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Epistasis Matters in Quantitative Genetics

Within quantitative genetics, the term “epistasis” is used
to broadly describe situations in which combinations

of genetic variants show nonadditive phenotypic effects
(Phillips 1998, 2008; Mackay 2014). Although most work
on epistasis has focused on pairs of variants that interact
(Brem et al. 2005; Bloom et al. 2015), more complicated
forms of epistasis can also occur (Taylor and Ehrenreich
2015a). These include higher-order interactions between
three or more variants (Rowe et al. 2008; Pettersson et al.
2011; Taylor and Ehrenreich 2014) and cases in which one
variant acts as a hub of interactions with a number of other
variants (Carlborg et al. 2006; Forsberg et al. 2017).

Despite many reports of epistasis, its importance to quan-
titative genetics remains under active debate (Huang and
Mackay 2016). This is in part because theory suggests that
even if epistasis is present, most genetic variance will be
additive (Hill et al. 2008; Maki-Tanila and Hill 2014). Con-
sistent with this argument, purely additive models explain
most of the heritability of many quantitative traits (Bloom
et al. 2013) and have proven quite effective in crop and live-
stock breeding programs (Crow 2010). Given that epistasis
can be ignored to little detriment, what dowe gain by studying
epistasis?

Epistasis matters for multiple reasons. A central goal of
quantitative genetics is to determine the genetic architectures

that underlie heritable traits (Mackay 2001). By definition,
this endeavor entails identifying nearly all of the genetic effects
that appreciably influence phenotypes, including epistatic ef-
fects. Achieving such a precise understanding of genotype–
phenotype relationships advances our basic knowledge of
genetics and may improve our ability to predict traits, such
as disease risk and crop yield, fromgenome sequences (Forsberg
et al. 2017). Because epistasis often reflects functional relation-
ships between genes, finding interacting variants can also shed
light on molecular mechanisms that give rise to trait variability
(Aylor and Zeng 2008; Rowe et al. 2008; Cordell 2009; Huang
et al. 2012; Taylor et al. 2016).

Furthermore, epistasis impacts our understanding of why
genetically distinct individuals respond differently to new spon-
taneous and induced mutations (Nadeau 2001; Queitsch et al.
2002; Mackay 2014; Siegal and Leu 2014; Schell et al. 2016).
Such background effects are common across species and traits,
and are known to contribute to clinically relevant phenotypes
(Nadeau 2001; Chandler et al. 2013). Recent work has shown
that genetic background effects often reflect complex interac-
tions between newmutations andmultiple segregating variants
(Dowell et al. 2010; Chari and Dworkin 2013; Chandler et al.
2014; Paaby et al. 2015; Taylor and Ehrenreich 2015b; Geiler-
Samerotte et al. 2016; Lee et al. 2016; Taylor et al. 2016). Thus,
predicting how individuals will respond to new mutations, in-
cluding genetic changes introduced by genome editing (Cong
et al. 2013; Mali et al. 2013), will likely require accounting for
epistasis.

Challenges in Using Genetic Mapping to Detect
Epistasis

Identifying epistasis is difficult because most genetic map-
ping studies are only capable of detecting the simplest and
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largest-effect interactions (Taylor and Ehrenreich 2015a).
Although selective genotyping approaches can be used to
find interacting variants (Ehrenreich et al. 2010; Taylor and
Ehrenreich 2014, 2015b; Lee et al. 2016; Taylor et al. 2016),
usually epistasis is identified by association or linkage map-
ping (Marchini et al. 2005; Cordell 2009; Verhoeven et al.
2010; Bloom et al. 2015; Forsberg et al. 2017).

A common challenge in genome-wide scans for epistasis is
multiple testing (Cordell 2009; Sham and Purcell 2014). The
number of tests in a scan for epistasis will scale almost expo-
nentially with the order of the interactions being considered
(Cordell 2009). For example, assuming the number of vari-
ants in a population equals 10,000, then the number of tests
in genome-wide scans for pairwise, three-way, and four-way
epistasis will be �53107, �231011, and �431014, respec-
tively. With these large numbers of tests, stringent statistical
approaches must be employed to minimize false positives
(Sham and Purcell 2014).

A relateddifficulty that genome-wide scans for epistasis face
is statistical power. Leveraging data frommultiple traits (Tyler
et al. 2013, 2017), searching for epistatic effects involving
variants that also have additive effects (Storey et al. 2005;
Laurie et al. 2014), jointly modeling additive and epistatic
effects (Marchini et al. 2005; Verhoeven et al. 2010), and iden-
tifying variants that respond to genetic background (Jannink
and Jansen 2001) or show effects on phenotypic variance
(Ronnegard andValdar 2011) are just some of the approaches
that can aid in the detection of interacting variants. Yet argu-
ably the best solution to the statistical power problem is to
use very large sample sizes in genome-wide scans for epis-
tasis (Bloom et al. 2013, 2015; Hallin et al. 2016). Notably,
both overall sample size in a study and sample sizes within
multilocus genotype classes must be considered (Carlborg
and Haley 2004). Sample sizes within multi-locus genotype
classes should ideally be balanced, but in some cases this
may not be possible, for example when association mapping
is performed on natural isolates that possess population
structure and a spectrum of allele frequencies (Mackay et al.
2009).

Another factor thatmay be important to detecting epistasis
is how often the involved variants also show additive ef-
fects. This question has bearing on whether efforts to identify
epistasis can be simplified into a two-step process in which
additive variants arefirst identifiedand then their interactions
aremeasured. Recent work indicates that interacting variants
also tend to exhibit additive effects (Bloom et al. 2015). How-
ever, in some cases, new mutations appear to interact with
“cryptic” variants that do not typically influence phenotype
(Gibson and Dworkin 2004; Paaby and Rockman 2014), sug-
gesting that major epistatic effects can involve variants that
lack additive effects.

Exploring Epistasis with Crosses

One of the best opportunities for identifying interacting vari-
ants is using linkage mapping in crosses of genetically diverse

isolates frommodel species (Carlborg andHaley 2004;Mackay
et al. 2009; Taylor and Ehrenreich 2015a). In many of these
organisms, isolates can be made homozygous by inbreeding
[e.g.,Drosophila (Mackay et al. 2012) andmouse (Beck et al.
2000)], sporulation [e.g., budding yeast (Liti et al. 2009;
Schacherer et al. 2009)], or creation of doubled haploids
[e.g., many plants (Maluszynski et al. 2003)], enabling the
generation of stable genotypes that minimize heterozygosity.
Using inbred lines as the founders of crosses is desirable be-
cause it allows unambiguous cataloging of the variants that
will segregate among progeny. Recombinant inbred lines
(RILs) can then be produced from cross progeny in the same
way that the inbred founders were generated (Carlborg and
Haley 2004; Mackay et al. 2009; Taylor and Ehrenreich
2015a).

RILs represent a powerful resource for identifying epistatic
effects because they carry random combinations of the variants
that differentiate their founders and have minimal to no pop-
ulation structure (Carlborg and Haley 2004; Rockman 2008;
Mackay et al. 2009; Taylor and Ehrenreich 2015a). There are
many experimental design choices to make when constructing
RIL populations (Verhoeven et al. 2006; Rockman and
Kruglyak 2008; Mackay et al. 2009). Assuming sample size
is not limiting, one of the key decisions in constructing a cross
is the number of founders (Kover et al. 2009; Aylor et al. 2011;
Long et al. 2014). While two-parent RIL populations are com-
monly used, multi-parent RILs can be generated from dozens
of founders or more (Ladejobi et al. 2016).

As highlighted by the rapidly growing “Multiparental Pop-
ulations” series inGENETICS andG3: Genes│Genomes│Genetics
(de Koning and McIntyre 2014), there is tremendous interest
in using RIL populations derived frommore than two founders
to examine the genetic basis of quantitative traits. A number
of crossing designs have been described for generating mul-
tiparent RILs. These include, but are not limited to, employ-
ing multiple rounds of crossing to ensure that each founder
contributes equally to each RIL (Churchill et al. 2004),
nested association mapping (NAM) in which one common
founder is crossed to many others (McMullen et al. 2009),
and crossing each founder to two or more of the other foun-
ders in a full or partial diallel design (Verhoeven et al. 2006;
Treusch et al. 2015). Multiparent RILs can also be interbred
to produce outbred populations that resemble natural pop-
ulations but lack population structure (Svenson et al. 2012).
Relative to more traditional two-parent crosses, multiparent
populations have some clear advantages: they sample a
greater fraction of the genetic diversity that exists within a
species and can lead to finer mapping resolution (Yu et al.
2008; Kover et al. 2009; Aylor et al. 2011; Long et al. 2014).

Trade-Offs in Searching for Epistasis Using Multiparent
Crosses

Regarding epistasis, the main strength of multiparent popu-
lations relative to two-parent crosses is a more complete
sampling of the combinations of interacting variants that
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segregate in a species. However, the specific crossing design
used to generate multiparent RILs will influence the epistatic
effects that are detectable. For example, the maize NAM
population was generated by mating 25 genetically diverse
founders to the same reference line (B73) and producing RILs
from each two-parent cross (Yu et al. 2008; Buckler et al.
2009; McMullen et al. 2009). The NAM panel provides a
compelling opportunity to identify interactions involving var-
iants carried by B73 (Yu et al. 2008; Peiffer et al. 2014).
However, this population might have more limited potential
to identify other epistatic effects.

Generating multiparent RILs that are equally derived from
each founder can maximize the epistatic effects present in a
cross, but has consequences for multi-locus genotype fre-
quencies at interacting variants. While two-parent RILs have
the advantage that all variants and two-locus combinations
should segregate at �1/2 and �1/4, respectively, this is not
the case for multiparent RILs. For example, the eight foun-
ders of the mouse Collaborative Cross contribute almost
equally to each RIL (Churchill et al. 2004; Aylor et al. 2011;
Collaborative Cross Consortium 2012), implying that minor
allele frequencies should be between�1/8 and�1/2 among
the RILs. This variability in allele frequencies can lead to low
and unbalanced multi-locus genotype frequencies at interacting
variants, which may result in false negatives in genome-wide
scans for epistasis. In an extreme casewhere two founder-specific
variants interact, each will occur in roughly an eighth of the RILs
and the four multi-locus genotype frequencies involving the var-
iants will have frequencies of �1/64, �7/64, �7/64, and �49/
64. Despite this issue, multiparent populations like the Collabo-
rative Cross can be a very useful resource for studying epista-
sis, especially when systems-level data are available or
information is leveraged across traits (Tyler et al. 2017).

An additional factor to consider when using multiparent
populations to study epistasis is allelic heterogeneity, which
occurs when multiple causal variants reside in either the same
gene or different, closely-linked genes (Risch 2000; Long et al.
2014; Matsui et al. 2015; Linder et al. 2016). Many cases of
allelic heterogeneity have been found in both multiparent
genetic mapping (Buckler et al. 2009; Ehrenreich et al. 2012;
King et al. 2012, 2014; Peiffer et al. 2014) and association
studies (LangoAllen et al. 2010;Hormozdiari et al. 2016).With
respect to epistasis, this allelic heterogeneity maymake it more
difficult to detect interacting variants in multiparent popula-
tions than in comparably sized two-parent populations.

Conclusion

Epistasis has important phenotypic effects, but can be diffi-
cult to identify. RILs producedby crossing genetically distinct
isolates can facilitate the detection of interacting variants,
but experimental design criteria must be considered, includ-
ing how many founders to employ. Expanding the genetic
variation that is present in a cross by usingmore founders has
both advantages and disadvantages. For example, RILs pro-
duced by crossing two founders will have balanced multi-

locus genotype frequencies, which can provide statistical
power to identify pairwise and higher-order epistasis.
However, comprehensively mapping epistatic effects across
a species requires using a number of founders. These consid-
erations speak to how epistasis is a complex and incompletely
understood phenomenon that has no single form. Thus, as-
suming finite resources, the most appropriate experimental
design for studying epistasis may depend on the specific
question one wants to address.
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