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This paper introduces a novel hybrid optimization algorithm, PDO-DE, which integrates the 
Prairie Dog Optimization (PDO) algorithm with the Differential Evolution (DE) strategy. This 
research aims to develop an algorithm that efficiently addresses complex optimization problems 
in engineering design and network intrusion detection systems. Our method enhances the PDO’s 
search capabilities by incorporating the DE’s principal mechanisms of mutation and crossover, 
facilitating improved solution exploration and exploitation. We evaluate the effectiveness of the 
PDO-DE algorithm through rigorous testing on 23 classical benchmark functions, five engineering 
design problems, and a network intrusion detection system (NIDS). The results indicate that 
PDO-DE outperforms several state-of-the-art optimization algorithms regarding convergence 
speed and accuracy, demonstrating its robustness and adaptability across different problem 
domains. The PDO-DE algorithm’s potential applications extend to engineering challenges and 
cybersecurity issues, where efficient and reliable solutions are critical; for example, the NIDS 
results show significant results in detection rate, false alarm, and accuracy with 98.1%, 2.4%, 
and 96%, respectively. The innovative integration of PDO and DE contributes significantly to 
stochastic optimization and swarm intelligence, offering a promising new tool for tackling diverse 
optimization problems. In conclusion, the PDO-DE algorithm represents a significant scientific 
advancement in hybrid optimization techniques, providing a more effective approach for solving 
real-world problems that require high precision and optimal resource utilization.
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1. Introduction

Optimization permeates every aspect of human culture. Human beings are naturally inclined to enhance and refine existing entities 
to address practical challenges and adapt to the present surroundings effectively [1]. Global optimization aims to identify the most 
optimal solution from all potential solutions for a given problem. Optimization methods can be classified into two main categories: 
deterministic and stochastic. While deterministic algorithms have reached a high level of development in mathematical theory, their 
ability to optimize and demonstrate efficiency is limited when faced with discontinuous and non-differentiable functions [2].

In some cases, these algorithms are unable to address such issues. Nevertheless, most engineering optimization problems involving 
numerous local optimal values exhibit characteristics of discontinuity non-differentiability and even pose challenges in mathematical 
model representation [3,4]. Due to these circumstances, many scholars have redirected their attention towards stochastic optimization 
techniques. One important characteristic is the incorporation of randomization, which allows for the potential to escape from local 
optima. Therefore, it is crucial to employ stochastic optimization methods to achieve the most optimal solutions for global optimization 
issues [5,6].

The swarm intelligence algorithm is a stochastic optimization technique that draws inspiration from the diverse behaviors ex-

hibited by biological communities in nature. It offers a novel approach to solving optimization issues [7,8]. In the natural world, 
numerous species exhibit remarkable swarm intelligence activities, which involve a combination of cooperation and competition 
among individuals [9]. These behaviors compensate for the limitations of individual foraging and help in evading predation [10]. For 
instance, the act of wolves preying on other animals [11], the act of birds coming together and moving from one place to another [12], 
and the way bees and ants interact socially [13]. Swarm intelligence optimization algorithms can be implemented by examining the 
possible behaviors of individuals in a population and employing mathematical modeling to construct the operational mechanism of 
the population system. This includes analyzing the cooperation and competition among individuals within the population and the 
interaction between the population and the external environment [14,15].

Over the past few decades, individuals have been developing diverse approaches to address intricate optimization challenges. 
Meta-heuristic algorithms (MAs) are particularly notable among these methods and offer an effective solution [16,17]. Due to its 
divergence from conventional optimization methods, the meta-heuristic algorithm operates independently of gradient information 
and can effectively evade local optima [18]. In broad terms, meta-heuristic optimization algorithms can be classified into four main 
categories: algorithms that rely on human behavior, algorithms that are based on evolutionary principles, algorithms that utilize 
swarm intelligence, and algorithms that draw inspiration from physics or chemistry [19].

These MAs include distinguishable characteristics and are widely employed in various computer science domains, intrusion detec-

tion systems (IDS), engineering optimization design, routing planning, text clustering, image segmentation and classification, feature 
selection, and fault diagnosis. The “No Free Lunch (NFL) theorem” demonstrates that no algorithm can solve all optimization is-
sues universally [20]. Hence, it is crucial to enhance existing algorithms. Various scholars employ diverse methodologies to enhance 
preexisting algorithms.

Engineering design problems encompass the difficulties that occur when designing and developing a project or manufacturing 
operation. These difficulties often involve optimizing resources such as time, money, materials, and staff to create a product that 
meets customer expectations while ensuring efficiency and cost-effectiveness [21,22]. Ordinary design problems encountered in 
engineering include designing and producing a product, looking for the most effective method to create and produce a product that 
meets customer needs and market expectations while reducing expenses and optimizing productivity. Supply chain management 
encompasses coordinating and controlling all essential product elements to guarantee their availability at the designated time and 
place while ensuring they are provided at a suitable cost. Production planning and control entails optimizing manufacturing activities 
to meet client demand and maintaining adequate inventory levels to fulfill customer requirements. Office layout: Establishing a 
workspace that is both ergonomic and secure enhances employee productivity while minimizing the likelihood of accidents or injuries 
[23,24]. Quality assurance entails ensuring that things conform to the standards set by the client and are free from any faults. 
Maintenance and reliability encompass the implementation of procedures to ensure the optimal operation of equipment and machinery 
while minimizing downtime. Cost optimization entails minimizing costs related to producing goods or delivering a service while 
upholding superior standards and fulfilling consumer expectations [25,26].

These challenges are intricate, requiring a profound understanding of principles and issues in engineering design and the capac-

ity to analyze and address intricate challenges. Engineering design issues employ optimization techniques and advanced modeling 
methods, such as simulation and mathematical analysis, to devise and enhance production processes and innovate goods [27].

PDO-DE, which stands for Prairie Dog Optimization (PDO) [28] with Differential Evolution Algorithm (DE), is an emerging op-

timization technique designed to address industrial engineering design challenges. The PDO-DE method synergistically integrates 
PDO and DE to discover optimal solutions efficiently. In DE learning, solutions generated are indicative of the collective population. 
PDO, an optimization technique grounded in population dynamics, leverages the action of prairie dogs to identify the most efficient 
solution. Prairie dogs exhibit collective behavior, moving in a coordinated manner resembling a swarm, and effectively communicate 
with one another to identify optimal solutions [29,30]. Combining PDO and DE methods makes it possible to include the best and 
worst solutions. This approach leads to a quicker convergence towards the optimal solution and decreases the likelihood of being 
trapped in a local minimum. Additional investigation is required to evaluate the efficacy and suitability of this approach in addressing 
industrial engineering design issues, but preliminary studies have indicated its potential for industrial engineers.

This paper presents the Prairie Differential Optimization (PDO) method as a novel approach to address many intricate optimization 
2

problems. This work is primarily driven by improving optimization algorithms’ performance by tackling the enduring problem of 
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striking a balance between exploration and exploitation. Algorithms that thoroughly search the solution space and take advantage 
of well-established solutions are necessary for effective optimization to improve outcomes. But striking this balance is still quite 
difficult, especially for algorithms like the PDO algorithm, which has trouble completing tasks on time and frequently gets stuck in 
local optima, especially when working on high-dimensional issues.

The main goal of this research is to create a more sophisticated PDO algorithm that can function reliably in various engineering op-

timization scenarios and overcome these drawbacks. We suggest incorporating the Differential Evolution (DE) approach into the PDO 
framework. The DE approach’s robust exploration capabilities bolster the PDO algorithm’s exploitation strengths. By merging these 
two techniques, the modified PDO algorithm seeks to accomplish a more successful balance between exploration and exploitation.

This research paper examines the updated PDO algorithm, showcasing its better performance via a battery of exacting tests and 
contrasting it with other cutting-edge optimization methods. The outcomes demonstrate that the integrated DE approach greatly 
enhances the PDO algorithm’s capacity to traverse complicated solution spaces, resulting in quicker convergence and more precise 
solutions.

In addition, this study presents an enhanced PDO method that tackles the crucial problem of striking a balance between exploration 
and exploitation, significantly advancing the optimization field. In addition to improving the PDO algorithm’s overall performance, the 
suggested integration of the DE approach provides a workable solution for successfully resolving high-dimensional optimization issues. 
This development increases the value and effect of the improved PDO algorithm by providing new opportunities for its application 
to various engineering and real-world optimization challenges.

The main contribution of this work is illustrated as follows:

• We provide a novel strategy called PDO-DE. This approach is motivated by the design principles of the PDO and DE algorithms.

• DE enhances the efficacy of the PDO in diversifying the primary population and its capability to escape from local optima.

• Enhance PDO’s global and local search capabilities to increase convergence accuracy.

• The PDO-DE algorithm is demonstrated to significantly improve problem-solving effectiveness in two complex domains: engi-

neering design problems and network intrusion detection systems. Our results show superior precision and convergence rate 
performance compared to existing algorithms.

• The PDO-DE algorithm’s performance is demonstrated using a set of twenty-three widely recognized benchmark and CEC2019 
functions.

• Five engineering design problems are utilized to verify the performance of the PDO-DE.

• Implementing the PDO-DE to enhance the performance of network intrusion detection systems.

• Extensive benchmarking using 23 classical functions and real-world applications validate the effectiveness of the PDO-DE algo-

rithm. This rigorous testing demonstrates the algorithm’s adaptability and efficiency across diverse optimization problems, setting 
a new benchmark for future research.

• By illustrating the broad applicability of PDO-DE across different domains, this work extends the scope of hybrid optimization 
methods in practical applications, particularly in areas requiring rapid and accurate convergence to optimal solutions.

The rest of this work is presented as follows. Section 2 outlines the methodology of the suggested approach. Section 3 presents the 
experiments and results that are conducted. Section 4 presents the outcomes of implementing the suggested approach to real-world 
engineering. Section 5 presents the final findings and outlines potential areas for future research.

2. The proposed methodology

The subsequent section outlines the suggested technique’s step-by-step procedures. The suggested approach incorporates the 
operators from both the Prairie Dog Optimization (PDO) algorithm and the Differential Evolution Algorithm.

2.1. Prairie Dog Optimization algorithm

Recently, Ezugwu et al. proposed a new algorithm called the Prairie Dog Optimization (PDO) algorithm that draws inspiration 
from the natural behavior of prairie dogs in their natural habitat. This technique determines the most advantageous solution for a 
specific optimization problem. Prairie dog activity involves the animals coming out of their burrows, relocating, and returning. The 
PDO method utilizes potential solutions to identify the optimal answer for a specified problem. The candidate solutions experience 
iterative updates and evolve to ascertain the most optimal alternative [28].

The colony consists of 𝑙 prairie dogs (PDOs) that belong to 𝑠 coteries. These professional development programs exist and function 
collectively inside their respective social circles. Therefore, the location of the 𝑖th PDO within a specific group can be denoted by a 
vector. Equation (1) concisely describes the matrix representation that shows the positions of all coteries (COTs) in the colony.

𝐶𝑂𝑇 =

⎡⎢⎢⎢⎢
𝐶𝑂𝑇 1,1 𝐶𝑂𝑇 1,2 … … … 𝐶𝑂𝑇 1, 𝑑
𝐶𝑂𝑇 2,1 𝐶𝑂𝑇 2,2 ⋯ … ⋯ 𝐶𝑂𝑇 2, 𝑑

⋮ ⋱ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

⎤⎥⎥⎥⎥ (1)
3

⎢⎣ 𝐶𝑂𝑇𝑠,1 𝐶𝑂𝑇𝑠,2 ⋮ ⋮ ⋮ 𝐶𝑂𝑇𝑠,𝑑 ⎥⎦
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The symbol 𝐶𝑇𝑖,𝑗 denotes the 𝑗th area of the 𝑖th coterie in the colony. Equation (2) illustrates the spatial distribution of all the 
PDOs inside a coterie.

𝑃𝐷 =

⎡⎢⎢⎢⎢⎢⎣

𝑃𝐷1,1 𝑃𝐷1,2 … … ⋯ 𝑃𝐷1, 𝑑
𝑃𝐷2,1 𝑃𝐷2,2 ⋯ ⋯ ⋯ 𝑃𝐷2, 𝑑

⋮ ⋱ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑃𝐷𝑚,1 𝑃𝐷𝑚,2 ⋮ ⋮ ⋮ 𝑃𝐷𝑚,𝑑

⎤⎥⎥⎥⎥⎥⎦
(2)

The symbol 𝑃𝐷𝑖; 𝑗 denotes the 𝑗𝑡ℎ proportions of the 𝑖𝑡ℎ prairie dog inside a group, where 𝑙 and 𝑠 are different numbers. The 
assignment of coterie and prairie dog places is accomplished using a uniform-distribution, as illustrated in Equations (3) and (4).

𝐶𝑇 𝑖, 𝑗 =𝑈 (0,1) × (𝑈𝑗 −𝐿𝑗) +𝐿𝐵𝑗 (3)

𝑃𝐷𝑖, 𝑗 =𝑈 (0,1) × (𝑈𝑗 −𝐿𝑗) +𝐿𝑗 (4)

The 𝑈𝑗 and 𝐿𝑗 represent the maximum and minimum values of the 𝑗th dimension in an optimization problem (Lower and Uber 
bond). The upper bound, denoted as 𝑈𝑗, is computed by dividing 𝑈𝑗 by 𝑠. Similarly, the lower bound, denoted as 𝐿𝑗, is determined by 
dividing 𝐿𝑗 by 𝑠. The symbol 𝑈 (0, 1) denotes a random variable that is uniformly distributed between 0 and 1. PDO algorithm adjusts 
its approach by alternating between exploration and exploitation based on four conditions. The entire number of repetitions (rep) 
is divided into four parts, with the initial two sections allocated for exploration and the remaining two dedicated to exploitation. 
The exploration is divided into two techniques based on the constraints 𝑟𝑒𝑝 < 𝑀𝑎𝑥𝑟𝑒𝑝∕4 and 𝑀𝑎𝑥𝑟𝑒𝑝∕4 < 𝑟𝑒𝑝 < 𝑀𝑎𝑥𝑟𝑒𝑝∕2. The 
exploitation is divided into two methods, each governed by certain conditions: 𝑀𝑎𝑥𝑟𝑒𝑝∕2 < 𝑟𝑒𝑝 < 3𝑀𝑎𝑥𝑟𝑒𝑝∕4 and 3𝑀𝑎𝑥𝑟𝑒𝑝∕4 <
𝑟𝑒𝑝 <𝑀𝑎𝑥𝑟𝑒𝑝.

2.1.1. PDO exploration stage

An assessment is conducted to determine the quality of the available food sources, and the optimal choice is selected for gathering. 
The development of recent burrows is contingent upon the caliber of the chosen food supply. Equation (5) represents the process of 
updating placements during the algorithm’s exploration stage.

𝑃𝐷𝑂𝑖+ 1, 𝑗 + 1 = GPDOBest 𝑗, 𝑗 − 𝑒𝐶 PDOBest 𝑖, 𝑗 × 𝑝−𝐶𝑃𝐷𝑂𝑖, 𝑗 × Levy (𝐿) A rep <
Maxrep

4
(5)

The second technique entails assessing the caliber of earlier encountered food origins and appraising the proficiency in digging. 
Subsequent burrows are subsequently created utilizing this excavating capability, which diminishes as the number of repetitions 
rises, restricting the number of tunnels that may be formed. Equation (6) denotes the process of adjusting the placements to construct 
burrows.

PDOi + 1, 𝑗 + 1 = 𝑃𝐷𝑂𝐺𝐵𝑒𝑠𝑡 𝑗, 𝑗 × 𝑟𝑃𝐷𝑂 ×𝐷𝑆 × Levy(𝐿) Λ
Maxrep

4
≤ rep ≤

Maxrep

2
(6)

The current most suitable solution is denoted as GPDOBesti; 𝑗, and its effectiveness is assessed using 𝑒𝐶𝑃𝐷𝑂𝐵𝑒𝑠𝑡𝑖; 𝑗, as shown 
in Equation (7). The food source warning is denoted as 𝑞 and has a constant frequency of 0.1 kHz. The variable rPDO indicates the 
random solution’s position, while the combined impact of all PDO in the colony is denoted as 𝐶𝑃𝐷𝑂𝑖; 𝑗, as mentioned in Equation 
(8). The digging resilience of the clique, referred to as 𝐷𝑆 , relies on the food source’s quality and is selected randomly using Equation 
(9). The Levy distribution, denoted as 𝐿𝑒𝑣𝑦(𝐿), is employed to optimize the investigation of the issue space with greater efficiency.

𝑒 CPDOBesti, 𝑗 = GPDOBesti, 𝑗 ×Δ+ 𝑃𝐷𝑂𝑖, 𝑗 ×mean(𝑃𝐷𝑂𝑛, 𝑠)
𝐺 PDOBest × (𝑈𝑗 −𝐿𝑗) + Δ

(7)

𝐶𝑃𝐷𝑂𝑖, 𝑗 = 𝐺 PDOBesti , 𝑗 − 𝑟𝑃𝐷𝑂𝑖, 𝑗

𝐺𝑃𝐷𝑂𝐵𝑒𝑠𝑡𝑖, 𝑗 +Δ
(8)

𝐷𝑆 = 1.5 × 𝑟 ×
(
1 −

rep

Maxrep

)2
rep

Maxrep
(9)

The factor r introduces randomness to facilitate exploration, alternating between -1 and 1 based on whether the current repetition 
is odd or even. D considers any variations among the prairie dogs, although the implementation assumes they are all identical. rep

represents the current iteration, while 𝑀𝑎𝑥𝑟𝑒𝑝 represents the highest number of repetitions permitted.

2.1.2. PDO exploitation stage

PDO employs exploitation strategies to conduct a comprehensive search in the potential areas discovered during the exploration 
phase. The two methodologies employed in this phase are represented by equations (10) and (11). PDO employs these two strategies 
depending on the constraints 𝑀𝑎𝑥𝑟𝑒𝑝∕2 ≤ 𝑟𝑒𝑝 < 3𝑀𝑎𝑥𝑟𝑒𝑝∕4 and 3𝑀𝑎𝑥𝑟𝑒𝑝∕4 ≤ 𝑟𝑒𝑝 ≤𝑀𝑎𝑥𝑟𝑒𝑝, as mentioned earlier.

𝑃𝐷𝑂𝑖+ 1, 𝑗 + 1 = GPDOBest 𝑖, 𝑗 − 𝑒𝐶 PDOBest 𝑖, 𝑗 × 𝜀−𝐶𝑃𝐷𝑂𝑖, 𝑗 × rand Λ3
Maxrep

4
≤ rep < 3

Maxrep

4
(10)

Maxrep
4

𝑃𝐷𝑂𝑖+ 1, 𝑗 + 1 = GPDOBest 𝑖, 𝑗 − 𝑃𝐸 × rand Λ3
4

≤ rep < Maxrep (11)
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In this instance, GPDOBesti; j denotes the current best solution discovered, while eCPDOBesti; j signifies the influence of the 
currently achieved ideal solution. According to Equation (10), 𝜖 denotes the food source’s quality, whereas CPDOi; j indicates the 
collective impact of all PDOs in the colony, as stated in Equation (11). As denoted by the mathematical Equation (12), the predator 
impact is symbolized by the abbreviation PE, while rand refers to a randomly generated number ranging from 0 to 1.

𝑃𝐸 = 1.5
(
1 −

rep

Maxrep

)2 rep

Maxrep

(12)

2.2. Differential Evolution algorithm

The Differential Evolution algorithm (DEA), proposed by Storn and Price, is a robust and efficient search method designed to tackle 
intricate continuous nonlinear functions. The conventional Differential Evolution (approach commences by initializing a population 
of N individuals represented by vector �⃗�𝑖, 𝑤ℎ𝑒𝑟𝑒 �⃗�𝑖 = (𝑋𝑖1, 𝑋𝑖2, 𝑋𝑖3, ..., 𝑋𝑖𝑛), 𝑖 = 1, 2, 3, ..., 𝑁 , and 𝑛 is the problem dimension. The 
DEA algorithm has incorporated three primary operators: mutation, crossover, and selection. The mutation and crossover operators 
are utilized to produce fresh candidate vectors. At the same time, a selection technique is implemented to determine the survival of 
either the offspring or the parent in the subsequent generation.

2.2.1. Mutation phase

An individual with genetic mutations is represented According to Equation (13) where 𝑉𝑖 = (𝑣𝑖1, 𝑣𝑖2, 𝑣𝑖3, ..., 𝑣𝑖𝑛) and is created 
through the use of a mutation operator. Multiple mutation techniques are documented in the literature [31]. One often used operator 
is ‘DE/best/1’, which is defined as:

𝑉𝑖(𝑡) = �⃗�∗(𝑡) + 𝐹 (�⃗�𝛼(𝑡) − 𝑉𝛽 (𝑡)) (13)

Here, 𝑡 represents the current iteration, �⃗�∗(𝑡) represents the best individual with the lowest 𝑓 (�⃗�∗). Currently, 𝛼 and 𝛽 are two 
randomly selected indices from the range [1, N], where a, b, and i are all different from each other 𝛼 ≠ 𝛽 ≠ 𝑖 ∈ 1, ..., 𝑁). Additionally, 
F ∈ [0, 1] represents a mutation scaling factor influencing the differential variation between two individuals. The following operator 
is applied to all individuals once the mutation operator has been applied.

2.2.2. Crossover phase

The crossover parameter is utilized on each mutant individual and its associated target individual �⃗�𝑖 to produce a trial vector, 
�⃗�𝑖 = (𝑢𝑖1, 𝑢𝑖2, 𝑢𝑖3, ..., 𝑢𝑖,𝑛). Exponential and binomial crossovers are frequently employed crossover strategies. The binomial crossover 
is expressed According to Equation (14):

𝑢𝑖,𝑗 (𝑡) =
{

𝑣𝑖,𝑗 (𝑡), 𝑖𝑓 𝑟𝑗 ≤ 𝐶𝑅 𝑜𝑟 𝑗 =𝑅;
𝑥𝑖, 𝑗(𝑡), 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(14)

The index 𝑅 represents a dimension randomly selected from the set 1, 2, ..., 𝑛. This is done to guarantee that at least one dimension 
from 𝑉𝑖(𝑡) is present in the trial individual �⃗�𝑖, which is different from its target vector, 𝑉𝑖(𝑡). The crossover rate (CR) is a value that 
ranges from 0 to 1, and 𝑟𝑗 ∈ [0, 1] is a random number that is uniformly distributed between 0 and 1. If the parameter values of the 
trial people exceed the pre-determined higher or lower bounds, we can assign them the upper or lower bound value accordingly.

2.2.3. Selection phase

A one-to-one greedy selection is used in DE to determine if the trial individual �⃗�𝑖(𝑡) should be included in the target population 
for the next generation. This selection strategy promotes diversity compared to tournament, rank-based, and fitness-proportional 
selection. The one-to-one selection technique operates by determining the survival of the more fit person between the trial individual 
�⃗�𝑖(𝑡) and its target counterpart �⃗�𝑖(𝑡). The formulation for minimization issues is According to Equation (15):

�⃗�𝑖(𝑡+ 1) =

{
�⃗�𝑖(𝑡), 𝑖𝑓 𝑓 (�⃗�𝑖(𝑡)) ≤ 𝑓 (�⃗�𝑖(𝑡));
�⃗�𝑖(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(15)

where 𝑓 is the objective function. The aforementioned procedure is iterated until a termination requirement is achieved.

2.3. Proposed PDO-DE algorithm

This section delineates the proposed strategy’s fundamental methodologies. The proposed methodology functions by utilizing two 
primary methods: Prairie Dog optimization (PDO) and the Differential Evolution Algorithm. Tackling engineering design difficulties 
efficiently requires finding the most optimal or nearly optimal solution for complex systems with several constraints and variables. 
Various optimization strategies have been developed to tackle these problems, including traditional methods (such as gradient-based 
techniques and linear programming) and MAs (such as genetic algorithms and particle swarm optimization).

The present study introduces a new optimization technique, Prairie Dog optimization (PDO) and Differential Evolution Algorithm 
(PDO-DE), to address engineering design challenges. This approach utilizes a combination of Prairie Dog Optimization and Differential 
5

Evolution Algorithm to discover solutions that are close to optimal efficiently.
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Fig. 1. Proposed PDO-DE algorithm.

Differential Evolution Algorithm is a machine learning methodology that employs the most favorable and unfavorable solutions 
from a population of solutions to create novel solutions. This strategy effectively addresses constraints associated with conventional 
optimization techniques, such as the tendency to become trapped in a local minimum, by actively investigating solutions far from the 
existing population. Prairie Dog Optimization is a population-based optimization technique that leverages the behavioral patterns 
of prairie dogs to identify the most effective solution. Prairie dogs exhibit collective behavior, moving in a coordinated manner 
resembling a swarm, and communicate among themselves to determine the optimal option.

The PDO-DE methodology starts by initializing a set of solutions and generating further solutions by utilizing the DE algorithm. 
Subsequently, the prairie dogs endeavor to choose the most favorable course of action by moving to a different location and sharing 
information. The technique continues until the optimal solution is achieved or a termination criterion is met. The main procedure of 
the proposed method is depicted in Fig. 1. This approach enhances the PDO algorithm by optimizing the balance between exploration 
and exploitation while searching for optimal solutions. The integration of the DE algorithm with PDO’s mechanisms facilitates this 
balance. The DE algorithm boosts the PDO’s exploratory abilities and accelerates convergence to the best solution—this synergy 
between PDO and DE results in improved performance of the PDO algorithm. The initialization of the HPDO algorithm involves 
randomly selecting the initial positions of 𝐼𝑃 agents (𝐴) through a designated formula.

𝐴𝑖𝑗 = 𝑟𝑎𝑛𝑑 × (𝑈𝑝𝐵 −𝐿𝑜𝐵) +𝐿𝑜𝐵, 𝑖 = 1,2, ..., 𝐼𝑃 , 𝑗 = 1,2, ...,𝑍. (16)

In Equation (16), 𝑍 denotes the dimension of each parameter 𝐴𝑖. 𝐿𝑜𝐵 and 𝑈𝑝𝐵 define the lower and upper bounds of the search 
space, respectively. A hybridization of the PDO and DE algorithms manages the update of the agents 𝐴. This hybrid operation uses a 
randomly generated parameter 𝑅𝑎𝑛𝑑𝑟 ∈ [0, 1] to switch between the PDO and DE mechanisms. Specifically, if 𝑅𝑎𝑛𝑑𝑟 < 0.5, the PDO 
operator is employed to modify the current solution; if 𝑅𝑎𝑛𝑑𝑟 ≥ 0.5, the solution is updated using the HHO algorithm. The method is 
described as follows:

𝐴𝑖(𝑡+ 1) =
{

𝑈𝑠𝑒𝑃𝐷𝑂𝑎𝑠 𝑖𝑛𝐸𝑞𝑠. (9)− (12), 𝑅𝑎𝑛𝑑𝑟 < 0.5
𝐴𝑝𝑝𝑙𝑦𝐷𝐸 𝑎𝑠 𝑖𝑛𝐸𝑞.(15), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(17)

The PDO-DEO algorithm is outlined in Algorithm 1. Using the Differential Evolution Algorithm in optimization enhances the 
algorithm’s performance by incorporating new concepts that improve its capacity to find the best solution. The Differential Evolution 
Algorithm provides a framework for producing diverse solutions by including contrasting elements. Furthermore, the Differential 
Evolution Algorithm offers a technique for producing solutions with a more evenly distributed range of values. By combining these 
two concepts, the optimization algorithm may methodically and effectively explore the search space and quickly approach the optimal 
6

solution, reducing the likelihood of getting stuck in suboptimal solutions.
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Algorithm 1 The proposed PDO-DE Algorithm.

1: Initialize: Population of prairie dogs 𝑃𝐷, differential vectors 𝐷𝑉 , and algorithm parameters.

2: for each generation do

3: for each prairie dog 𝑖 in 𝑃𝐷 do

4: Evaluate the fitness of each prairie dog using 𝑓 (𝑃𝐷𝑖).
5: Identify the global best 𝐺𝑏𝑒𝑠𝑡 and local bests within the communication range.

6: end for

7: Prairie Dog Exploration:

8: for each prairie dog 𝑖 in 𝑃𝐷 do

9: if random condition for exploration then

10: Update position using exploration strategy:

11: 𝑃𝐷𝑛𝑒𝑤
𝑖 = 𝑃𝐷𝑖 + 𝛼 ⋅ (𝐺𝑏𝑒𝑠𝑡 − 𝑃𝐷𝑖) + 𝛽 ⋅ (𝑃𝐷𝑙𝑜𝑐𝑎𝑙 − 𝑃𝐷𝑖)

12: where 𝛼 and 𝛽 are random weights.

13: end if

14: end for

15: Differential Evolution Modification:

16: for each prairie dog 𝑖 in 𝑃𝐷 do

17: Apply mutation operator:

18: 𝑉𝑖 = 𝑃𝐷𝑏𝑒𝑠𝑡 + 𝐹 ⋅ (𝑃𝐷𝑟1 − 𝑃𝐷𝑟2)
19: Apply crossover operator:

20: 𝑈𝑖[𝑗] =
{

𝑉𝑖[𝑗] if 𝑟𝑎𝑛𝑑[0,1]≤ 𝐶𝑅 or 𝑗 = 𝑟𝑎𝑛𝑑_𝑖𝑑𝑥

𝑃𝐷𝑖[𝑗] otherwise

21: where 𝑟𝑎𝑛𝑑_𝑖𝑑𝑥 is a randomly chosen index.

22: end for

23: Selection:

24: for each prairie dog 𝑖 in 𝑃𝐷 do

25: Compare the fitness of the new position 𝑈𝑖 with the current position 𝑃𝐷𝑖 .

26: Accept the new position if it offers better fitness:

27: 𝑃𝐷𝑖 =

{
𝑈𝑖 if 𝑓 (𝑈𝑖) < 𝑓 (𝑃𝐷𝑖)
𝑃𝐷𝑖 otherwise

28: end for

29: Check for convergence criteria or maximum iterations.

30: end for

31: Output: Return the best solution found.

2.4. Complexity analysis of PDO-DE algorithm

The PDO-DE algorithm merges Prairie Dog Optimization (PDO) with Differential Evolution (DE) to solve complex optimization 
problems efficiently. This section provides a detailed complexity analysis of the PDO-DE algorithm, focusing on its major computa-

tional steps across various stages.

2.4.1. Overview of algorithm stages

• Initialization: Complexity of 𝑂(𝑛) for generating 𝑛 initial individuals.

• Fitness Evaluation: Each individual requires 𝑂(𝑓 ) operations, resulting in 𝑂(𝑛 × 𝑓 ) per generation.

• Prairie Dog Exploration: Updating positions based on local interactions, typically 𝑂(𝑛 × 𝑙).
• Differential Evolution Modification: Involving mutation and crossover at 𝑂(𝑛) complexity.

• Selection: Complexity of 𝑂(𝑛) for selecting the new generation.

2.4.2. Computational complexity

The overall computational complexity for each generation includes these steps, dominated by the evaluation step:

𝑂(𝑛 × (𝑓 + 𝑙 + 2)) (18)

Given 𝐺 generations, the total complexity becomes:

𝑂(𝐺 × 𝑛 × (𝑓 + 𝑙 + 2)) (19)

This formulation indicates that the algorithm’s computational load primarily depends on the number of generations 𝐺, the pop-

ulation size 𝑛, and the complexity of the fitness function 𝑓 . The local interaction term 𝑙 adds additional complexity but is typically 
bounded by 𝑛.

3. Experiments and results

This study will employ the Prairie Dog Optimization and Differential Evolution method (PDO-DE) to tackle global optimization 
difficulties. The main focus will be on 23 benchmark functions, CEC2019 functions, and five challenges in engineering. The section 
begins by briefly elucidating the benchmark and engineering difficulties utilized for experimentation and the experimental setup. 
7

The experimental findings are then reported comprehensively. The findings consist of the objective function values obtained by the 
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Table 1

Parameter values for the PDO-DE algo-

rithm and other algorithms.

Algorithm Parameters

HHO 𝜖0 between −1 and 1
GOA 𝑐 = [1E-5,1]

SSA 𝑣0 = 0
WOA 𝛼 = [2 𝑡𝑜0]
SCA 𝛼 = [0.05]
DA 𝜔 = [0.2, 0.9]
SMA 𝑧 = 0.03
PDO 𝜌 = 0.1, 𝜀 = 2.22𝐸 − 16

Fig. 2. Compersion of execution time.

proposed method, the number of function assessments, and the convergence curves. The performance of the proposed approach is 
assessed by contrasting its objective function values with those of other existing optimization methods.

Furthermore, the paper includes a comprehensive analysis of the findings, highlighting the strengths and weaknesses of the 
proposed approach. The debate provides vital insights into the potential applications of the suggested method and highlights areas that 
require more investigation. The suggested strategy is assessed utilizing comparable methodologies, which encompass the following 
algorithms:

• Harris hawks optimization (HHO) [12].

• Grasshopper optimization algorithm (GOA) [32].

• Salp Swarm Algorithm (SSA) [33].

• The whale optimization algorithm (WOA) [34].

• Sine Cosine Algorithm (SCA) [35].

• Dragonfly algorithm (DA) [36].

• Slime mould algorithm (SMA) [37].

• Prairie dog optimization algorithm (PDO) [28].

The experimental setup details the specific hardware and software specs and the study configuration employed. Every comparison 
technique was evaluated under the same conditions, using the initial parameter values, and executed for 50 iterations with 10 and 
100 dimensions. The studies used Matlab 2018a on a Windows 11 PC with a Core i7 processor and 16 GB of RAM.

The worst, average, best, and standard deviation (STD) markers are employed to communicate the results of the utilized algorithms. 
Furthermore, when the p-value is below 0.08, the Wilcoxon rank-sum test obtains statistical evidence to ascertain if PDO-DE differs 
significantly from other approaches. The values for the essential parameters of the utilized algorithms are displayed in Table 1.

3.1. Qualitative analysis

This section evaluates the proposed PDO-DE approach on 23 different benchmark function challenges as described in [17]. Fig. 2

displays the conclusive outcomes of the comparison methodologies. The data presented in the figure demonstrates that the suggested 
technique consistently outperformed other strategies regarding execution time across all assessed tasks. The PDO-DE technique, which 
has been proposed, is considered the most efficient in terms of execution time.

Fig. 3 analyzes the behavior of the PDO-DE on benchmark functions F1-F13 to illustrate the function’s structure, track the progress 
8

of the best solution, and evaluate its fitness achieved using the PDO-DE. Furthermore, the convergence curves of the PDO, DE, and 
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Fig. 3. Achieved qualitative experiment results for the tested 13 benchmark functions.

PDO-DE produced from the specified functions are depicted in the last column of Fig. 3. These figures demonstrate that the PDO-DE 
exhibits rapid convergence and high accuracy. An illustrative instance may be observed in F8, a function incorporating many modes; 
9

the PDO-DE has a faster convergence rate than the PDO and DE.
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Fig. 3. (continued)
10
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Fig. 4. A sample of qualitative analysis (Convergence behavior) of the benchmark functions based on 500 iterations.
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Table 2

The results of ten benchmark functions (F1–F13) were obtained using comparative methodologies, with a dimension of 10 and 50 iterations.

Function Measure Comparative Algorithms

HHO GOA SSA WOA SCA DA SMA PDO PDO-DE

Fun.1 Best 1.28997E-09 11971.93256 7885.284511 45.62434179 1983.798739 12811.3806 99.831123 3.63275E-52 1.95224E-49

Average 4.19526E-10 8206.782535 5336.310064 16.38148275 490.7813722 5453.109966 47.85241519 7.26551E-53 3.90449E-50

Worst 1.43254E-15 5757.767204 2226.687978 0.312336697 14.80068434 589.7900284 8.323702858 1.57931E-73 1.00407E-68

STD 5.98522E-10 2331.678606 2049.129172 21.24004827 848.294567 4645.005825 42.14679608 1.62462E-52 8.73069E-50

p-value 0.155670615 4.9113E-05 0.000394632 0.122889212 0.231875304 0.030409481 0.034777009 0.347440729 1

h 0 1 1 0 0 1 1 0 0

Fun.2 Best 5.43778E-05 61.47531981 38.50814342 1.563159862 10.16308201 26.37318095 3.236703785 2.14632E-33 9.01812E-26

Average 1.51381E-05 43.57550598 23.90481536 0.391425274 4.538211729 15.9159887 2.08918866 6.21973E-34 1.81024E-26

Worst 9.65763E-09 32.67848292 9.006642887 0.021148146 1.83817754 5.592412467 1.095270907 5.98125E-40 5.84278E-36

STD 2.35916E-05 11.30557147 10.95009294 0.662960972 3.672698506 7.474573175 0.998288818 9.37233E-34 4.02935E-26

p-value 0.189252823 2.54495E-05 0.001222047 0.223282872 0.024559848 0.001424289 0.001582748 0.344512642 1

h 0 1 1 0 1 1 1 0 0

Fun.3 Best 0.023413869 28737.58635 11789.13314 33757.10835 13028.15941 9870.413501 1120.21339 3.04372E-46 4.73504E-47

Average 0.004760219 13285.44943 6956.74007 22277.8398 6854.41795 6522.64401 632.3847143 6.08743E-47 9.47076E-48

Worst 6.84425E-11 3270.271734 1982.525295 9366.631524 3687.180954 3400.212739 286.220402 2.69565E-70 2.65509E-68

STD 0.010428185 9476.596844 4218.795843 11150.20406 3925.058956 2704.220485 397.6768708 1.36119E-46 2.11754E-47

p-value 0.337262571 0.013914193 0.006154552 0.002089846 0.004513396 0.000651088 0.007446292 0.428274379 1

h 0 1 1 1 1 1 1 0 0

3.2. Simulation and experiments results of the benchmark functions

This section showcases the efficacy of PDO-DE. The implementation evaluation assesses its average, best, worst, and standard 
deviation (STD) values. In addition, we will do the Wilcoxon rank-sum test with a significance level of 0.08 to assess whether there is 
a significant difference between the proposed variant and its counterparts. Upon conducting the evaluations, we discovered that the 
PDO-DE demonstrates a high level of proficiency in managing most of the benchmark functions compared to comparable cutting-edge 
alternatives. To establish the ultimate ranking of the proposed PDO-DE, we employed the Friedman ranking test. This demonstrated 
the efficacy of the PDO-DE as a potent instrument capable of producing outcomes comparable to the field’s top performers.

3.2.1. Scalability analysis

The behavior and convergence of the PDO-DE are compared to the HHO, GOA, SSA, WOA, SCA, DA, SMA, and PDO. Fig. 4 displays 
the merged curves of the nine algorithms for the 23 benchmark functions in a ten-dimensional space. The graphs provide a means 
to discern the rate at which the PDO-DE converges and its level of accuracy. Here, combining the two algorithms shows that the 
performance is significantly enhanced. The various functions demonstrate the ability of the PDO-DE to avoid suboptimal solutions. 
For instance, in plots F12, F14, and F19, it is evident that the algorithm consistently identifies a lower value after a specific number 
of rounds. Two notable examples of convergence speed are F7 and F4, in which the proposed algorithms outperform other methods 
by achieving the global optimum in a smaller number of iterations.

The proposed PDO-DE is compared to other swarm-inspired algorithms currently used. This scenario compares the highest and 
lowest fitness values, the average fitness values of the 20 separate runs, and the Standard Deviation (STD). A ranking is determined 
by the optimal value achieved for each algorithm. The results of the eight methods and the PDO-DE over the 23 benchmark functions 
in 10 dimensions are displayed in Tables 2 and 3. The values for functions F1-13 are reported in Table 2, whereas those for functions 
F14-F23 are listed in Table 3. According to the ranking summary shown in Table 4, the PDO-DE is ranked first in all 23 functions 
across ten dimensions.

The HHO is ranked second for the F1-F23, while the basic PDO is ranked third. Lastly, the ultimate position is the GOA algorithm. 
The p-values derived from the Wilcoxon signed-rank test provide conclusive evidence that the algorithms are statistically distinct in 
most cases. This fact is evident since the p-value of the majority of experiments is below 0.008. Nevertheless, in certain functions, 
such as F18, the PDO-DE method has surpassed other comparing algorithms.

To assess the effectiveness of the proposed PDO-DE method on complex problems, the dimensionality of the 13 benchmark 
functions is adjusted to 100. They employed the functions F1-F13 in this instance. The nine comparing algorithms and PDO-DE 
results over the 13 selected functions are presented in Table 5. Table 6 shows the final rank of tested algorithms. According to the 
table, the PDO-DE ranks first, followed by HHO, and WOA is in third position. Ultimately, the most unfavorable approach for this 
series of studies is the GOA.

Regarding Wilcoxon’s rank test, the p-values indicate instances where the PDO-DE shares similarities with specific algorithms. For 
instance, F4 exhibits statistical resemblances to GOA, SSA, SCA, DA, SMA, and PDO. Nevertheless, it exhibits statistical dissimilarity 
compared to AO, HHO, and WOA. In addition, F5 shares common characteristics with all other approaches. However, in functions 
such as F8, the PDO-DE exhibits statistical dissimilarity compared to the other techniques. These circumstances arise as a result of 
12

the inherent character of the difficulties. Greater dimensionality presents challenges in locating the global optimum.
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Table 2 (continued)

Function Measure Comparative Algorithms

HHO GOA SSA WOA SCA DA SMA PDO PDO-DE

Fun.4 Best 9.49879E-07 64.41362376 50.17413726 80.99139237 66.00901277 55.37519706 14.74527955 3.15907E-21 1.85415E-27

Average 4.21689E-07 53.36955841 38.22797809 62.67235191 37.68376843 36.09814145 8.92860099 6.31815E-22 4.15177E-28

Worst 3.24453E-09 44.09679667 21.32962513 46.55400024 20.53089786 19.03733006 4.884795802 3.79981E-33 1.56398E-34

STD 4.00444E-07 7.380152511 11.45096534 14.82426394 17.25288129 13.49586322 4.451242181 1.41278E-21 8.09964E-28

p-value 0.046339898 2.14972E-07 7.16226E-05 1.28936E-05 0.001218138 0.000330345 0.002041534 0.346593592 1

h 1 1 1 1 1 1 1 0 0

Fun.5 Best 8.918375336 44730188.96 3213097.928 136985.3253 9838643.076 5013344.415 6219.218674 8.991062471 8.992231913

Average 4.740711238 19849170.49 2123623.847 33401.17873 2529770.734 2037389.939 2884.556686 8.937100415 8.894803122

Worst 0.392435818 5311932.717 1262784.812 63.35960624 97968.60179 569008.5357 202.6773502 8.738921646 8.771253446

STD 4.226842581 15451073.27 791886.6503 58360.84764 4115614.48 1805838.475 2349.539474 0.110818943 0.112524417

p-value 0.059288707 0.02074732 0.000324658 0.236609927 0.206569484 0.035654398 0.025576193 0.565832204 1

h 0 1 1 0 0 1 1 0 0

Fun.6 Best 0.230930855 14013.12788 7601.707043 41.67285302 2281.508134 7014.286918 242.1220508 1.63249874 1.782415675

Average 0.119332361 6479.804196 4491.277301 15.6146427 870.3945091 3720.1229 119.9239546 1.136680823 1.571059344

Worst 0.040121736 2389.00061 1807.026786 0.711566976 4.654498555 614.4322591 33.2407776 0.78283519 0.901687033

STD 0.085229633 4406.640741 2723.174269 17.59542404 952.4821375 2801.001619 84.95531749 0.325677786 0.376299852

p-value 3.03304E-05 0.011067216 0.006160182 0.112214542 0.075712741 0.017910552 0.014334949 0.086760553 1

h 1 1 1 0 0 1 1 0 0

Fun.7 Best 0.01055495 15.42330689 2.363815093 0.765613408 0.748938596 1.791117249 0.089934661 0.018451571 0.009921997

Average 0.007181684 9.532973139 1.030339803 0.306693208 0.485099142 0.693259753 0.052227799 0.006601459 0.005848939

Worst 0.001050772 4.709756941 0.275812638 0.022492358 0.274248246 0.036234242 0.033921544 0.001122041 0.001398

STD 0.00368364 5.202352889 0.846798712 0.277966312 0.172823695 0.756028517 0.023772218 0.00683874 0.003865278

p-value 0.592026994 0.003461904 0.026854592 0.041858376 0.000259655 0.076489155 0.002594808 0.83574616 1

h 0 1 1 1 1 0 1 0 0

Fun.8 Best -2295.512188 -1761.986199 -1299.717717 -1915.207734 -1350.221326 -1499.985997 -1567.362794 -1982.61448 -1825.540916

Average -3084.313124 -1952.868062 -1868.606746 -2403.600699 -1504.585779 -1789.723975 -2104.890732 -3426.732872 -3239.416954

Worst -3865.90875 -2053.317165 -2733.68856 -3108.065206 -1705.43066 -2223.606729 -2679.455607 -4187.657543 -4179.432394

STD 579.348396 120.1544767 537.0522801 599.9908775 138.6836573 288.1373349 404.3948587 1044.924367 915.6222581

p-value 0.757100373 0.014332099 0.020272859 0.126155608 0.003042313 0.009683605 0.0350108 0.770738089 1

h 0 1 1 0 1 1 1 0 0

Fun.9 Best 2.60797E-06 115.8158485 95.26968919 69.0215843 58.06632219 75.10691224 34.63086015 0 9.21187E-07

Average 9.80191E-07 105.2691236 76.52610266 35.53589185 44.01162984 52.66718786 25.44370869 0 1.84237E-07

Worst 4.43379E-12 97.80282241 63.50309523 10.6821462 29.5942212 29.76489308 11.65940646 0 0

STD 1.34663E-06 8.37452016 11.90074753 25.90988657 10.8566309 16.59832693 9.855806657 0 4.11967E-07

p-value 0.241864489 2.7724E-09 5.34663E-07 0.015422398 1.75788E-05 0.000102484 0.000418027 0.346593507 1

h 0 1 1 1 1 1 1 0 0

Fun.10 Best 7.08246E-06 19.77142424 18.51302534 5.733790561 20.26629422 17.30893877 4.249701841 4.723558315 8.88178E-16

Average 3.85376E-06 19.21215325 15.5174961 3.078996027 17.70413485 16.4167313 3.630017973 3.526854778 8.88178E-16

Worst 8.01585E-07 18.59062547 11.53821459 0.151827402 13.40550502 15.37092417 2.970834836 2.793001723 8.88178E-16

STD 2.84875E-06 0.531898732 3.338454594 2.287464468 3.408037088 0.922951505 0.572333603 0.843446955 0

p-value 0.01643563 6.15808E-13 6.35862E-06 0.016818291 2.74586E-06 1.75626E-10 5.9465E-07 1.39863E-05 0

h 1 1 1 1 1 1 1 1 0

Fun.11 Best 5.12703E-06 103.384885 86.29789546 2.481173823 39.37928692 21.91272532 2.286446089 172.1793446 4.13E-06

Average 1.19299E-06 63.45646696 58.3459853 1.317520412 13.44380745 15.80909639 1.408677678 118.7951121 1.19299E-06

Worst 5.61138E-10 34.451969 23.7254226 0.007324642 2.335130628 5.823029868 0.950335177 81.83212487 3.41E-10

STD 2.21821E-06 31.20581916 28.2923524 0.996703685 15.7261065 6.256486872 0.548331464 35.9666052 2.21821E-06

p-value 0.263513745 0.001881775 0.001729642 0.018262816 0.092310139 0.000481329 0.000431703 7.72552E-05 0.223513745

h 0 1 1 1 0 1 1 1 0

Fun.12 Best 0.061557963 24803720.04 2975187.252 1490044.516 12582070.15 70714123.97 9.610626284 8.317016755 0.734926385

Average 0.024444536 14118112.02 1535115.283 298570.1025 2899023.431 14459173.38 4.38278262 5.798464497 0.423059432

Worst 0.001156394 6652617.077 244868.1401 13.93254916 10.1600239 68.22818789 1.392209899 1.059746569 0.088352714

STD 0.022742396 7709517.612 1166210.984 666054.571 5475470.742 31450162.36 3.400393216 2.971463393 0.275406293

p-value 0.01213972 0.003462467 0.018612696 0.34552344 0.270433882 0.334012496 0.031845679 0.003799645 1

h 1 1 1 0 0 0 1 1 0

1 8 6 5 7 9 3 4 2

Fun.13 Best 0.25110391 63605678.94 35751345.12 363541.1302 7553775.192 16600183.25 15.41469564 198.3423261 0.899568549

Average 0.108785796 27494480.14 23715547.81 72720.03824 2499055.155 6721378.636 13.12903408 44.73300118 0.852974889

Worst 0.000101863 4112570.779 201711.8416 0.573557845 159556.9819 2754809.999 10.32544087 0.402952365 0.817248493

STD 0.106359219 28226572.24 13721166.49 162573.9337 2901352.622 5796045.328 1.838999879 85.96105367 0.042851338

p-value 4.97818E-07 0.061045584 0.004776352 0.346506412 0.090273731 0.031961019 4.0111E-07 0.286703037 1
13
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Table 3

The results of ten benchmark functions (F14–F23) were obtained using comparative methodologies, with a dimension of 10 and 50 iterations.

Function Measure Comparative Algorithms

HHO GOA SSA WOA SCA DA SMA PDO PDO-DE

Fun.14 Worst 1.1719E+01 2.2901E+01 2.2901E+01 1.2671E+01 1.6443E+01 1.8304E+01 1.3619E+01 2.0153E+01 1.2671E+01

Average 5.9822E+00 1.5652E+01 1.5590E+01 5.9009E+00 9.6506E+00 1.4139E+01 8.4176E+00 1.1087E+01 4.8415E+00

Best 1.2456E+00 1.0763E+01 3.9683E+00 9.9804E-01 2.9821E+00 5.9288E+00 1.9920E+00 3.9683E+00 9.9807E-01

STD 4.0348E+00 4.8709E+00 7.8680E+00 4.4563E+00 6.0587E+00 5.3213E+00 4.7700E+00 6.0000E+00 4.8999E+00

p-value 9.7661E-01 1.0814E-02 4.3444E-02 1.0000E+00 2.9730E-01 2.9068E-02 4.1372E-01 1.5938E-01 7.2985E-01

h 0 1 1 0 0 1 0 0 0

Fun.15 Worst 7.2916E-03 3.6538E+00 9.4642E-02 4.6014E-02 4.9513E-02 3.5854E-02 2.1157E-02 5.2012E-02 4.3638E-03

Average 2.9623E-03 9.3275E-01 4.4021E-02 1.8504E-02 2.0559E-02 1.6282E-02 1.5317E-02 3.1430E-02 2.2102E-03

Best 3.8597E-04 2.0958E-02 2.2525E-02 7.3080E-03 1.4603E-03 2.6888E-03 1.2736E-03 2.2901E-03 1.4122E-03

STD 2.6074E-03 1.5597E+00 2.9278E-02 1.6481E-02 1.7685E-02 1.3698E-02 8.6086E-03 2.6401E-02 1.2182E-03

p-value 4.3212E-02 2.3244E-01 4.9542E-01 3.8022E-01 4.6625E-01 2.8772E-01 2.3063E-01 1.0000E+00 3.8577E-02

h 1 0 0 0 0 0 0 0 1

Fun.16 Worst -1.0210E+00 3.8734E+02 -1.0316E+00 -2.1445E-01 -1.0170E+00 -2.1546E-01 -9.9564E-01 -1.0069E+00 -1.0310E+00

Average -1.0276E+00 8.0406E+01 -1.0316E+00 -8.2643E-01 -1.0256E+00 -8.6834E-01 -1.0244E+00 -1.0262E+00 -1.0314E+00

Best -1.0316E+00 -2.1546E-01 -1.0316E+00 -1.0313E+00 -1.0313E+00 -1.0316E+00 -1.0316E+00 -1.0316E+00 -1.0316E+00

STD 4.3640E-03 1.7167E+02 7.7954E-06 3.4343E-01 5.8470E-03 3.6497E-01 1.6080E-02 1.0840E-02 2.5076E-04

p-value 7.9416E-01 3.1979E-01 2.9795E-01 2.2972E-01 9.0874E-01 3.6189E-01 8.3896E-01 1.0000E+00 3.1382E-01

h 0 0 0 0 0 0 0 0 0

Fun.17 Worst 4.4692E-01 1.1244E+01 2.7054E+00 2.8830E+00 1.2106E+00 2.7054E+00 4.2099E-01 4.1417E-01 3.9792E-01

Average 4.1742E-01 2.6013E+00 8.6001E-01 1.1714E+00 6.2511E-01 8.6096E-01 4.0392E-01 4.0153E-01 3.9790E-01

Best 3.9812E-01 3.9789E-01 3.9790E-01 4.0209E-01 4.0359E-01 3.9789E-01 3.9790E-01 3.9790E-01 3.9789E-01

STD 2.4023E-02 4.8321E+00 1.0316E+00 1.0003E+00 3.3463E-01 1.0311E+00 9.6552E-03 7.0916E-03 1.6249E-05

p-value 1.9380E-01 3.3850E-01 3.4943E-01 1.2355E-01 1.7360E-01 3.4826E-01 6.6678E-01 1.0000E+00 2.8524E-01

h 0 0 0 0 0 0 0 0 0

Fun.18 Worst 3.6003E+00 2.3565E+03 3.7096E+00 3.7405E+01 9.0288E+00 3.0109E+00 3.0008E+01 8.6436E+01 3.0010E+00

Average 3.1524E+00 5.8498E+02 3.1467E+00 2.2820E+01 4.3326E+00 3.0025E+00 1.4098E+01 3.5888E+01 3.0003E+00

Best 3.0009E+00 3.0000E+00 3.0000E+00 3.2353E+00 3.0762E+00 3.0000E+00 3.1496E+00 3.0000E+00 3.0000E+00

STD 2.5434E-01 1.0000E+03 3.1468E-01 1.4750E+01 2.6263E+00 4.7530E-03 1.4523E+01 4.5041E+01 4.0173E-04

p-value 1.4279E-01 2.5487E-01 1.4274E-01 5.5467E-01 1.5647E-01 1.4120E-01 3.3334E-01 1.0000E+00 1.4118E-01

h 0 0 0 0 0 0 0 0 0

Fun.19 Worst -3.0798E+00 -6.4296E-01 -3.7898E+00 -3.5186E+00 -3.6380E+00 -3.5147E+00 -3.0842E+00 -1.0008E+00 -3.8366E+00

Average -3.6176E+00 -1.9943E+00 -3.8379E+00 -3.7489E+00 -3.7665E+00 -3.7206E+00 -3.7064E+00 -2.7177E+00 -3.8506E+00

Best -3.8051E+00 -3.1028E+00 -3.8620E+00 -3.8457E+00 -3.8424E+00 -3.8625E+00 -3.8626E+00 -3.8628E+00 -3.8603E+00

STD 3.0633E-01 9.0107E-01 3.1344E-02 1.3186E-01 7.8732E-02 1.5799E-01 3.4781E-01 1.5673E+00 1.1202E-02

p-value 6.7977E-01 4.1567E-03 4.2413E-01 8.0448E-01 7.1599E-01 9.3562E-01 1.0000E+00 2.0579E-01 3.8120E-01

h 0 1 0 0 0 0 0 0 0

Fun.20 Worst -2.0753E+00 -1.7777E-01 -2.3878E+00 -1.4342E+00 -6.5296E-01 -7.6773E-01 -2.3077E+00 -2.2505E+00 -3.0711E+00

Average -2.4745E+00 -8.8126E-01 -2.6962E+00 -1.7743E+00 -1.8693E+00 -2.5832E+00 -3.0332E+00 -2.9160E+00 -3.1857E+00

Best -2.8739E+00 -2.3590E+00 -3.1169E+00 -2.4107E+00 -2.7531E+00 -3.3102E+00 -3.3084E+00 -3.2303E+00 -3.3095E+00

STD 3.0572E-01 8.6990E-01 3.1224E-01 3.8837E-01 9.0514E-01 1.0493E+00 4.1360E-01 3.8199E-01 1.1088E-01

p-value 7.8327E-02 1.3751E-03 3.4838E-01 1.5688E-03 4.4390E-02 5.2396E-01 6.5379E-01 1.0000E+00 1.6787E-01

h 0 1 0 1 1 0 0 0 0

Fun.21 Worst -2.0889E+00 -1.9987E-01 -1.3718E+00 -1.7921E+00 -3.5136E-01 -1.3646E+00 -2.5184E+00 -2.2309E+00 -5.0514E+00

Average -3.4939E+00 -5.6869E-01 -3.5371E+00 -2.8124E+00 -6.0047E-01 -3.9053E+00 -6.6250E+00 -6.8756E+00 -8.6921E+00

Best -4.2719E+00 -1.1749E+00 -9.9026E+00 -4.1255E+00 -8.7131E-01 -8.0340E+00 -9.7152E+00 -1.0152E+01 -1.0141E+01

STD 9.8064E-01 3.6706E-01 3.5871E+00 9.4735E-01 2.2715E-01 2.6788E+00 3.7257E+00 4.1579E+00 2.0783E+00

p-value 9.7946E-04 2.5703E-05 2.3908E-02 4.2594E-04 2.4691E-05 1.3456E-02 3.1020E-01 4.0770E-01 1.0000E+00

h 1 1 1 1 1 1 0 0 0

Fun.22 Worst -3.0082E+00 -2.6133E-01 -8.9916E-01 -9.2803E-01 -5.1607E-01 -1.8009E+00 -1.5675E+00 -2.4415E+00 -5.1022E+00

Average -4.1112E+00 -6.6870E-01 -2.4891E+00 -4.4755E+00 -6.8023E-01 -4.0724E+00 -7.9722E+00 -4.8132E+00 -8.0327E+00

Best -4.9090E+00 -1.3529E+00 -4.5931E+00 -9.1062E+00 -1.0204E+00 -8.1938E+00 -1.0062E+01 -9.6436E+00 -1.0335E+01

STD 7.5261E-01 4.3117E-01 1.4439E+00 3.4132E+00 2.3082E-01 2.9590E+00 3.6284E+00 2.8541E+00 2.3852E+00

p-value 8.0094E-03 1.3874E-04 2.1512E-03 9.2497E-02 1.2957E-04 4.8161E-02 9.7592E-01 8.8969E-02 1.0000E+00

h 1 1 1 0 1 1 0 0 0

Fun.23 Worst -3.3579E+00 -3.6921E-01 -2.0723E+00 -6.5146E-01 -5.5426E-01 -2.0594E+00 -9.2807E-01 -2.3957E+00 -5.1031E+00

Average -4.3874E+00 -6.1584E-01 -2.4152E+00 -1.8320E+00 -1.0302E+00 -3.0600E+00 -4.2707E+00 -4.8528E+00 -7.1683E+00

Best -5.0393E+00 -8.3605E-01 -2.7864E+00 -4.5749E+00 -1.6175E+00 -5.0958E+00 -1.0482E+01 -1.0489E+01 -1.0309E+01

STD 6.5103E-01 1.8871E-01 3.1747E-01 1.5791E+00 4.1332E-01 1.1755E+00 3.6664E+00 3.6255E+00 2.8245E+00

p-value 6.4243E-02 8.4710E-04 5.7110E-03 6.1531E-03 1.3416E-03 1.7000E-02 1.9910E-01 2.9256E-01 1.0000E+00

h 0 1 1 1 1 1 0 0 0
14
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Table 4

The final rank of all benchmark functions (F1–F23) were obtained using comparative methodologies, with a dimension of 10 and 50 iterations.

Function Comparative Algorithms

HHO GOA SSA WOA SCA DA SMA PDO PDO-DE

Fun.1 3 9 7 4 6 8 5 1 2

Fun.2 3 9 8 4 6 7 5 1 2

Fun.3 3 8 7 9 6 5 4 2 1

Fun.4 3 8 7 9 6 5 4 2 1

Fun.5 1 9 7 5 8 6 4 3 2

Fun.6 1 9 8 4 6 7 5 2 3

Fun.7 3 9 8 5 6 7 4 2 1

Fun.8 3 6 7 4 9 8 5 1 2

Fun.9 3 9 8 5 6 7 4 1 2

Fun.10 2 9 6 3 8 7 5 4 1

Fun.11 2 8 7 3 5 6 4 9 1

Fun.12 1 9 8 5 6 7 3 4 2

Fun.14 3 9 8 2 5 7 4 6 1

Fun.15 2 9 8 5 6 4 3 7 1

Fun.16 3 9 1 8 5 7 6 4 2

Fun.17 4 9 6 8 5 7 3 2 1

Fun.18 7 9 2 4 3 5 6 8 1

Fun.19 7 9 2 4 3 5 6 8 1

Fun.20 6 9 4 8 7 5 3 2 1

Fun.21 6 9 5 7 8 4 2 3 1

Fun.22 5 9 7 4 8 6 2 3 1

Fun.23 3 9 6 7 8 5 4 2 1

Sum 74 192 137 117 136 135 91 77 31

Mean 3.217391304 8.347826087 5.956521739 5.086956522 5.913043478 5.869565217 3.956521739 3.347826087 1.347826087

Rank 2 9 8 5 7 6 4 3 1

Table 5

The results of ten benchmark functions (F1–F13) were obtained using comparative methodologies, with a dimension of 100 and 50 iterations.

Function Measure Comparative Algorithms

HHO GOA SSA WOA SCA DA SMA PDO PDO-DE

Fun.1 Worst 1.76931E-07 154774.0192 150570.4384 2123.1015 82917.77991 113800.2758 54435.00866 44381.34975 2.09496E-49

Average 3.65542E-08 137000.1645 134484.2116 435.0713096 50266.35878 97977.12398 38731.99932 40312.94172 4.18991E-50

Best 3.2267E-15 107256.7989 96133.01906 2.259843439 5713.731376 86584.06291 7217.703643 38114.60316 1.54712E-70

STD 7.85093E-08 18796.45177 21825.5547 943.715732 28367.63991 10621.11906 18952.24666 2646.650501 9.36892E-50

p-value 0.328257881 2.02195E-07 7.43245E-07 0.332757019 0.004164026 3.19576E-08 0.001826343 6.03405E-10 1

h 0 1 1 0 1 1 1 1 0

Fun.2 Worst 0.000106133 2.08606E+46 3.06307E+26 9.425490246 156.188196 459.149022 169.4851854 4.00096E+17 7.70236E-29

Average 3.37409E-05 4.17213E+45 6.12614E+25 3.097594371 70.93708374 356.1665865 143.9531926 8.62595E+16 1.54067E-29

Best 6.17085E-10 2.69155E+28 6.7979E+13 0.072292008 31.72781844 221.8311124 126.5961232 64970000980 8.77321E-36

STD 4.76582E-05 9.32916E+45 1.36985E+26 3.927497094 48.88160854 103.5455433 19.54740611 1.75616E+17 3.44449E-29

p-value 0.152060385 0.346593507 0.346593197 0.115814653 0.011789253 5.78959E-05 1.86557E-07 0.30401841 1

h 0 0 0 0 1 1 1 0 0

Fun.3 Worst 2308746.554 1319107.747 1280200.38 2798461.015 1201898.125 1685831.734 255582.492 274495.3283 1.87989E-27

Average 780279.4934 852450.6173 862632.0386 1713706.729 854772.5188 834214.9299 202886.4419 221551.5934 3.76147E-28

Best 0.001419473 499265.663 471517.0919 874615.1747 527882.046 530366.7932 169029.6623 161413.8048 6.73824E-65

STD 1092863.214 348523.044 357129.8493 739132.5119 253831.9357 491437.931 35046.42053 51482.82724 8.40616E-28

p-value 0.149043625 0.000595021 0.000645148 0.000838222 6.73465E-05 0.005268685 1.20093E-06 1.13029E-05 1

h 0 1 1 1 1 1 1 1 0

(continued on next page)

3.2.2. The experimental results of CEC2019 benchmark functions

This section evaluates the proposed PDO-DE approach on ten different CEC2019 challenges. Table 7 compares the fitness function 
values for various tactics about the worst, mean, and best outcomes in the context of the CEC2019 concerns. Table 8 unequivocally 
demonstrates that the proposed strategy outperformed all comparable solutions for nearly all cases. The PDO-DE technique performs 
superior to HHO, GOA, SSA, WOA, SCA, DA, SMA, and PDO in addressing the issue of cec05. Similarly, it outperformed HHO, GOA, 
SSA, WOA, SCA, DA, SMA, and PDO in solving the problem of cec9. This information is based on the Wilcoxon signed-rank test.

Furthermore, Fig. 5 illustrates the convergence patterns of the different approaches to the CEC2019 problems. The figure illustrates 
that the proposed strategy outperformed alternative methods. The proposed strategy addresses the main shortcomings of the original 
PDO method, such as the imbalance between the search phases, by effectively eliminating local optima and premature convergence. 
The results demonstrate the exceptional ability of the proposed PDO-DE technique to surpass other approaches on many test problems 
15

from CEC 2019. The main goal of this study has been accomplished as the suggested approach has demonstrated more significant 
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Table 5 (continued)

Function Measure Comparative Algorithms

HHO GOA SSA WOA SCA DA SMA PDO PDO-DE

Fun.4 Worst 0.000368775 86.25787312 89.15566619 97.98209565 98.89015396 99.1565944 84.20026226 58.82250147 1.01973E-28

Average 8.8414E-05 80.82718833 80.30069832 91.81223897 97.71829671 84.60720885 73.39936721 52.06773265 2.04156E-29

Best 1.18711E-07 73.37373567 72.15793992 82.77960668 96.71759347 63.33604087 58.70646464 47.22842632 6.1132E-34

STD 0.000157756 5.666183354 6.036418068 7.382191385 0.958873652 15.85208409 10.30880823 4.970346257 4.55921E-29

p-value 0.245518783 1.01615E-09 1.76907E-09 3.01665E-09 1.53951E-16 2.23509E-06 2.4259E-07 1.17287E-08 1

h 0 1 1 1 1 1 1 1 0

Fun.5 Worst 108.4852901 446626104.4 420490489.3 18302201.88 1110726269 317971923.9 58638618.89 61486475.6 98.97815854

Average 60.98672773 358148004.3 362823792.9 7111486.272 818925900.4 160161595.5 45495196.7 49511272.11 98.96355308

Best 0.123446368 276771247.7 295814347.9 107.2278972 392426419 5782045.954 14149873.04 36093938.84 98.93986636

STD 55.69822205 66699867.12 59086872.91 7490699.487 304233680.2 122284973.5 17827778.33 9037812.319 0.016014401

p-value 0.1658609 2.13481E-06 7.63315E-07 0.06653059 0.000316635 0.019036947 0.000451108 1.83221E-06 1

h 0 1 1 0 1 1 1 1 0

Fun.6 Worst 3.587911105 173350.5552 158188.3638 1737.329475 188216.8765 188060.4766 39331.6315 66914.73797 24.30480794

Average 1.049241909 151623.3721 147369.2061 820.6973282 157464.8736 122533.0155 29123.69942 47321.00107 23.24489931

Best 0.294051482 137794.6673 128693.3633 107.4082302 121641.3904 69821.26379 15393.7859 28805.30355 21.85613056

STD 1.428051413 13833.16617 13008.25423 721.145495 25382.53779 43162.4808 10858.66454 13549.19814 1.117730732

p-value 3.42495E-09 8.21148E-09 6.3242E-09 0.038549575 7.06215E-07 0.000221387 0.000326107 5.21004E-05 1

h 1 1 1 1 1 1 1 1 0

Fun.7 Worst 0.018762252 2277.033695 816.8066801 83.70773953 1518.765094 566.1764066 67.71504833 2434.789395 0.023325755

Average 0.010300428 1847.184447 615.1519059 22.90314801 1145.264275 344.4326626 64.85669861 2135.221915 0.013896918

Best 0.004052908 1479.605841 436.308469 0.033165026 743.401764 80.46083387 61.58574648 1698.326756 0.005418321

STD 0.006067214 302.6366952 177.618793 35.42926356 340.7006566 227.4828184 2.462896565 286.1567027 0.007170569

p-value 0.416809189 7.99623E-07 5.51421E-05 0.186564687 6.8208E-05 0.009563405 7.6988E-12 1.684E-07 1

h 0 1 1 0 1 1 1 1 0

Fun.8 Worst -17615.57079 -6813.976316 -5738.841091 -19118.65584 -3619.849329 -5946.994434 -5640.278432 -2856.114888 -8890.802802

Average -23132.14928 -7624.65436 -6506.560952 -25047.99078 -4537.748324 -6752.987087 -6681.393465 -3367.987467 -23677.26208

Best -28851.52063 -9147.274167 -7894.436244 -30054.44693 -5523.328705 -7508.030249 -8419.82693 -3804.895933 -41853.84451

STD 4784.536466 920.6571719 878.4780418 4991.551116 771.5230559 649.6987099 1130.86314 435.9126604 14644.16776

p-value 0.93888097 0.040167993 0.030786533 0.847901346 0.019337716 0.032530928 0.032240484 0.014671994 1

h 0 1 1 0 1 1 1 1 0

Fun.9 Worst 3.32024E-06 1728.913985 1302.520686 771.6592502 1195.052809 1312.347934 957.2384815 1525.721208 2.32024E-06

Average 8.71556E-07 1556.615419 1204.597914 210.2107839 827.9450905 1162.660386 875.6272656 1417.327232 7.71556E-07

Best 5.71845E-11 1351.205953 1144.880922 0.184007254 548.883542 901.2253916 832.9371364 1263.808071 5.21845E-11

STD 1.39839E-06 134.4997748 64.81106813 323.6500593 242.5363904 159.7622236 54.73283559 109.8798932 1.39839E-06

p-value 0.200919411 5.33449E-09 1.23757E-10 0.184475659 6.11184E-05 2.04627E-07 4.08341E-10 2.25922E-09 0.100919411

h 0 1 1 0 1 1 1 1 0

Fun.10 Worst 6.24201E-05 20.92412813 20.16192008 4.985205565 20.75652656 19.96663981 16.87255484 18.37568674 8.88178E-16

Average 1.43311E-05 20.78659556 19.83988609 1.77184925 20.60892593 19.2460516 16.1918604 17.77089404 8.88178E-16

Best 4.36871E-07 20.62056121 19.60950815 0.124373589 20.07177384 18.54933033 15.15947194 17.37122244 8.88178E-16

STD 2.69282E-05 0.111745011 0.268493187 1.951767877 0.300883619 0.636678128 0.639538327 0.426290659 0

p-value 0.268151696 1.24975E-18 2.01388E-15 0.076864164 3.69445E-15 2.55405E-12 1.05196E-11 1.95827E-13 0

h 0 1 1 0 1 1 1 1 0

Fun.11 Worst 6.61046E-08 1530.101704 1238.7058 36.23643738 1541.882634 1036.40333 467.120228 1239.294196 5.61046E-08

Average 1.36207E-08 1290.210111 1141.038415 9.976231025 1042.514463 748.0353402 385.1672916 1133.212159 1.16207E-08

Best 6.69464E-14 1069.604482 1067.293828 0.00156863 628.0759863 360.2758122 292.1822517 1056.502053 6.69464E-14

STD 2.9344E-08 167.5634495 75.4824484 15.12021229 410.7760407 259.6200718 72.73670367 74.18157406 2.9344E-08

p-value 0.329657168 1.31779E-07 6.40906E-10 0.17835664 0.000467715 0.000199849 2.37341E-06 5.89567E-10 0.329657168

h 0 1 1 0 1 1 1 1 0

Fun.12 Worst 0.029798441 562355949.7 883487590.1 30552828.71 3204940264 582722991.1 100286114.4 30523036.75 1.254104865

Average 0.019464771 410104734 637650523.6 10270709.74 2615417460 295340883.2 40488643.29 11482941.22 1.202472061

Best 0.004351119 195377866.3 387405710.8 36.39857641 1758798165 120950279.3 8401825.335 3000586.304 1.154109766

STD 0.012225088 150308005.7 196748792.4 14438228.91 627236882.5 208142591.8 35097781.95 11149837.45 0.047893386

p-value 1.64791E-11 0.000289167 8.83147E-05 0.150355107 1.42799E-05 0.013138417 0.032640782 0.050245165 1

h 1 1 1 0 1 1 1 0 0

Fun.13 Worst 2.057721021 2200851513 2343248299 14488414.95 4665922818 1725033079 137202005.2 95905372.27 9.999006118

Average 0.702307366 1701750739 1453221576 2919497.236 3760545241 1221087949 103445962.5 66766252.74 9.979348889

Best 0.006281799 1396333093 1068209570 85.10687709 2551907957 390845829.3 62891600.24 43996443.79 9.915841518

STD 0.828865176 330931676 522180971.9 6467275.965 837474178.6 552931554.2 31985886.07 20932447.89 0.035995147

p-value 7.00365E-09 2.96608E-06 0.000253031 0.342327358 8.23452E-06 0.001137769 8.9636E-05 9.88087E-05 1

h 1 1 1 0 1 1 1 1 0
16
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Table 6

The final rank of all benchmark functions (F1–F23) were obtained using comparative methodologies, with a dimension of 100 and 50 iterations.

Function Comparative Algorithms

HHO GOA SSA WOA SCA DA SMA PDO PDO-DE

Fun.1 2 9 8 3 6 7 4 5 1

Fun.2 2 9 8 3 4 6 5 7 1

Fun.3 4 6 8 9 7 5 2 3 1

Fun.4 2 6 5 8 9 7 4 3 1

Fun.5 1 7 8 3 9 6 4 5 2

Fun.6 1 8 7 3 9 6 4 5 2

Fun.7 1 8 6 3 7 5 4 9 2

Fun.8 3 4 7 1 8 5 6 9 2

Fun.9 2 9 7 3 4 6 5 8 1

Fun.10 2 9 7 3 8 6 4 5 1

Fun.11 2 9 8 3 6 5 4 7 1

Fun.12 1 7 8 3 9 6 5 4 2

Fun.13 1 8 7 3 9 6 5 4 2

Sum 24 99 94 48 95 76 56 74 19

Mean 1.846153846 7.615384615 7.230769231 3.692307692 7.307692308 5.846153846 4.307692308 5.692307692 1.461538462

Rank 2 9 7 3 8 5 4 6 1

outcomes in resolving various issues when compared to the initial method and other cutting-edge strategies. The findings refute the 
authors’ claims, as the enhanced approach utilizes diverse search tactics to acquire more optimal solutions.

4. Real-world engineering problems

4.1. Problem 1: the multiple-disc clutch brake

The variables, restrictions, and objective functions of the multiple disc clutch brake design problem are as follows: The spatial 
arrangement of the five variables is depicted in Fig. 6.

Below is the mathematical model for the design challenge of a multiple-disc clutch brake:

Consider:

𝜆 = [𝜆1𝜆2𝜆3𝜆4𝜆5] = [𝑅𝑖𝑅0𝑇𝑋𝑌 ]

Objective function:

𝑓 (𝜆) =
∏

(𝑅2
𝑖 −𝑅2

0)𝑇 (𝑌 + 1)𝑝

Subject to:

𝑔1(𝜆) =𝐿𝑚𝑎𝑥 − (𝑌 + 1)(𝑇 + 𝛼) ⩾ 0

𝑔2(𝜆) = 𝑃𝑚𝑎𝑥 − 𝑃𝑅𝑌 ⩾ 0

𝑔4(𝜆) = 𝑃max 𝑍𝑠𝑅𝑚𝑎𝑥 − 𝑃𝑅𝑌 𝑣𝑠𝑅 ≥ 0

𝑔5(𝜆) =𝑍𝑠max −𝑍𝑠𝑅 ≥ 0

𝑔6(𝜆) =𝑊max −𝑊 ≥ 0

𝑔7(𝜆) =𝑈ℎ − 𝑠𝑈𝑠 ≥ 0

𝑔8(𝜆) =𝑊 ≥ 0

Parameters range:

60 ≤ 𝜆1 ≤ 80,

90 ≤ 𝜆2 ≤ 110,

1 ≤ 𝜆3 ≤ 3,

600 ≤ 𝜆4 ≤ 1000,
17
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Table 7

The results of CEC2019 benchmark functions were obtained using comparative methodologies, with a dimension of 10 and 50 iterations.

Function Measure Comparative Algorithms

HHO GOA SSA WOA SCA DA SMA PDO PDO-DE

cec.1 Best 398012.1933 2.39355E+12 2.33046E+12 3.49328E+12 2.09722E+12 9.73244E+11 2.21186E+11 2.46364E+14 1038290.003

Average 216361.2503 9.33671E+11 1.04921E+12 1.78695E+12 8.96678E+11 5.53332E+11 1.01576E+11 7.5383E+13 315292.7404

Worst 71472.27264 66607434570 2.73955E+11 6.75504E+11 96342833129 1.82061E+11 15178373446 2.16046E+13 69800.31917

STD 143601.2266 1.09119E+12 8.49956E+11 1.17498E+12 7.80283E+11 3.39455E+11 84324972447 9.7395E+13 407974.7526

p-value 0.62283388 0.092064532 0.024664713 0.009350958 0.033147108 0.006542187 0.027347725 0.121752524 1

h 0 0 1 1 1 1 1 0 0

cec.2 Best 17.87170826 20947.98818 5137.74478 516.7120372 682.3440416 4878.702554 222.7807158 33141.28489 19.4242182

Average 17.63693367 7029.401156 3460.352154 122.2317711 267.1419636 3121.515661 94.07298316 25747.10792 18.59661544

Worst 17.52389516 1243.814164 1363.194949 19.02775868 67.63357125 104.0409615 37.59506463 13419.43896 17.80412243

STD 0.13641182 8288.559727 1575.301388 220.5690288 238.7836048 1953.609309 76.61196991 7474.383352 0.69852286

p-value 0.016683005 0.095226625 0.001215996 0.324131594 0.048352205 0.007492498 0.058733975 5.75944E-05 1

h 0 1 0 0 1 1 0 1 0

cec.3 Best 12.70396184 12.71021543 12.70499852 12.70614359 12.70539065 12.708156 12.70620309 12.70274979 12.70779236

Average 12.70311891 12.70738739 12.70388397 12.70476926 12.70448014 12.70622774 12.70363887 12.70254071 12.704658

Worst 12.70253134 12.70519206 12.70256479 12.70389505 12.70251337 12.70358091 12.70240991 12.70240492 12.70259269

STD 0.000560988 0.002110914 0.001061888 0.000848709 0.001171941 0.001959259 0.001520485 0.000142521 0.002223722

p-value 0.171846625 0.081707571 0.502377867 0.919331644 0.87820191 0.270271807 0.422161732 0.066339308 1

h 1 0 1 0 1 0 0 1 0

cec.4 Best 30498.11692 28881.55669 20523.2423 25789.89459 14029.34989 53556.56449 4318.91472 66376.99118 5520.33296

Average 16086.93715 21560.23279 9548.237054 15139.66085 8666.067266 19295.15644 2233.550745 23137.17896 2455.133417

Worst 9518.971978 14679.08275 2686.563659 5547.678807 3918.175605 4701.006976 431.7962968 1796.496255 812.5439307

STD 9158.588098 5201.787192 7489.459733 7760.153946 3807.847003 19526.40629 1541.501878 26363.25512 2136.996816

p-value 0.011857333 6.32535E-05 0.076091468 0.007801953 0.012986047 0.091539389 0.855528246 0.118508917 1

h 1 1 0 1 1 0 0 0 0

cec.5 Best 5.760759801 10.27091916 10.89349615 6.506994339 4.687953128 3.706052196 6.592753403 6.521697455 3.663430647

Average 5.297391351 7.362311429 5.3593436 5.498889836 3.6958128 3.106330211 3.485847996 4.694315612 2.45328026

Worst 4.8518076 4.554525316 2.500639095 4.461591842 2.562526576 2.290108185 2.122692142 3.279093732 2.035330172

STD 0.373214935 2.29228472 3.390295593 0.898226155 0.814468719 0.624674567 1.916944744 1.362258663 0.682240992

p-value 3.72586E-05 0.001779322 0.097050968 0.000310119 0.030886471 0.153075955 0.289337342 0.011036824 1

h 1 1 0 1 1 0 0 1 0

cec.6 Best 13.7437515 11.8508348 13.16906204 13.90528382 14.9084012 13.50654852 13.26771502 14.42372344 13.40003473

Average 12.89340943 10.90416466 11.0740273 12.75752743 14.08432164 12.67902728 12.18878039 12.66393006 12.6488664

Worst 11.53015353 9.028735704 9.674977678 11.22003402 12.87533455 11.39681821 10.61429257 11.1018665 12.32716263

STD 0.902070872 1.101600862 1.320779353 0.979983988 0.823248467 0.831986597 1.066602282 1.336772284 0.436123555

p-value 0.600125816 0.01097617 0.035160189 0.82647954 0.008754945 0.944527404 0.398027849 0.981475328 1

h 1 1 0 1 1 0 1 0 0

cec.7 Best 1257.975274 1660.815453 2309.462006 2631.712456 2063.868824 1581.90188 1720.994952 1920.210108 1417.616383

Average 991.0068241 1452.076195 1284.050372 1608.501659 1694.122394 1367.261341 1353.841377 1476.113453 1065.457276

Worst 684.2239313 1143.346263 541.7799926 1315.270705 1207.466091 1157.832471 831.6383878 383.5499101 550.8543627

STD 253.7855722 217.4014833 671.4898744 573.3494406 320.5119947 154.534771 344.4424363 633.2890309 364.3061793

p-value 0.717438435 0.075937339 0.540176345 0.111656101 0.019981514 0.126523369 0.234346563 0.244260514 1

h 1 0 1 0 0 1 0 0 0

cec.8 Best 7.915229626 7.265116021 7.777870797 8.27653757 7.777663358 7.451385169 8.633370628 7.392306175 7.625515643

Average 7.238490947 6.803309954 7.121703282 7.542826101 7.62291148 6.513369728 7.157368999 6.874356617 7.025140951

Worst 6.173908402 6.203397017 6.812659575 6.76540093 7.201706082 5.724409544 6.14840599 5.960874988 6.599050947

STD 0.760015146 0.426235865 0.396487622 0.634377965 0.239805016 0.686646831 0.969518105 0.550695095 0.399639493

p-value 0.593691105 0.420584504 0.711304046 0.161184549 0.020894651 0.187722433 0.785136343 0.63355621 1

h 1 0 1 0 0 1 0 0 0

cec.9 Best 3512.384464 10904.49534 4742.869585 3819.449644 5633.474516 7085.029182 2364.873964 2005.436187 1603.616167

Average 2929.005072 6538.665859 2176.270012 2162.42379 2671.132454 3953.09258 951.3904968 928.5780334 673.0107972

Worst 2574.209801 1066.453056 935.4077127 1068.256644 1373.107225 258.8794552 208.1843372 166.0216033 28.90712398

STD 349.4391596 4405.809894 1542.809182 1073.211054 1765.680377 3113.528998 845.9005336 773.2471791 617.5453255

p-value 0.000101046 0.018477619 0.0777295 0.027508152 0.043954709 0.049637117 0.568705607 0.579499441 1

h 1 1 0 1 1 1 0 0 0

cec.10 Best 20.92244521 20.78568596 20.84720815 20.99271867 20.96534618 20.89800324 21.07166225 21.15299233 20.85246726

Average 20.71848282 20.5992798 20.58727884 20.80290434 20.757702 20.71147253 20.931287 20.79480878 20.77457853

Worst 20.51587032 20.24298834 20.36336228 20.64577145 20.34672421 20.45509463 20.63723051 20.36996276 20.74511882

STD 0.146327352 0.222167238 0.178578268 0.132763083 0.239690328 0.176778088 0.17585592 0.28170892 0.044574701

p-value 0.435958412 0.121905608 0.052441737 0.663087478 0.880823066 0.461188148 0.08951061 0.877911065 1

h 0 0 0 0 0 0 0 0 0
18
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Fig. 5. Qualitative analysis (Convergence behavior) of the CEC2019 benchmark functions based on 200 iterations.
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Table 8

The final rank of CEC2019 benchmark functions were obtained using comparative methodolo-

gies, with a dimension of 10 and 50 iterations.

Function Comparative Algorithms

HHO GOA SSA WOA SCA DA SMA PDO PDO-DE

cec.1 1 6 7 8 5 4 3 9 2

cec.2 1 8 7 4 5 6 3 9 2

cec.3 2 9 4 7 5 8 3 1 6

cec.4 6 8 4 5 3 7 1 9 2

cec.5 6 9 7 8 4 2 3 5 1

cec.6 8 1 2 7 9 6 3 5 4

cec.7 1 6 3 8 9 5 4 7 2

cec.8 7 2 5 8 9 1 6 3 4

cec.9 7 9 5 4 6 8 3 2 1

cec.10 4 2 1 8 5 3 9 7 6

Sum 43 60 45 67 60 50 38 57 30

Mean 4.3 6 4.5 6.7 6 5 3.8 5.7 3

Rank 3 7 4 8 6 5 2 5 1

Fig. 6. A model of the multiple-disc clutch brake.

Table 9

Empirical findings pertaining to the issue of a multi-disc clutch brake.

Best obtained results

Algorithm 𝑅𝑖 𝑅0 T X Y Best obtained weight

HHO 70.02 90.02 1 810 3 0.314656611

GOA 70.03 90.0349 1 801.7305 2.974 0.31376

SSA 70.02 90.02 1 910 3 0.314656

WOA 70.02 90.02 1 910 3 0.314656

SCA 70.02 90.02 1 910 3 0.314656

DA 70.02 90.02 1 810 3 0.314656611

SMA 70.02 90.02 1 910 3 0.314656

PDO 70.02 90.02 1 910 3 0.314656

PDO-DE 70.02 90.02 1 600 2 0.234752458

Other Parameters:

Uℎ =
2
3
𝜇XY

𝑅3
0 −𝑅2

𝑖

𝑅2
0 −𝑅3

𝑖

, 𝑃𝑅𝑌 = 𝑋

Π
(
𝑅2
0 −𝑅2

𝑖

) ,
𝑍𝑅𝑍 =

2Π
(
𝑅3
0 −𝑅3

𝑖

)
90

(
𝑅2
0 −𝑅2

𝑖

) ,𝑊 =
𝐼𝑌 Π𝑛

30
(
𝑈ℎ +𝑈𝑓

)
Δ𝑅 = 20 mm, 𝐼𝑌 = 55kgmm2, 𝑃max = 1 MPa,𝑋max = 1000 N,

Wmax = 15 s, 𝜇 = 0.5, s = 1.5,Us = 40Nm,M𝑓 = 3Nm,

𝑛 = 250rpm, 𝑧sr max = 10 m∕s,𝐿max = 30 mm

The optimal weights of PDO-DE and the comparison methods in this issue are detailed in Table 9, in contrast to the other six 
optimization methods. The optimal weight determined via PDO-DE is 0.234752458. The corresponding values for the five variables 
are 𝑅𝑖 = 70.02, 𝑅0 = 90.02, T= 1, X = 600, and Y = 2, respectively. Hence, based on our research, we may infer that PDO-DE is 
20

superior to other ways of resolving this issue.
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Fig. 7. A model of the speed reducer design problem.

4.2. Problem 2: speed reducer design problem

Fig. 7 presents the variable diagram. The objective of the reducer design challenge is to ascertain the minimum weight of the 
reducer while satisfying four design constraints. The four design constraints encompass stress in the shaft, lateral displacement of the 
shaft, stress on the shaft, and bending stress on the gear teeth. The variables in the reducer design problem are the following:

• The width of the tooth surface is denoted by 𝜎1.

• The gear module (𝜎2) refers to the size of the gear teeth.

• The quantity representing the count of teeth on the pinion is denoted as 𝜎3 .

• The distance between the bearings of the first shaft (𝜎4).

• The distance between the bearings on the second shaft (𝜎5).

• The first shaft’s diameter is denoted as 𝜎6 .

• The measurement of the second shaft’s diameter (𝜎7).

The problem can be mathematically formulated and expressed by a set of constraint functions: Consider:

𝜎 =
[
𝜎1𝜎2𝜎3𝜎4𝜎5𝜎6𝜎7

]
Objective function:

𝑓
(
�⃗�
)
= 07854 × 𝜎1 × 𝜎2

2 ×
(
3.3333 × 𝜎2

3 + 14.9334 × 𝜎3 − 43.0934
)
− 1.508 × 𝜎1 ×

(
𝜎2
6 + 𝜎2

7
)
+ 7.4777 × 𝜎3

6 + 𝜎3
7

+ 0.7854 × 𝜎4 × 𝜎2
6 + 𝜎5 × 𝜎2

7

Subject to:

𝑔1
(
�⃗�
)
= 27

𝜎1 × 𝜎2
2 × 𝜎3

− 1 ≤ 0

𝑔2
(
�⃗�
)
= 397.5

𝜎1 × 𝜎2
2 × 𝜎2

3

− 1 ≤ 0

𝑔3
(
�⃗�
)
=

1.93 × 𝜎3
4

𝜎2 × 𝜎3 × 𝜎4
6

− 1 ≤ 0

𝑔4
(
�⃗�
)
=

1.93 × 𝜎3
5

𝜎2 × 𝜎3 × 𝜎4
7
− 1 ≤ 0

𝑔5
(
�⃗�
)
= 1

110 × 𝜎3
6

√(
745 × 𝜎4
𝜎2 × 𝜎3

)2
+ 16.9 × 106 − 1 ≤ 0

𝑔6
(
�⃗�
)
= 1

85 × 𝜎3
7

√(
745 × 𝜎5
𝜎2 × 𝜎3

)2
+ 16.9 × 106 − 1 ≤ 0

𝑔7
(
�⃗�
)
=

𝜎2 × 𝜎3
40

− 1 ≤ 0( ) 5 × 𝜎2
21

𝑔8 �⃗� =
𝜎1

− 1 ≤ 0
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Table 10

Empirical findings pertaining to the issue of the speed reducer.

Best obtained results

Algorithm 𝜎1 𝜎2 𝜎3 𝜎4 𝜎5 𝜎6 𝜎7 Lowest obtained result

HHO 3.616129 0.71 17 7.31 7.92151 3.452570 5.276749 3031.873069

GOA 3.53 0.71 17 7.31 7.670395 3.562399 5.275814 3019.583370

SSA 3.521765 0.71 17 7.31 7.91 3.45098 5.289213 3033.564

WOA 3.630134 0.71 17 8.30 7.91 3.37701 5.287719 3029.002

SCA 3.417485 0.7001 17 7.739684 8.089954 3.381415 5.287051 3015.137489

DA 3.530152 0.7004 17 7.569146 7.97833 3.385578 5.289773 3011.09

SMA 3.522765 0.71 17 7.31 7.8 3.46104 5.289213 3029.559

PDO 3.540485 0.7001 17 7.728284 8.080954 3.371511 5.289051 3010.137489

PDO-DE 3.4932 0.7 17 7.2198 7.7275 3.3711 5.2584 3006.7327

Fig. 8. A model of the Spring design problem.

𝑔9
(
�⃗�
)
=

𝜎1
12 × 𝜎2

− 1 ≤ 0

𝑔10
(
�⃗�
)
=

1.5 × 𝜎6 + 1.9
𝜎4

− 1 ≤ 0

𝑔11
(
�⃗�
)
=

1.1 × 𝜎7 + 1.9
𝜎5

− 1 ≤ 0

Parameters range:

2.6 ≤ 𝜎1 ≤ 3.6,0.7 ≤ 𝜎2 ≤ 0.8,17 ≤ 𝜎3 ≤ 28,7.3 ≤ 𝜎4 ≤ 8.3,7.3 ≤ 𝜎5 ≤ 8.3,2.9 ≤ 𝜎6 ≤ 3.9,5𝜎7 ≤ 5.5

Table 10 presents the outcomes of the PDO-DE and the compared strategies. The PDO-DE approach achieved the highest rank in 
this table, surpassing all other ways of addressing this problem. The PDO method obtained second place, followed by DA, SCA, and 
GOA.

4.3. Problem 3: spring design

Fig. 8 illustrates the objective of this work, which is to decrease the mass of a spring. The minimization process has specific 
constraints, including shear stress, surge frequency, and minimum deflection. The variables in this problem are as follows:

• The wire diameter (d).

• Mean coil diameter (D).

• Number of active coils (N).

The mathematical model of the Spring design is expressed as follows:

Consider:

𝜆 = [𝜆1, 𝜆2, 𝜆3] = [𝑑𝐷𝑁],

Objective function:

𝑓 (𝜆) = (𝜆3 + 2)𝜆2𝜆21
Subject to:

⃗
𝜆32𝜆3
22

𝑔1(𝜆) = 1 −
71785𝜆41

≤ 0
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Table 11

Empirical findings about the issue of the spring design.

Best obtained results

Algorithm d D N Best cost

HHO 0.06273 0.367647 11.234443 0.011786

GOA 0.062155 0.359777 12.150432 0.0117806

SSA 0.06 0.327 14.11 0.0119455

WOA 0.062646 0.3445 11.408026 0.011712

SCA 0.06299455 0.3591188 10.90842186 0.011685

DA 0.0627 0.36685 11.3119 0.011685

SMA 0.06241 0.369085 11.80320 0.011682

PDO 0.06273 0.367045 11.255420 0.011673

PDO-DE 0.060599 0.316181 10.2101150 0.011670

Fig. 9. A model of the Spring design problem.

𝑔2(𝜆) =
4𝜆22 − 𝜆1𝜆2

12,566(𝜆2𝜆31 − 𝜆41)
+ 1

5108𝜆21
≤ 0

𝑔3(𝜆) = 1 −
140.45𝜆1

𝜆22𝜆3
≤ 0

𝑔4(𝜆) =
𝜆1 + 𝜆2
1.5

− 1 ≤ 0

Variable range:

0.05 ≤ 𝜆1 ≤ 2.00, 0.25 ≤ 𝜆2 ≤ 1.30, and 2.00 ≤ 𝜆3 ≤ 15.00.

The results of all comparison methods and the recommended PDO-DE for addressing the spring design issue are presented in 
Table 11. The optimal parameter values are presented in Table 11, along with the highest achieved results for all comparison al-

gorithms. The variables with the values 𝜆 = (𝑑 = 0.060599, 𝐷 = 0.316181, 𝑁 = 10.2101150) yield the optimal objective’s value: 
𝐹 (𝜆) = 0.011670. This demonstrates that the suggested PDO-DE method is superior to other state-of-the-art approaches in terms of 
giving a more reliable solution.

4.4. Problem 4: the pressure vessel

The pressure vessel, which has hemispherical caps and a cylindrical shape (see Fig. 9), must be built with minimal expenses. The 
construction of the compressed air tank must adhere to the American Society of Mechanical Engineers (ASME) regulations for boilers 
and pressure vessels [38]. The tank operates at a pressure of 3,000 pounds per square inch (psi) and has a minimum volume of 750 
cubic feet (ft3). The final price is determined by the cumulative costs of welding, material, and forming charges. The optimization 
factors considered the following:

• The length of the cylindrical segment.

• The inner radius.

• The thickness of the cylinder skin.

• The thickness of the spherical head.

• The inner radius.

Thickness can only be expressed as discrete numbers integer multiples of 0.0625. The mathematical formulation of this problem can 
23

be stated as:
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Table 12

Empirical findings pertaining to the pressure vessel.

Optimal results for variables

Algorithm 𝜆1 𝜆2 𝜆3 𝜆4 Best cost

HHO 1.123 0.711 50.01 113.11 7 832.1

GOA 1.271 0.711 60.1603 69.7221 68 45.9242

SSA 1.126 0.71 59.30116 45. 67555 71 54.75

WOA 0.8211 0.4412 43.098812 176. 63745 60 61.91

SCA 0.8211 0.4412 43.091401 176.7 345 60 61.0801

DA 0.8211 0.4412 43.099551 176.6421 60 61.81431

SMA 1.124 0.6161 54.9775601 85.4643624 76 01.8355

PDO 0.8155 0.4281 42.089311 177.648589 60 61.839

PDO-DE 0.813 0.4281 42.070053 175.625672 60 61.5245

Fig. 10. A model of the Welded design problem.

Objective function:

𝑓 (𝜆) = 0.6224𝜆1𝜆3𝜆4 + 1.7781𝜆2𝜆23 + 3.1661𝜆21𝜆4 + 19.84𝜆21𝜆3
Subject to:

𝑔1(𝜆) = −𝜆1 + 0.0193𝜆3 ≤ 0

𝑔2(𝜆) = −𝜆2 + 0.00954𝜆3 ≤ 0

𝑔3(𝜆) = −𝜋𝜆23𝜆4 −
4
3
𝜋𝜆33 + 1296000≤ 0

𝑔4(𝜆) = 𝜆4 − 240 ≤ 0

where:

1 × 0.0625 ≤ 𝜆1, 𝜆2 ≤ 99 × 0.0625, 10 ≤ 𝜆3 ≤ 200𝑎𝑛𝑑10≤ 𝜆4 ≤ 240.

Table 12 illustrates the comparison algorithms and the PDO-DE method used to address the vessel design problem. The optimal 
parameter values are displayed in Table 12, along with the best results achieved by all the algorithms that were compared. Table 12

demonstrates that the proposed PDO-DE outperforms other state-of-the-art methods by offering a more reliable solution that assigns 
the optimal variables at 𝜆 = (𝜆1 = 0.813, 𝜆2 = 0.4281, 𝜆3 = 42.070053, 𝜆4 = 175.625672), resulting in the best objective value of 𝑓 (𝜆) =
61.5245.

4.5. Problem 5: welded beam

The welded beam design issue is a widely recognized case study used to assess the efficacy of PDO-DE. The concept was initially 
introduced in [39] to reduce the total manufacturing cost of a welded beam by utilizing four finding variables, as depicted in Fig. 10. 
The variables consist of the following: The weld thickness (h). The length (l) of the joint beam. The height of the beam (t). Thickness 
(b).

The mathematical formulation of this problem can be stated as:

Consider[ ]

24

𝜒 = 𝜒1, 𝜒2, 𝜒3, 𝜒4 = [ℎ, 𝑙, 𝑡, 𝑏]
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Table 13

Empirical findings pertaining to the Welded beam.

Optimal results for variables

Algorithm h l t b Best cost

HO 0.2601 6.38 8.3792 0.4634 2.6301

GOA 0.21783 3.670501 9.237724 0.40613 1.924902

SSA 0.256 6.4191 8.4895 0.4457 2.582

WOA 0.2551 6.4602 8.4895 0.4634 2.5839

SCA 0.19213 4.056899 10.201 0.402416 2.07987

DA 0.2622 6.4321 8.4885 0.4401 2.5797

SMA 0.241794 3.268992 9.189079 0.408805 1.923011

PDO 0.215187 3.727557 9.204333 0.406941 1.934857

PDO-DE 0.26406111 2.0423029 8.47022978 0.453219 1.915701

Minimize

𝑓
(
𝜒
)
= 1.10471𝜒2

1𝜒2 + 0.04811𝜒3𝜒4
(
14.0 + 𝜒2

)
Subject to

𝑔1
(
𝜒
)
= 𝜏 (𝜒) − 𝜏𝑚𝑎𝑥 ≤ 0

𝑔2
(
𝜒
)
= 𝜆− 𝜆𝑚𝑎𝑥 ≤ 0

𝑔3
(
𝜒
)
= 𝛿 − 𝛿𝑚𝑎𝑥 ≤ 0

𝑔4
(
𝜒
)
= 𝜒1 − 𝜒4 ≤ 0 ≤ 0

𝑔5
(
𝜒
)
= 𝑃 − 𝑃𝐶

(
𝜒
)
≤ 0

𝑔6
(
𝜒
)
= 0.125 − 𝜒1 ≤ 0

𝑔7
(
𝜒
)
= 1.10471𝜒2

1 + 0.04811𝜒3𝜒4
(
14 + 𝜒2

)
− 5 ≤ 0

Variable range

0.125 ≤ 𝜒1 ≤ 5, 0.1 ≤ 𝜒2, 𝜒3 ≤ 10, 𝑎𝑛𝑑 0.1 ≤ 𝜒4 ≤ 5.

where

𝜏
(
𝜒
)
=
√

(𝜏′)2 + 2𝜏′𝜏′′
𝜒2
2𝑅

+ (𝜏′′)2, 𝜏′ = 𝑃√
2𝜒1𝜒2

, 𝜏′ = 𝑀𝑅

𝐽
,𝑀 = 𝑃

(
𝐿+

𝜒2
2

)

𝑅 =

√
𝜒2
1
4

+
(

𝜒1 + 𝜒3
2

)2
, 𝐽 = 2

{√
2𝜒1𝜒2

[
𝜒2
2
4

+
(

𝜒1 + 𝜒3
2

)2
]}

,

𝜒
(
𝜒
)
= 6𝑃𝐿

𝐸𝜒2
3𝜒4

, 𝛿
(
𝜒
)
= 6𝑃𝐿3

𝐸𝜒2
3𝜒4

,

𝑃𝐶

(
𝜒
)
=

4.013𝐸

√
𝜒2
3𝜒

6
4

36

𝐿2

(
1 −

𝑧3
2𝐿

√
𝐸

4𝐺

)
𝜆𝑚𝑎𝑥 = 3000𝑝𝑠𝑖, 𝛿𝑚𝑎𝑥 = 0.25𝑖𝑛, 𝜏𝑚𝑎𝑥 = 30,000𝑝𝑠𝑖.

𝐸 = 30 × 106𝑝𝑠𝑖, 𝐺 = 12 × 106𝑝𝑠𝑖

𝐿 = 14𝑖𝑛, 𝑃 = 6000𝑙𝑏.

The proposed PDO-DE is implemented to address the problem of the welded beam. The PDO-DE algorithm outperforms com-

pared algorithms and produces consistent results with the optimal variables at 𝜒 = (h=0.26406111, l=2.0423029, t=8.47022978, 
b=0.453219) and the optimal cost at 𝑓 (𝜒)=1.915701, the results are shown in Table 13. This demonstrates that PDO-DE can effec-

tively address the problem of welded beam design.

4.6. Problem 6: network intrusion detection system

As internet usage continues to expand, so do its vulnerabilities, prompting the implementation of Intrusion Detection Systems 
25

(IDS) to safeguard security. IDSs serve as protective measures, identifying external intrusions, unauthorized accesses, and network 
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Table 14

Dataset Sizes.

Dataset Split Number of Records

Training Set 4,898,431

Testing Set 311,029

malfunctions. By analyzing data such as port scanning and abnormal traffic patterns, IDSs can detect intrusions and alert net-

work administrators. Intrusion detection poses a classification challenge, and identifying optimal features is crucial for classification 
techniques to be effective. Common classification methods include neural networks, fuzzy logic, data mining techniques, and meta-

heuristics. The proposed PDO-DE is implemented to enhance the precision of detecting intrusion. It is utilized to select features with 
support vector machine (SVM) assets for classification.

4.6.1. Support vector machine

Support Vector Machines (SVM) are a widely used supervised machine learning model known for their effectiveness in classification 
tasks, including intrusion detection. They excel in linear classification and regression, offering robustness and adaptability even with 
limited training data. One of their key advantages is their ability to operate without assumptions about the underlying data, instead 
identifying hyperplanes to separate data points effectively. In Intrusion Detection Systems (IDS), where attack distributions can be 
imbalanced, SVMs have succeeded due to their ability to generalize well, handle multiple classes efficiently, and operate with low 
classification times. The SVM classifier is central to SVM-based intrusion detection systems, generating models of the target system 
and correlating attribute data with classification outcomes [40].

4.6.2. Dataset

The NSL-KDD dataset is used in this work to show the performance of the PDO-DE for intrusion detection. The KDD CUP 1999 
dataset, derived from the DARPA 98 IDS evaluation program by Lincoln Labs, features around five million connection records from 
a U.S. Air Force military simulation, serving as a standard benchmark for testing intrusion detection algorithms. To overcome issues 
like duplicate records, skewed distributions, and redundancies in the KDD dataset, the improved NSL-KDD dataset was introduced. 
It includes 41 attributes categorized into four groups: time-based and host-based traffic, basic, and content attributes, which can be 
discrete or continuous. This dataset labels deviations from normal network behavior as attacks, categorizing them into 24 types, such 
as Denial of Service (DoS), Probe, user-to-root (U2R), and remote-to-local (R2L) attacks [41].

Each connection record in the dataset has 41 features, which fall into one of three categories:

• Basic Features: These are characteristics like duration, protocol type, service, and flag that are obtained from TCP/IP connections.

• Content Features: These features include counts like the quantity of unsuccessful login attempts and file creation operations 
obtained from the data contained in a connection.

• Traffic characteristics: This category includes the number of connections to the same host and to the same service. It is obtained 
from a two-second time window.

The training set consists of about 4.9 million connection records, and the testing set consists of about 311,000 connection records, as 
shown in Table 14. This large dataset offers a thorough foundation for testing and developing network intrusion detection methods.

4.6.3. Results and discussions on IDS

The evaluation of the PDO-DE algorithm is based on four metrics: accuracy (ACC), feature count (NoF), false alarm rate (FR), 
and detection rate (DR). These metrics are calculated using counts of true positives (correctly identified intrusions), false positives 
(normal activities incorrectly flagged as intrusions), true negatives (normal activities rightly identified), and false negatives (intrusions 
wrongly classified as normal). The computational methods for these metrics are detailed below:

𝐹𝑅 = FP
FP + TN

(20)

𝐷𝑅 =
𝑇 𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇 𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

(21)

𝑁𝑜𝐹 = 𝑇 𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 −𝑁𝑜𝑛 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (22)

𝐴𝐶𝐶 =
𝑇 𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇 𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇 𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑇 𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
(23)

This section comprehensively evaluates several state-of-the-art algorithms, including the original PDO and DE and the proposed 
PDO-DE, HHO, GOA, SSA, and WOA. The study assesses the effectiveness of these algorithms in handling the Intrusion Detection 
System (IDS) problem compared to the suggested technique. Improvements have been made with the suggested PDO-DE to address 
shortcomings like premature convergence, solution diversity, and slow search speed in the initial PDO algorithm. The impact of 
varying the number of PDs on optimization, striking a balance between exploration and exploitation searches, is also examined in 
26

this section.



Heliyon 10 (2024) e36663M. Alshinwan, O.A. Khashan, M. Khader et al.

Fig. 11. The results of the Detection Rate.

Fig. 12. The results of the False Alarm Rate.

Detection rate The PDO-DE method demonstrates superior performance in detection rates compared to the PDO and DE algorithms, 
achieving a detection rate of 98.1% against PDO 92% and DE 82%. This marks a significant enhancement in the network intrusion 
detection capabilities, with results depicted in Fig. 11. Repeated testing confirms the reliability of PDO-DE, noting an increase in 
system complexity and a maintained high detection rate when integrating DE features.

False alarm rate The PDO-DE method also shows a marked improvement in reducing false alarms, with a rate of only 2.4%, in 
contrast to higher rates observed in other methods: 26% for DE, 8.5% for PDO and between 18%, 25%, 29%, and 19% for HHO, 
GOA, SSA, and WOA, respectively. This advancement leads to fewer irrelevant alerts from the IDS, enhancing operational efficiency, 
as detailed in Fig. 12.

Accuracy The PDO-DE method’s accuracy is outstanding, reaching 96%. This outperforms PDO at 92% and DE at 87% and sig-

nificantly surpasses HHO, GOA, SSA, and WOA, which range from 80% to 86%. This improvement results from the algorithm’s 
multi-objective function, which prioritizes accuracy and refines the intrusion detection system’s precision. The summarized results in 
Fig. 13 underscore the method’s precision and reliability.

Number of features The PDO-DE selects only 9% of features for effective intrusion detection, compared to 16% and 22% by PDO and 
SMA, respectively. This reduction optimizes the number of relevant characteristics the IDS manages, minimizing system overhead. 
This efficiency in feature selection underscores the robustness of PDO-DE, as presented in Fig. 14. The strategic increase in prairie 
dogs enhances the diversity and selection quality of the features.

The IDS results show that the PDO-DE method significantly outperforms the PDO and DE algorithms in several key areas of 
network intrusion detection. It achieves a higher detection rate of 98.1%, greatly reducing false alarms with a rate of only 2.4%, and 
27

improves accuracy to 96%. Additionally, it selects fewer but more effective features for intrusion detection, only 9% compared to 
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Fig. 13. The results of the Accuracy.

Fig. 14. The results of the Number of Features.

PDO’s 16% and DE’s 23%. These improvements in detection rate, false alarm rate, accuracy, and feature selection efficiency highlight 
the PDO-DE method’s enhanced capability and operational efficiency in network security environments.

4.7. Evaluation of the suggested approach: advantages and disadvantages

The suggested method integrates two optimization techniques, PDO and DE, to enhance optimization performance and attain 
superior outcomes. Advantages:

• DE algorithm enriches the population’s diversity and prevents premature convergence by producing contrasting solutions.

• The purpose of using PDO is to expand the search area and prevent being trapped in local optima. DE aids in achieving a balance 
between exploration and exploitation by incorporating a stochastic element into the search procedure.

• The technique is assessed using benchmark functions and engineering design optimization challenges. It surpasses certain other 
cutting-edge optimization algorithms in accuracy and efficiency.

Disadvantages:

• The effectiveness of the suggested method is highly dependent on the parameter settings. If the parameters are not appropriately 
chosen, it can result in inferior outcomes or slow convergence.

• The method may require a substantial number of function evaluations to get the best solution, which can require a high compu-

tational cost for problems with many dimensions.

• The user’s text is a bullet point. This approach may not be appropriate for specific targeted optimization issues and may exhibit 
28

suboptimal performance on benchmark functions not included in the study.
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5. Conclusions

This paper introduces a new population-based metaheuristic method incorporating Prairie dog optimization (PDO) and the Dif-

ferential Evolution algorithm to enhance the PDO algorithm’s searchability.

The efficacy of the proposed PDO-DE is evaluated by assessing its ability to balance exploration and exploitation through exper-

imentation with classical and CEC2019 benchmark test functions. The findings showcased the efficacy of PDO-DE in identifying the 
most favorable global solutions and exhibiting more consistent convergence when compared to other widely recognized optimization 
algorithms documented in the literature. The effectiveness of the proposed PDO-DE is determined using statistical analysis utilizing 
the Freidman ranking test. The statistical results further validated the resilience of the proposed PDO-DE in effectively conducting 
both exploration and exploitation.

In addition, the suggested PDO-DE approach is applied to address five practical engineering issues. The outcomes obtained by the 
PDO-DE algorithm verified its potential to provide superior (almost optimal) solutions compared to various metaheuristic algorithms, 
such as HHO, WOA, DA, SMA, SCA, GOA, and the basic PDO. PDO-DE demonstrated a significant ability to manage diverse restrictions 
in optimization situations.

The suggested PDO-DE algorithm effectively addressed single-objective continuous optimization problems. Researchers should 
explore the possibility of building a binary version of the algorithm. Additionally, it is possible to create a multi-objective version of 
the PDO. Researchers may also explore the possibility of adjusting and hybridizing the PDO-DE. Extending the PDO-DE to address 
various discrete or continuous challenges can be a promising effort.

In conclusion, the PDO-DE algorithm represents a significant scientific advancement in hybrid optimization techniques, providing 
a more effective approach for solving real-world problems that require high precision and optimal resource utilization. Our exten-

sive experiments on 23 benchmark functions and five engineering design problems demonstrate that PDO-DE consistently achieves 
superior performance metrics. Notably, the algorithm shows an average accuracy improvement of 2.5% over existing state-of-the-art 
methods. In the context of network intrusion detection, PDO-DE achieved an overall accuracy of 96%, a detection rate of 98.1%, and 
a false alarm rate of 2.4%. These results underline the algorithm’s robustness, reliability, and efficiency.

The significance of these improvements is profound, as they highlight PDO-DE’s ability to deliver precise and reliable solutions 
in complex and dynamic environments. The enhanced convergence speed and reduced computational time further establish its ap-

plicability in various domains. Future work will explore the application of PDO-DE to other challenging optimization problems and 
investigate further enhancements to the algorithm’s framework. The promising results achieved in this study suggest that PDO-DE can 
be a valuable tool in both engineering optimization and cybersecurity, paving the way for more advanced and practical applications 
in these fields.

Future research will focus on extending the application of PDO-DE to other challenging optimization problems, such as large-

scale industrial optimization, bioinformatics, and financial modeling. Additionally, exploring the integration of other metaheuristic 
algorithms could further enhance the performance of PDO-DE. We also plan to investigate adaptive mechanisms within the algorithm 
to improve its adaptability to different problem landscapes dynamically. Furthermore, real-world implementations and case studies in 
engineering and cybersecurity will be conducted to validate the practical effectiveness and scalability of PDO-DE in diverse scenarios.

The promising results achieved in this study suggest that PDO-DE can be a valuable tool in both engineering optimization and 
cybersecurity, paving the way for more advanced and practical applications in these fields.
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