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Abstract: Agricultural greenhouses (AGs) are an important facility for the development of modern
agriculture. Accurately and effectively detecting AGs is a necessity for the strategic planning of modern
agriculture. With the advent of deep learning algorithms, various convolutional neural network
(CNN)-based models have been proposed for object detection with high spatial resolution images.
In this paper, we conducted a comparative assessment of the three well-established CNN-based
models, which are Faster R-CNN, You Look Only Once-v3 (YOLO v3), and Single Shot Multi-Box
Detector (SSD) for detecting AGs. The transfer learning and fine-tuning approaches were implemented
to train models. Accuracy and efficiency evaluation results show that YOLO v3 achieved the best
performance according to the average precision (mAP), frames per second (FPS) metrics and visual
inspection. The SSD demonstrated an advantage in detection speed with an FPS twice higher than
Faster R-CNN, although their mAP is close on the test set. The trained models were also applied
to two independent test sets, which proved that these models have a certain transability and the
higher resolution images are significant for accuracy improvement. Our study suggests YOLO v3
with superiorities in both accuracy and computational efficiency can be applied to detect AGs using
high-resolution satellite images operationally.

Keywords: agricultural greenhouse detection; convolutional neural network; Faster R-CNN; YOLO
v3; SSD

1. Introduction

Agricultural greenhouses (AGs) are an important technique in modern agriculture to satisfy the
human demand for farm products [1–4]. In recent years, AGs have been expanding sharply and
changing the agricultural landscape in many regions, especially in China, Europe, North Africa, and the
Middle East [5]. The vigorous construction and expansion of AGs, however, has induced many issues
in land management, such as occupied high-quality cultivated land [6], damaged soil [7], pollution of
plastic wastes [4] etc. To address these problems, we need an effective detection method to monitor the
spatial distribution of AGs, in order to reasonably develop AGs and protect the cultivated land [8].

The remote sensing images from satellite, airborne, and unmanned aerial vehicles (UAV) have
been enabled to provide a significant contribution to detecting AGs, since AGs detection became annual
routine work for the competent department in China, such as the Ministry of Natural Resources and
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the Ministry of Agriculture and Rural Affairs. However, features of remotely sensed images could vary
under different observing conditions of atmosphere, sensor quality, solar illumination, and peripheral
surroundings. Moreover, different materials with varying thickness, reflection and transmission
properties were used in AGs coverings, presenting a highly fragmentized and heterogeneous appearance
of AGs in remote sensing images. As a result, AGs detection was mainly achieved by visual
interpretation with remote sensing images in government management. This method, depending on
the level of expertise, is time-consuming and far from a large-scale automatic AGs detection requirement.

The recent advances in pattern recognition and machine learning [9,10] have given great
opportunities for automatic information extraction based on big data [11], including high spatial
resolution remote sensing images [12]. This is largely driven by the wave of deep learning [13],
which describes the most representative and discriminative features by multi-layer neural networks in
a hierarchical manner. During the past decades, deep learning has made a considerable breakthrough,
not only in natural language processing fields [14,15], but also in computer vision tasks and other
applications [16,17]. Convolutional neural networks (CNNs), as one of the most successful network
architectures in deep learning methods through end-to-end learning, have gradually replaced the
conventionally featured engineering in image analysis due to their superiority in higher-level
feature representation. Consequently, CNNs have been widely introduced to geoscience and
remote sensing communities, such as target extraction [18–22], land classification [23,24], and object
detection tasks [25–27].

CNN-based object detection algorithms can currently be summed up into two categories. One is
represented by regions with CNN (R-CNN) and its improved methods [28–30], named two-stage
detectors. These approaches firstly generate a series of sparse candidate boxes based on region proposal
algorithms, then apply a CNN detector to perform bounding box regression and classification. The other
type of algorithms, named single-stage detectors, predict bounding boxes and class probabilities
of targets from full images synchronously, which is represented by Single Shot Multi-Box Detector
(SSD) [31] and You Only Look Once (YOLO) series [32–34] algorithms. These algorithms derived from
CNN have achieved great success in major competitions, such as PASCAL VOC (Pattern Analysis,
Statistical Modelling and Computational Learning Visual Object Classes) [35], ImageNet [36], and Coco
(Common Objects in Context) [37], where objects were detected from natural images.

As the current deep learning is data-driven, the performance of object detection algorithms,
e.g., the accuracy and efficiency, show large variations depending on the data source. Remote sensing
images obtained from satellite sensors are much more complex than natural images, since interference
from the atmosphere, background, incidence angle, and illumination is inevitable. Additionally, the size
of the targets in satellite images is relatively smaller than that in natural images due to the influence of
the sensor’s spatial resolution, increasing the difficulty of remotely sensed object recognition. As a
result, most studies implemented CNN-based object detection on limited open datasets and different
private datasets. For instance, Cheng et al. created and made an open, high-quality data set named
NWPU VHR-10 with large-size training samples from remote sensing images [38]. This dataset contains
a total of 3775 object instances related to 10 geospatial object classes, and has been widely used in
the earth observation community [39]. Zhang et al. adopted an improved Faster R-CNN to detect
ships from high-resolution optical remote sensing images and achieved a higher recall and accuracy
compared with SSD and YOLO v2 [40]. Chen et al. conducted end-to-end trainable airplane detection
on Google Earth images by using SSD architecture and achieved 96.23% average precision [41]. Ma et al.
worked on the detection of collapsed buildings in post-earthquake remote sensing images based on
the improved YOLO v3, which provided a 90.89% precision [42].

There are few relevant studies that evaluate the generalization of CNN-based object detection
methods for agricultural applications due to the lack of training samples and the complex properties
of landscapes. In this research, we conducted a comparative evaluation of three well-established
deep learning algorithms, which are Faster R-CNN, YOLO v3—the third version of the YOLO [43],
and SSD, to detect AGs from multi-source satellite images. To increase the detection accuracy under
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the limitations of training samples, a pre-trained network was introduced as a base and the transfer
learning approach was adopted. The main objectives of this research are as follows:

- Investigating a desirable method for AG detection that can provide accurate and effective
information of AGs for governmental management.

- Introducing the transfer learning and fine-tuning approaches to improve the performance of
CNN-based methods on agricultural applications.

- Performing an evaluation on two independent test sets to investigate the transferability of
the models.

2. Data and Methods

In this section, the used satellite images and sample preparation are given first. Next, we elaborate
on the theory of the three network architectures. Lastly, hyper-parameters and training processes
are introduced.

2.1. Data

The dataset was collected at 113◦46′–116◦20′ E and 38◦14′–40◦00′ N, within the city of Baoding,
Hebei province, China. It is a major area for agricultural production, where AGs have been greatly
developed in the last few decades. According to our field survey, transparent plastic is the most
widespread material used for AG roofing. In addition, AGs made of glass fibers and ethylene-vinyl
acetate copolymer (EVA) are also prevalent in this area.

The AGs dataset produced in this area were from available remote sensing images taken by the
Gaofen-2 (GF-2) satellite, as Gaofen series satellites are the most important data source for governmental
land use planning in China. The spatial resolution of GF-2 images is 1 m after image fusion. In addition,
the Goafen-1 (GF-1) satellite images with a spatial resolution of 2 m in the same geographical area were
introduced as supplementary data. GF-1 has three spatial resolutions in the panchromatic band (2 m)
and multispectral band (8 m/16 m), and its repeat is 41 days. In this study, we fused GF-1 data into 2 m
multispectral data and processed together with GF-2. This is mainly designed to increase the diversity
of samples and explore the transferability of these methods on different data sources but with similar
AG styles. All of these images, containing various orientations, aspect ratios, and pixel sizes of the
objects, were taken with a dynamic range from December 2016 to December 2017 to ensure the diversity
of samples. Due to the limited size and computational power, we pre-processed images and extracted
areas for regions of interest (ROIs) that may contain AGs, such as crop fields. Then, the ROIs were
regularly cropped into multi-scale tiles (300 × 300, 416 × 416, 500 × 500, 800 × 800, 1000 × 1000) without
overlap, which is essential for correcting prediction results of both coarse-scale and fine-scale detail
in the images [44]. Referring to the format of the PASCAL VOC dataset [36], we carefully annotated
these images in the same manner and saved annotations as XML (extensible markup language) files.
The labeled sample tiles of GF-1 and GF-2 images were 413 and 964, respectively, containing a total of
18,385 target AGs. Figure 1 shows examples of samples under different conditions.

The prepared sample dataset was divided into three parts: training, validation, and test sets.
The training set was adopted to train individual detection models and generate proposal regions,
while the selection of the optimal hyper-parameters was based on the validation set. The test set was
used to evaluate detection results from the model. In this study, the labeled image tiles were randomly
assigned to one of the three sets, approximately following the ratio of 60%:20%:20%. In order to enrich
the training data and enhance the robustness of the detectors in the training step, we duplicated every
tile by random cropping. The specific information about the dataset is presented in Table 1.



Sensors 2020, 20, 4938 4 of 13

Sensors 2020, 20, x FOR PEER REVIEW 4 of 14 

 

(a)

(c)

(d)

(b)

 
Figure 1. Examples of image tiles from the regions of interest (ROIs): (a) scatted agricultural 
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The prepared sample dataset was divided into three parts: training, validation, and test sets. 
The training set was adopted to train individual detection models and generate proposal regions, 
while the selection of the optimal hyper-parameters was based on the validation set. The test set was 
used to evaluate detection results from the model. In this study, the labeled image tiles were 
randomly assigned to one of the three sets, approximately following the ratio of 60%:20%:20%. In 
order to enrich the training data and enhance the robustness of the detectors in the training step, we 
duplicated every tile by random cropping. The specific information about the dataset is presented in 
Table 1. 

Table 1. The dataset of samples. 

Data 
Source 

Spatial 
Resolution 

Number of 
Total 

Samples 

Number 
of Target 

AGs 

Number of 
Training 
Samples 

Number of 
Validation 
Samples 

Number of 
Test 

Samples 
GF-1 2 m 413 14920 247 83 83 

GF-2 1m 964 3465 578 193 193 

Total  1377 18385 825 276 276 

2.2. Network Framework of Faster R-CNN, YOLO v3 and SSD 

As the typical deep learning methods for object detection, Faster R-CNN, YOLO v3, and SSD 
have been widely used in the study of remote sensing images. We briefly set forth the three network 
architectures here and Table 2 summarizes the properties of these models. 

Figure 1. Examples of image tiles from the regions of interest (ROIs): (a) scatted agricultural greenhouses
(AGs) surrounded by complicated backgrounds in GF-1 images; (b) regular AGs surrounded by apparent
backgrounds in GF-1 images; (c) individual AGs surrounded by simple backgrounds in Gaofen-2 (GF-2)
images; (d) fragmented and serried AGs in GF-2 image.

Table 1. The dataset of samples.

Data Source Spatial
Resolution

Number
of Total
Samples

Number of
Target AGs

Number of
Training
Samples

Number of
Validation
Samples

Number of
Test Samples

GF-1 2 m 413 14,920 247 83 83
GF-2 1 m 964 3465 578 193 193
Total 1377 18,385 825 276 276

2.2. Network Framework of Faster R-CNN, YOLO v3 and SSD

As the typical deep learning methods for object detection, Faster R-CNN, YOLO v3, and SSD
have been widely used in the study of remote sensing images. We briefly set forth the three network
architectures here and Table 2 summarizes the properties of these models.

2.2.1. Faster R-CNN

Figure 2 presents the basic architecture of Faster R-CNN. It consists of two modules: a region
proposal network (RPN) and a Fast R-CNN detector. The RPN is a fully convolutional network for
proposal generation. Each location of the feature maps can produce 9 anchors of 3 different scales and
3 aspect ratios, and then these anchors are judged as positive or negative based on the availability
of targets. The positive and negative anchors are selected randomly by a 1:1 ratio as a minibatch to
prevent bias occurring, which are utilized to generate candidate regions by comparing with ground
truth boxes of the objects at the process of training. Therefore, after introducing the convolutional
feature maps of arbitrary size into the RPN, a batch of feature information can be generated, describing
the region proposals that contain the candidate objects or not. The Fast R-CNN detector shares a set
of convolutional layers with the RPN. To generate superior object proposals, a base network can be
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utilized to extract features in these convolutional layers. In this research, we compared the Visual
Geometry Group (VGG) [44], and Residual Neural Network (ResNet) for this model, and the results
on the validation set proved that the VGG-16 is optimal in this dataset. In the second module, the ROI
pooling layer maps the extracted convolutional features of the proposals into uniform-sized feature
vectors, which next serve as the input of fully connected layer. Finally, a set of probability values for the
different classes can be derived and a softmax classifier is used to determine which category it belongs
in, while a regressor is adopted to access the more accurate coordinate values of the bounding boxes.

Table 2. Comparison of Faster R-CNN, You Look Only Once-v3 (YOLO v3) and Single Shot Multi-Box
Detector (SSD).

Faster R-CNN YOLO v3 SSD

Phases RPN + Fast R-CNN detector
Concurrent bounding-box

regression and
classification

Concurrent bounding-box
regression and classification

Neural Network Type Fully convolutional Fully convolutional Fully convolutional

Backbone Feature
Extractor

VGG-16 or other feature
extractors

Darknet-53
(53 convolutional layers)

VGG-16 or other feature
extractors

Location Detection Anchor-based Anchor-Based Prior boxes/Default boxes

Anchor Box 9 default boxes with different
scales and aspect ratios

K-means from coco and
VOC, 9 anchors boxes with

different size

A fixed number of bounding
boxes with different scales and

aspect ratios in each feature map

IoU Thresholds Two (at 0.3 and 0.7) One (at 0.5) One (at 0.5)

Loss Function Softmax loss for classification;
Smooth L1 for regression Binary cross-entropy loss Softmax loss for confidence;

Smooth L1 Loss for localization

Input Size

Conserve the aspect ratio of
the original image, and resized

dimension ranges from
smallest 500 to largest 1000

Random multi-scale input Resize original images to a fixed
size (300 × 300 or 512 × 512)
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2.2.2. YOLO v3

YOLO v3 is both an inheritance and improvement over YOLO v1 [32] and YOLO v2 [33]. All input
images in the YOLO v1 algorithm are resampled to a fixed size and divided into S × S grid. A grid cell
can only be linked with one object, where a fixed number B of bounding boxes and their corresponding
confidence score are directly predicted. At the same time, a sequence of probabilities of the objects in
each class is output using the fully connected layer. However, there may be more than one box around
the same ground truth target. To eliminate redundant predictions, the non-maximum suppression
(NMS) with an intersection over union (IoU) threshold is used to select detection boxes with the highest
confidence score. IoU measures the overlap between the predicted and the ground truth bounding
boxes. When the calculated IoU of detection boxes is higher than the pre-defined threshold, NMS
just maintains the detection box with the highest confidence and discards the others. Thus, an object
detection problem is successfully reconstructed to an end-to-end regression task. YOLO v1 significantly
outperforms R-CNN variants in terms of detection speed, as the complete image is processed only
once. However, it struggles to perform satisfactorily in localization, especially when dealing with small
objects. Given these problems of YOLO v1, a second version YOLO v2 was proposed, which introduces
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batch normalization as well as the anchor box mechanism for prediction. In addition, it removes the
fully connected layers of the YOLO v1, turning the entire model into a fully convolutional network.
Such modification allows more bounding boxes to be calculated, and input data of arbitrary dimension
can be operated on the network. As a result, the accuracy of YOLO v2 shows significant improvements
over YOLO v1, although its performance on small objects is still not desirable. The next generation
YOLO v3 enhances the detection results further by adopting multi-label classification and featuring
pyramid networks. In addition, the YOLO v3 upgrades the substrate network Darknet-19 to Darknet-53
to explore deeper feature information of objects. With this structural design, the YOLO v3 makes up
for the deficiency of YOLO v2 and outperforms most of the detection methods. The successive stages
of YOLO v3 are demonstrated in Figure 3.
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2.2.3. SSD

The overall architecture of SSD is illustrated in Figure 4. The SSD algorithm combines the
anchor box mechanism of Faster R-CNN and the regression idea of YOLO v1. The first few layers
are a commonly used architecture in object detection models, which is called the base network.
Here, we adopt the same VGG-16 network as Faster R-CNN. Moreover, SSD adopts a pyramid
structure, namely multi-dimensional feature maps after the base network. As the spatial resolution of
feature maps keeps decreasing, the spatial information of the detail is continuously lost while abstract
semantic features are growing. As a result, small objects and large objects can be detected at the same
time by features of different depth, which is important for solving the changes in object scales.
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Using the concept of anchor box in Faster R-CNN as a source of reference, SSD establishes a group
of default boxes with different scales and aspect ratios at each pixel of feature maps and serves them as
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the benchmark to generate predicted bounding boxes. Generally, the default boxes in different feature
maps are different sizes, and default boxes of different scales and aspect ratios are set in the identical
feature map. These boxes are competent to encompass objects that are of various shapes and sizes.
In the initial process of training, the default box is matched with ground truth boxes, aiming to find a
specific default box with the largest IoU for each ground truth object. Then, the remaining default
boxes are matched with any ground truth box, and assigned as negative samples if the IoU of the
two is less than the threshold (set as 0.5 in this work [36]). Instead of using all negative samples for
prediction, the confidence score for each default box is calculated and the three with the highest score
were selected in this study. Thus, we successfully controlled the ratio of positive samples and negative
samples at 1:3, which facilitates the learning process and allows faster optimization. As in the YOLO,
the final predictions are proposed after the NMS algorithm is applied.

2.3. Model Training

In this study, all the architectures were run on a workstation with two TITAN RTX GPU (2 × 8 GB)
and implemented with the PyTorch open-source deep learning framework, which was developed by
the Facebook team. The operating system was Ubuntu 16.04 LTS. To ensure that comparison was
conducted under fair conditions, we need to convert the YOLO v3 darknet model to the PyTorch
framework by modifying darknet weights and model to corresponding compositions of PyTorch.

Transfer learning is a very important and effective strategy in deep learning, which focuses on
gathering useful information from a previously trained network and applying it to different but related
problems [45]. ImageNet is a natural image dataset for object detection. Most of the base networks are
trained on it, because features such as edges, colors, and shapes can be implemented, which form the
basis of version tasks. Thus, we introduced pre-trained models to this dataset to initialize the weights
and bias through the transfer learning approach. Additionally, the fine-tuning of parameters was
performed with our collected dataset to improve the performance as much as possible.

Each detector requires a set of hyper-parameters that need to be configured before training.
We started with the default values and then repeatedly trained many times by changing one or more
major hyper-parameters. Finally, models with converged loss values and optimal performance on the
validation set were selected for our research.

All three types of CNNs were trained using the stochastic gradient descent (SGD) algorithm.
The input image sizes used to train Faster R-CNN and SSD were 512 × 512 and 300 × 300, respectively.
For Faster R-CNN, the initial learning rate was 0.01 and the batch size was defined as 8. The training
process continued for 30 epochs by reducing the learning rate to half after 20 epochs. One epoch means
the feed forward and back propagation processes were completed for the whole training set. For YOLO
v3, the batch size was defined as 16. The training loss got converged and showed optimal performance
on the validation set until 150 epochs, and the learning rate was 0.0005 with a decay factor of 0.5 for
every 30 epochs. For the SSD network, the batch size was defined as 16. The whole training continued
for 80,000 iterations with a 0.0001 initial learning rate and a 0.5 decay factor for every 20,000 iterations.
The training duration of the Faster R-CNN, YOLO v3, and SSD networks were comparable when the
validation accuracy reached a plateau, which took about 4.5 h, 5 h, and 5.5 h, respectively.

3. Results and Discussion

3.1. Evaluation Metrics

We adopted three widely used measures, which mainly include precision-recall curve (PRC),
mean average precision (mAP), and frames per second (FPS), to evaluate the performance of different
object detection models. The detailed description of these metrics is introduced as follows.

(a) Precision-recall curve (PRC) is composed of precision (P) and recall (R). It is a more conventional
and objective judgment criterion in the field of object detection compared with individual precision
or recall metric. The precision measures the fraction of correctly identified positives and detection
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results, while the recall measures the fraction of correctly identified positives and the total number
of all ground truth samples. The precision and recall indicators are calculated as:

precision =
TP

TP + FP
(1)

recall =
TP

TP+FN
(2)

where true positive (TP) indicates the total number of targets successfully detected by the model;
false negative (FN) indicates the total number of targets that are falsely identified as other objects;
false positive (FP) indicates the total number of predictions that identified other objects as targets.

(b) Average precision (AP) is measured by the area under the PRC for each class. We use the mAP
over all classes to evaluate the performance of the model. Since there are only two classes
considered, namely AG and background, the mAP of the whole model is equal to the AP of the
AG detection. Generally, the higher the mAP, the better the performance.

(c) Frames per second (FPS) measures the number of images that are processed on the model
per second. When running on the steady-state hardware, the larger the FPS, the faster the
model detects.

3.2. Visual Evaluation

In this study, the images of AGs under different scenarios were tested to evaluate the models.
Four subsets of ground truth images and their corresponding detection results, obtained by the
three models, are presented in Figure 5 with blue circles highlighting incorrect detections. From the
perspective of the AGs’ characteristics and the peripheral surroundings, all the three methods have
achieved great success in visually detecting AGs that are characterized by distinct geometric shapes
and simple background (Figure 5 (4)). The obvious differences in detection accuracy mainly occurred
under the following conditions: (1) the individual AGs that are relatively small and scattered around
the cultivated land or settlements; (2) industrial buildings that are similar to the AGs in shape and
texture; (3) fragmented or serried targets that are situated in contextually mixed areas.

As we all know, spatial resolution is one of the key factors affecting the detection performance of
the model. On the one hand, the AGs varying in shape or size exhibit different scales on the same image.
On the other hand, the size of the same AG varies on images with different resolutions. According
to the detection results presented in Figure 5, these three models have achieved great recognition on
GF-2 images (Figure 5 (3–4)), while their performance notably decreased on the GF-1 set (Figure 5
(1–2)). Specifically, Faster R-CNN and YOLO v3 were completely free of erroneous detections on
the higher resolution GF-2 images. Only in areas where AGs are inclined and densely concentrated,
SSD made some errors in small target detections. However, all three models had obviously missing
and erroneous detections on GF-1 test images, with SSD performing the poorest. This is probably
explained by the fact that the input image size of SSD is the smallest, resulting in the largest scaling
degree of original images. Since small targets are represented with very few numbers of pixels, less
detailed features can be accessed by shallow convolutional networks, while it is more difficult to obtain
semantic information from deeper feature maps.

3.3. Evaluation with Metrics

Comparison results of the three models on the integrated test set measured by PRCs are shown
in Figure 6. A curve at the top of the PRCs indicates a better performance. We can observe that all
the networks provided acceptable performance for AG detection, but it is hard to evaluate which one
is the best from the curve. Therefore, we adopted the mAP as a quantitative metric to evaluate the
accuracy of the three models.
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The mAP was calculated for all networks with a pre-defined IoU threshold. Table 3 shows the
numerical comparison results. All of the three models had the mAP above 80% on the integrated test
set with diverse AGs, illustrating that these three methods were able to achieve favorable results on this
dataset. YOLO v3 demonstrated the highest mAP (90.4%) among the three models. The mAP of Faster
R-CNN and SSD were similar, with only a slight difference of 1.1%. A preliminary analysis suggested
that the network Darknet-53, a deeper structure than VGG-16, is more competent in extracting diverse
and complex features of targets, playing a fundamental role in the detection accuracy improvement
of YOLO v3.

Table 3. Metrics comparison of different models.

Faster R-CNN YOLO v3 SSD

mAP (GF-1& GF-2) 86.0% 90.4% 84.9%
mAP (GF-1) 64.0% 73.0% 60.9%
mAP (GF-2) 88.3% 93.2% 87.9%

FPS 12 73 35

Additionally, the models that trained on the integrated training set were further applied to two
independent test sets with different resolution images to evaluate the transferability of the models.
The experimental results of the mAP are appended to Table 3. Among the three models, YOLO v3
achieved the best performance on these two independent tests. Faster R-CNN and SSD provided
comparable mAP on higher resolution GF-2 images, while the accuracy difference was mainly derived
from the GF-1 test set. Moreover, it is apparent that all three models showed significantly different
detection capabilities between the two test sets. When tested on GF-1 images, the mAP of the three
models was no higher than 75% and was about 20% lower than the performance on the integrated
test set. By contrast, the minimal mAP of all three models on the GF-2 set was 87.9%, which was
much better than the performance on the GF-1 images. On the one hand, it can be attributed to the
imbalance between the training samples from the two different data sources. On the other hand,
the peripheral surroundings inside the large-scale GF-1 images are more confusing, increasing the
difficulties in feature learning. The contrastive results confirmed that these models had a certain degree
of transferability and the image resolution is a crucial factor associated with the quality of the detection
performance. High-resolution satellite images with relatively apparent characteristics of targets can
significantly improve detection accuracy, while low-resolution images will not only lead to difficulties
in sample making, but also greatly reduce the quality of the predictions.

The FPS yielded by the three methods is also appended to Table 3. The YOLO v3, with 73 images
detected per second, was more than twice as fast as the SSD. The two-stage detector Faster R-CNN,
with a FPS of 12, remarkably lagged in comparison to SSD and YOLO v3. Overall speaking, the YOLO
v3 showed the best performance among the three detection models if only detection efficiency was
considered, while the low detection efficiency of the Faster R-CNN limited its potential applications.

By jointly analyzing the PRC, the mAP metric, and the FPS, it shows that the YOLO v3 exhibited a
balanced performance with good localization of objects and a high detection speed. This superiority
mainly comes from its inherent strength in the deeper feature extraction network and the single-stage
architecture. As a result, YOLO v3 is well equipped to provide faster and more accurate detection of
AGs among the three models.

YOLO v4 [46] is the latest version of the YOLO series network and was developed in April 2020.
Given that enhancement of the models can produce breakthroughs in accuracy and efficiency, we also
tested YOLO v4 using the integrated dataset in our experiments. The selected network resulted in
91.8% mAP and 98 FPS, which were the highest among all the detectors. These results were expected
as the YOLO v4 introduced a new method for data augmentation and modified some existing methods
for efficient detection. In this paper, we focus on AG detection for a fair comparison among three



Sensors 2020, 20, 4938 11 of 13

typical and comparable approaches. To yield a high accuracy in future applications, more improved
and enhanced model architectures should be considered.

4. Conclusions

In this paper, we conducted a thorough experimental comparison of three well-established
CNN-based object detection models, namely Faster R-CNN, YOLO v3, and SSD, for AG detection
from high-resolution satellite images. Their performance, mainly including efficiency and accuracy,
was discussed under different scenarios and evaluated with both the integrated test images and
independent test sets. The best results were obtained with the YOLO v3 network according to mAP
and FPS metrics. The Faster R-CNN also provided promising results with accurate localization.
Although SSD provided the worst detection accuracy when the relatively lower resolution images are
considered, it was superior in processing time in comparison to Faster R-CNN. The spatial resolution
of satellite images is the main factor affecting the detection performance. The higher the spatial
resolution, the better the detection quality. Moreover, the transfer learning and fine-tuning on a
pre-trained network are effective in providing promising results for object detection from satellite
images. In summary, Faster R-CNN and SSD demonstrate certain practicalities in detection accuracy
and efficiency individually, but they prove difficult to satisfy the requirements of fast and accurate
object detection, simultaneously. YOLO v3 can generally complete fast and accurate AG detection
using satellite images in operational monitoring work, which can serve as a basis for governmental
land management and decision-making.

Future research can hopefully improve object detection by making full use of the multispectral
and hyperspectral data in satellite images, as the current detection task is usually processed on the
color images of RGB composited by satellite sensor bands. In addition, it will also be worthwhile to
conduct further research on accessing the footprint, shape, and inclination angle of the AGs while
acquiring location and boundary information. Moreover, further studies can plan to generate a
large and high-quality dataset from remotely sensed images for the application of agriculture and
land management.
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