 

For the best MLR-QSAR equation, there were 9 key descriptors relating to the antibacterial effect on S. aureus in the structure of 
oxygenated benzene ring components: AATS7e, SCH-6, MDEC-23, AATS3i, SpMax1_Bhm, PetitjeanNumber, SpMin8_Bhm, nHdCH2, 
and ATSC8v (Table 1). AATS7e and SpMin8_Bhm were correlated with the model positively, and the pMIC value increased with 
increasing of AATS7e and SpMin8_Bhm. Among, the coefficient value of SpMin8_Bhm is the maximum (9.20161). AATS7e is corre-
sponded to average Broto-Moreau autocorrelation-lag7/weighted by Sanderson electronegativities, while SpMin8_Bhm refers to the 
smallest absolute eigenvalue of Burden modified matrix-n8/weighted by relative mass [48]. Other descriptors were negatively 
correlated to the model. SCH-6 is simple chain, order 6 [49], MDEC-23 is molecular distance edge between all secondary and tertiary 
carbons [50], AATS3i is average Broto-Moreau autocorrelation-lag3/weighted by first ionization potential, SpMax1_Bhm is largest 
absolute eigenvalue of Burden modified matrix-n1/weighted by relative mass, nHdCH2 [51] and ATSC8v are Count of atom-type H 
E-State:=CH2 and Centered Broto-Moreau autocorrelation-lag8/weighted by van der Waals volumes separately [48]. The Petitjean-
Number refers to the shape of the cation [52]. These descriptors with negative coefficients were negatively correlated to the anti-
bacterial activity of oxygenated benzene ring components. In this case, the smaller the value of the descriptors, the stronger the 
inhibitory effect against S. aureus. 

3.4. Discovery and prediction of potential oxygenated benzene ring components 

The selected best model (2D-MLR-QSAR) was further used to discover and predict the potential oxygenated benzene ring com-
ponents with anti-S. aureus capacity, which was also able to confirm the efficacy of the model. A total of 50 highly similar oxygenated 
benzene ring components (MFS >0.8) were explored using the MolNatSim tool based on the structural similarity strategy of extended 
connectivity fingerprints (Supplementary materials sheet 8) [20]. Among these components, there were 22 components enriched with 

Fig. 2. The QSAR models with Leave-One-Out (LOO). (A) 2D. descriptor (B) 3D descriptor. (C) RDKit descriptor.  
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higher predicted pMIC value (pMICpre >2.5) calculated by 2D-MLR-QSAR equation, and better drug-like properties (QED >0.5) [53]. 
After that, we tried to purchase these components for experimental screening. However, most of them were still in the identified stage, 
which was not produced commercially. In this condition, two components were purchased, namely hesperetic acid (pMICpre = 2.881) 
and 2-HTPA (pMICpre = 2.501). 

The ESP map presented the visualized distribution of charges and electrostatic potentials of the molecule (Fig. 3 a and b) [54,55]. 
The blue region represented the positive charges of 2-HTPA and hesperetic acid, and appeared on the hydrogen atoms of carboxyl 
groups structurally, which suggests more preference for electrophilic activity. On the other hand, the red region represented the 
negative charges of hydroxyl groups and alkyl groups, which presented a potential positively related to nucleophilic reactivity [55,56]. 
The frontier molecular orbitals, which reflected the electronic density distribution and also helped to predict the active sites of 
molecules [57], were placed in Fig. 3. EHOMO represented the highest occupied molecular orbital and suggested the susceptibility of 
electron-donating capacity [58], while ELUMO stood for the lowest unoccupied molecular orbitals and reflected the ability of 
electron-accepting of molecules [59]. The electron density of HOMO on 2-HTPA and hesperetic acid was well distributed on the 
phenolic benzene ring and hydroxyl group. This implemented these parts may have more tendency to donate electrons and the ability 
against S. aureus may be stronger [16]. The electron density of LUMO was clouded on the carboxyl group and the carboxyl group with 
the alkene of 2-HTPA and hesperetic acid respectively. The functional groups may accept electrons easily [60]. Comparing the EHOMO 
and ELUMO of each molecule, the ability to donate electrons of these components was stronger than accepting. The energy gap (ΔEL-H) 
between HOMO and LUMO is used to determine the chemical reactivity of the molecule [55]. The energy gaps of 2-HTPA and hes-
peretic acid were 4.789 eV and 4.268 eV respectively, where a higher energy gap of 2-HTPA suggesting higher kinetic stability than 
hesperetic acid, and this result was consistent with the pMICpre value resulting from the 2D-QSAR model [59]. 

3.5. Anti- S. aureus activities of hesperetic acid and 2-HTPA 

To evaluate the antibacterial activity of hesperetic acid and 2-HTPA, four respective bacteria including S.aureus, B.subtilis, E.coli, 
and P.aeruginosa were selected to test. The MIC values of hesperetic acid and 2-HTPA on S. aureus showed the same value which was 
0.5 mg/mL. While the MIC values on B.subtilis, E.coli, and P.aeruginosa were around 1.0 mg/mL (Table S1). This result suggested that 
the screened bacteriostatic agents presented obvious inhibition against S. aureus. while the similar MIC values between hesperetic acid 
and 2-HTPA may be affected by the different solubility. Besides, the pMIC values of hesperetic acid and 2-HTPA were 2.589 and 2.561 
respectively, smaller than the MAE value (0.3091). Moreover, the inhibition zone of hesperetic acid was 5.75 ± 0.96 cm, which was a 
little higher than 2-HTPA (5.00 ± 0.82 cm). The inhibition zone of these two components showed no significant difference (Fig. 4A and 
B). Furthermore, the morphological changes of S. aureus treated with different concentrations of hesperetic acid and 2-HTPA were 
observed by SEM to analyze the potential inhibition mechanisms (Fig. 4a–g). Comparing with the control group, the addition of 
hesperetic acid at different concentrations were able to cause obvious breakages on the membrane, and the degree of the membrane 
damage was positively correlated with the concentration of the new antibacterial agent. Similarly, the same trend was obtained in the 
addition of 2-HTPA, and the severe damage on the membrane was more obvious. Propidium Iodide (PI) staining method can be used to 
evaluated the integrity of the cell membrane. The red fluorescence intensity was observed in the treatment groups (H-MIC and 2H- 
MIC), while the cell in control group without antibacterial agent addition was no red fluorescence observed. After addition of 

Fig. 3. ESP maps encoded onto the total electron density surface of 2-HTPA (a) and hesperetic acid (b). Molecular orbital surfaces for the HOMO 
and LUMO of 2-HTPA (c) and hesperetic acid (d). 
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hesperetic acid and 2-HTPA, the red fluorescence was detected (Fig. S1). PI dye is able to penetrate through a damaged cell membrane, 
and bound to DNA, finally resulted in red fluoresces [61]. Therefore, this suggested that hesperetic acid and 2-HTPA could damage the 
membrane integrity of S. aureus [62]. 

These results suggested that both hesperetic acid and 2-HTPA were able to inhibit the growth of S. aureus. and the antibacterial 
mechanisms may be associated with membrane destruction [63]. 

3.6. Interaction between 2-HTPA and hesperetic acid with the membrane of S. aureus 

The MD simulation trajectories of 2-HTPA and hesperetic acid with cell membrane were recorded in Fig. 5A and B. There were 
lasted 300 ns, and the molecules landed and attacked the cell membrane quickly, which suggested 2-HTPA and hesperetic acid may 
directly affect the cell membrane visually. On the other hand, the mean square displacement (MSD) of the cell membrane (Fig. 5a) 
showed an increasing trend with the development of time, which suggested the mobility of the cell membrane increased with the 
addition of antibacterial agents [64]. It could be the interaction between the cell membrane and the agents, which destroyed the 
stability of the cell membrane, and accelerated the MSD value with water phase breaking in. This reaction may be related to the 
hydrogen binding between the cell membrane and the antibacterial agents in the simulation system (Fig. 5b). The differences in 
membrane number density treated with blank, 2-HTPA, and hesperetic acid (Fig. 5 c to e.) also proved the effective targets of these two 
molecules were placed on the membrane. Furthermore, the influence of different antibacterial agents (2-HTPA, hesperetic acid) in the 
lipid bilayer qualified by mass density along the axis perpendicular was shown in Fig. 5e–h. Within 300 ns, the density range of 
aqueous phase increased and introduced more water molecules into the hydrophobic region of the cell membrane, which meant that 

Fig. 4. Antibacterial activity of inhibition zone of S. aureus treated by hesperetic acid and 2-HTPA (p＜0.05) (A and B). SEM of S. aureus treated by 
different concentration of bacteriostatic agents. (a) S. aureus without treatment, (b) Hesperetic acid at 0.5MIC, (c) Hesperetic acid at MIC, (d) 
Hesperetic acid at 2MIC, (e) 2-HTPA at 0.5MIC, (f) 2-HTPA at MIC, (g) 2-HTPA at 2MIC. 
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the fluidity of the cell membrane was enhanced and loosened, and the stability of the cell membrane could also be disrupted. These 
figures provided the possible locations of antibacterial agent molecules in the hydrophobic region of the simulation systems [65]. 

4. Conclusion 

In conclusion, MLR-QSAR models with three descriptors (2D, 3D, RDkit) were set up based on the SAR analysis of 24 oxygenated 
benzene ring components with anti-S. aureus activity and further evaluated by validation parameters (Q2-LOO, R2

fitting, MAE, MSE, and 
external Q2). The SAR results first indicated the position and number of hydroxyl groups at different parent nuclei can affect the 
inhibition of S. aureus differently. In 21 QSAR models, the 2D-MLR-QSAR model was the best model with higher R2

fitting and Q2-LOO, 
but lower MAE or MSE value, and the external Q2 was also used to examine the acceptability of this model. MLR equation analysis 
shows AATS7e and SpMin8_Bhm descriptors were correlated with the model positively, while others (SCH-6, MDEC-23, AATS3i, 
SpMax1_Bhm, nHdCH2, ATSC8v, and PetitjeanNumber) descriptor were negatively correlated to the antibacterial activity. Further, 
oxygenated benzene ring components were enriched using QSAR modeling combined with a natural product clustering library tool of 
over 400,000 natural products, and obtained a total of 50 highly similar new oxygenated benzene ring components, among which 22 
compounds were considered to be highly inhibitory to S. aureus. MD simulation results suggested that 2-HTPA and hesperetic acid can 

Fig. 5. MD simulation trajectory of 2-HTPA and cell membrane (A), hesperetic acid and cell membrane (B) (From 0 to 300 ns). Interaction between 
2-HTPA and Hesperetic acid with the membrane of S. aureus. MSD value (a), Hydrogen bond number (b), Membrane number densities (c-e rep-
resented Blank, 2-HTPA, and hesperetic acid, respectively), Mass densities (f-h represented Blank, 2-HTPA, and hesperetic acid, respectively). 
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attack the cell membrane and change the fluidity of the cell membrane. Besides, under the treatments of 2-HTPA and hesperetic acid, 
the water molecules were much easier into the hydrophobic region, and further disrupted the stability of cells. Antibacterial test results 
proved that hesperetic acid and 2-HTPA had a better inhibitory effect on S. aureus (pMIC>2.5), and its antibacterial mechanism may be 
related to the membrane since the disrupted membrane observed by SEM and PI staining tests (Fig. S1). Overall, the effectiveness of 
SAR and machine learning applications in screening anti-S. aureus of oxygenated benzene ring components, and the novel components, 
hesperetic acid and 2-HTPA, have been proved the efficient anti-S. aureus capacities. It therefore provided a new insight for the 
discovery and design of new anti-S. aureus bacteriostatic agents. 
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