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The non-diagonal elements of the observed covariances are more exactly reproduced

by the factor loadings than by the model implied by the corresponding factor score

predictors. This is a limitation to the validity of factor score predictors. It is therefore

investigated whether it is possible to estimate factor loadings for which the model

implied by the factor score predictors optimally reproduces the non-diagonal elements

of the observed covariance matrix. Accordingly, loading estimates are proposed for

which the model implied by the factor score predictors allows for a least-squares

approximation of the non-diagonal elements of the observed covariance matrix. This

estimation method is termed score predictor factor analysis and algebraically compared

with Minres factor analysis as well as principal component analysis. A population-based

and a sample-based simulation study was performed in order to compare score predictor

factor analysis, Minres factor analysis, and principal component analysis. It turns out

that the non-diagonal elements of the observed covariance matrix can more exactly

be reproduced from the factor score predictors computed from score predictor factor

analysis than from the factor score predictors computed from Minres factor analysis and

from principal components.

Keywords: factor analysis, Minres, factor score predictors, principal component analysis, indeterminacy

INTRODUCTION

The factor model reproduces the observed covariances from the loadings and inter-correlations
of the common factors as well as from the loadings of the unique factors. The factor loadings
and factor inter-correlations are typically identified by means of rotational criteria in exploratory
factor analysis or by means of model specification in the context of confirmatory factor analysis.
However, the individual scores on the factors are indeterminate (Wilson, 1929; Guttman, 1955;
Grice, 2001) even when all parameters (loadings, inter-factor correlations, loadings of unique
factors) of the factor model are identified. It has been argued that acknowledging and quantifying
factor indeterminacy is important for validity (Rigdon et al., 2019). Since the individual scores on
the factors themselves are indeterminate, individual scores on so-called “factor score estimators”
(McDonald, 1981), sometimes called “factor score predictors” (Krijnen, 2006), are computed when
individual scores on the common factors are needed. The need for individual scores can occur
in different areas, for example, in the context of psychological assessment, when individuals are
selected for a job or when an optimal treatment has to be assigned to an individual.

Since “estimating” scores that are not uniquely defined may be regarded as unconventional
(Schönemann and Steiger, 1976), Krijnen’s (2006) term “factor score predictor” will be used in
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the following. However, even this term does not describe that,
in fact, scores are only constructed (McDonald and Burr, 1967)
in a way that they reflect some aspects of the original, but
indeterminate factors. Since the factor score predictors are not
identical with the factors themselves, three criteria for the
evaluation of factor score predictors are typically considered
(Grice, 2001): The maximal correlation of the factor score
predictor with the factor (validity), that factor score predictors
do not correlate with non-corresponding factors (univocality),
and the similarity of the inter-correlations of the factor score
predictors with the inter-correlations of the factors (correlational
accuracy). The importance of an evaluation of the quality
of factor score predictors has been acknowledged repeatedly
(Ferrando and Lorenzo-Seva, 2019; Rigdon et al., 2019).

Although the aim of the factor model is to reproduce the
observed covariances, the covariances that are reproduced from
factor score predictors are not the same as the covariances
that are reproduced from the factors themselves (Beauducel,
2007). Even when the factor model reproduces the observed
covariances quite well, the factor score predictors typically will
not reproduce the observed covariances as well. Nevertheless,
factor score predictors that optimally represent the factors should
reproduce the covariances as well as the factors themselves.
Rigdon et al. (2019, p. 10) recommend that researchers who need
factor score predictors “. . . use all available information in their
calculation to minimize the influence of the factors’ arbitrary
components.” One information that is available—beyond the
determinacy coefficient—is how well factor score predictors
reproduce the observed covariances (Beauducel and Hilger,
2015). Especially the reproduction of the non-diagonal elements
of the observed covariance matrix by means of the common
factors, as performed with Minres factor analysis (MFA, Comrey,
1962; Harman and Jones, 1966; Harman, 1976), represents
a core aspect of the factor model because the non-diagonal
elements represent the associations between the observed
variables. Moreover, Beauducel and Hilger (2015) found that
an optimal reproduction of the non-diagonal elements of the
observed covariance matrix by the factor score predictors
is possible when there is a single variable with a perfect
loading on each factor. However, perfect factor loadings rarely
occur in empirical research. In fact, the weighting of observed
variables resulting in factor score predictors that optimally
reproduce the non-diagonal elements of the observed covariance
matrix is widely unknown. In order to close this gap it is
proposed to estimate factor loadings in a way that not the
loadings but the factor score predictors computed from the
loadings optimally reproduce the non-diagonal elements of the
observed covariance matrix. The idea behind this approach
is that the indeterminacy of factors threatens the validity of
factor score predictors less systematically, when the loadings
and the factor score predictors computed from the loadings
reproduce the same non-diagonal elements of the observed
covariance matrix.

In sum, (1) factor score predictors do not reproduce the
non-diagonal elements of the observed covariance matrix as
well as the common factors do. (2) The reproduction of
the non-diagonal elements of the observed covariance can be

considerably improved when a single variable with a perfect
loading occurs on each common factor. This leads to the question
whether it is possible to find factor loadings for which the
corresponding factor score predictors optimally reproduce the
non-diagonal elements of the observed covariance matrix, in
cases where none of the variables has a perfect loading. After
some definitions, an estimation method of factor loadings is
proposed for which the non-diagonal elements of the covariance
matrix reproduced from the model implied by the corresponding
factor score predictors are a least-squares approximation of
the non-diagonal elements of the observed covariance matrix.
This is a specific estimation method in the context of the
factor model because loadings are estimated for which the
factor score predictors that are computed from the loadings
optimally reproduce the non-diagonal elements of the observed
covariance matrix. Therefore, the method is termed Score-
predictor factor analysis and compared with MFA as well as
principal components analysis (PCA) by means of algebraic
considerations, a small population-based simulation, and a
sample-based simulation study.

DEFINITIONS

Let x be a random vector of order p representing a population of
observed scores with E(x) = 0. According to the factor model x
can be decomposed by

x = 3f+ u, (1)

where 3 is a p × q loading matrix, f is a random vector of
order q representing the common factors with E(f) = 0, E(ff′) =
8, and diag(8) = I, and u is a random vector of order p
representing the unique variance of each variable, with E(u) = 0
and E(uu′) = diag(E(uu′)) = 92. Accordingly, the covariance
matrix of observed variables that is reproduced from the factor
model can be written as

E(xx′) = 6 = 383′ + 92. (2)

Factor score predictors are linear combinations of measured
variables that can be described in the framework of regression
component analysis (Schönemann and Steiger, 1976). Consider
regression components ξ of order q, resulting from linear
combination of p measured variables x, with ξ = B′x, where B
is a p× q weights matrix. The covariance of ξ is

E(ξξ
′

) = B′6B. (3)

According to Schönemann and Steiger (1976), the pattern of
regression weights for predicting x from ξ is

L = E(xξ ′)(E(ξξ ′))
−1

= 6B(B′6B)−1, (4)

so that the prediction of x by ξ is

xr = Lξ = LB′x.
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The covariances reproduced from the regression components
are therefore

E(xrxr
′)= 6r = LB′6BL′ = 6 B(B′6B)−1B′6. (5)

Entering the weights of the regression factor score predictor,
Br = 6−138 (Thurstone, 1935), into the right hand side of
Equation (5) yields

6r = 66−138(83′6−166−138)−183′6−16

= 3(3′6−13)−13′. (6)

Beauducel (2007) has shown that Equation (6) holds for
the regression factor score predictor, the Bartlett factor score
predictor (Bartlett, 1937), and the McDonald factor score
predictor (McDonald, 1981). Thus, 6r are the covariances
that are reproduced from the model that is implied by the
abovementioned factor score predictors. Since the model implied
by the factor score predictors depends on 3, it is proposed
to find loading estimates, for which the non-diagonal elements
of 6r are a least squares approximation of the non-diagonal
elements of 6.

PROPOSED METHOD

Approximation of the Non-diagonal
Elements of the Observed Sample
Covariance Matrix
As factor model parameters will typically be estimated on
the basis of covariance matrices observed in the sample, the
estimation procedures are given for the samples. For the sample,
Equation (2) can be written as

S ≈ 3̂8̂3̂
′

+ 9̂
2
, (7)

and Equation (6) can be written as

6̂r = 3̂( 3̂
′

S−13̂)−13̂
′

, (8)

where S is the sample covariance matrix. The condition for MFA
can be expressed as

tr

[

(S− 3̂M3̂
′

M − diag(S− 3̂M3̂
′

M))

′

(S− 3̂M3̂
′

M − diag(S− 3̂M3̂
′

M))

]

= min, (9)

where 3̂M is the loading matrix of MFA. According to
Harman and Jones (1966), the following classical principal factor

procedure allows for finding 3̂M :

1) Start with an arbitrary p × p diagonal matrix H and
compute S− diag(S)+H.

2) Perform the eigen-decomposition S − diag(S) + H = KŴK
′
,

with eigenvectors K and with Ŵ containing the eigenvalues in
descending order.

3) Determine the q common factors and compute 3̂M =

KqŴ
1/2
q , where Kq is a p × q submatrix of K and Ŵq is the

q× q submatrix of Ŵ .
4) Determine the reproduced communalities by means of H =

diag(3̂M3̂
′

M).

5) Insert 3̂M into Equation (7) and check whether a convergence
criterion is met. The convergence criterion is defined
by the difference between the previous value resulting
from Equation (9) and the current values resulting from
Equation (7).

6) Repeat step 2–5 until the convergence criterion
is met.

Bymeans of these stepsMFA estimates the loadings of orthogonal
factors that are conform to the condition expressed in Equation

(9). The present approach is to replace 3̂M3̂M
′ in Equation (9)

by the covariances reproduced from the factor score predictor
(Equation 6). This leads to

tr

[(

S− 3̂os

(

3̂os
′S−13̂os

)−1
3̂os

′

−diag

(

S− 3̂os

(

3̂os
′S−13̂os

)−1
3̂os

′

))

′

(

S− 3̂os

(

3̂os
′S−13̂os

)−1
3̂os

′

− diag

(

S− 3̂os

(

3̂os
′S−13̂os

)−1
3̂os

′

))]

= min,

(10)

where 3̂os is a loading pattern resulting from the estimation
method proposed here, which is called Score predictor factor
analysis (SPFA). The covariance of the SPFA factors is

(3̂os
′S−13̂os)

−1
. According to this condition, loadings are

estimated for which the non-diagonal elements of the covariance
matrix reproduced from the abovementioned factor score
predictors (regression, Bartlett, McDonald) are a least squares
approximation of the non-diagonal elements of the observed
covariance matrix. The corresponding orthogonal loading
pattern is

3̂s = 3̂os(3̂
′

osS
−13̂os)

−1/2

, (11)

where “−1/2” denotes the inverse of the symmetric square-root.

The corresponding unique variance is 9̂
2

s = diag(S − 3̂s3̂
′

s).
The estimation of SPFA loadings can be performed by means of
the same algorithm as for MFA. The only difference is that

3̂s = 3̂os(3̂
′

osS
−13̂os)

−1/2

= KqŴ
1/2
q (Ŵ1/2

q Kq
′S−1KqŴ

1/2
q )

−1/2

= Kq(Kq
′S−1Kq)

−1/2
(12)

is inserted instead of 3̂M in step 3 and the following steps of the
abovementioned algorithm. An R-script for SPFA estimation is
given in the Supplementary Material (section 1).
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Reproducing Covariances From Loadings
and From the Corresponding Factor Score
Predictor Models
The MFA and SPFA estimation procedures were described for
the sample observed covariance matrix because these procedures
will typically be calculated for sample matrices. However, in
the following, the population observed covariance matrices
will be used in order to describe further properties of SPFA
and MFA.

Equations (2) and (6) of the factor model imply 6 −

diag(6) 6= 6r − diag(6r) for 3′6−13 6= I. It follows from
Krijnen et al. (2015, Equation 7) that

3(3′6−13)
−1

3′ = 33′ + 3(3′9−23)
−1

3
′

, (13)

so that 3(3′6−13)
−1

3
′

= 33
′

if (3′9−23)
−1

= 0. If one
loading per column of 9 approaches one, the corresponding

element in 9 approaches zero, so that (3′9−23)
−1

also
approaches zero (Beauducel and Hilger, 2015). Accordingly,
6 − diag(6) will become similar to 6r − diag(6r) under this
condition. This implies that the corresponding elements
of the covariance matrices reproduced from MFA will
also become similar when one loading per column of 3

approaches one.
For SPFA, the non-diagonal elements of covariance matrices

reproduced from the loadings are given by 6s − diag(6s) =

3s3
′

s − diag(3s3s
′). The non-diagonal elements of the

covariance matrix reproduced from the factor score predictors

are given by 6rs − diag(6rs) = 3s(3s
′6−13s)

−1
3s

′ − diag(3s

(3s
′6−13s)

−1
3s

′). Theorem 1 describes that 6s − diag(6s) =
6rs − diag(6rs) always holds for SPFA.

Theorem 1. 6s − diag(6s) = 6rs − diag(6rs).
Proof. Writing Equation (11) for the population yields

3s = 3os(3
′

os6
−13os)

−1/2
, which implies

3s3s
′ = 3os

(

3
′

os6
−13os

)−1
3os

′

= 3os

(

3
′

os6
−13os

)−1/2 (

(

3os
′6−13os

)−1/2
3os

′6−1

3os

(

3os
′6−13os

)−1/2
)−1

(

3os
′6−13os

)−1/2
3os

′

= 3s

(

3s
′6−13s

)−1
3s

′.

(14)

This completes the proof.
Theorem 1 implies that the non-diagonal elements of the

covariance matrix reproduced from the orthogonal common
factor loadings 3s are identical to the non-diagonal elements of
the covariances reproduced from the regression-, Bartlett-, and
McDonald factor score predictors computed from 3s and 92

s .
Thus, the fit of the SPFA model to the non-diagonal elements of
the observed covariance matrix is equal to the model fit implied
by the SPFA factor score predictors.

The non-diagonal elements of 6A, the covariance matrix
reproduced from the loadingsA of PCA, are identical to the non-
diagonal elements of6rc, the covariance matrix reproduced from
the orthogonal principal component scores c. This follows from
6A = 6rc which is shown in Theorem 2.

Theorem 2. If x = Ac, E(cc′) = I, and 6A = AA′ then
6A = 6rc.

Proof. The component scores are (A′A)−1A′x = c so that the

corresponding weights BA = A(A′A)−1 can be entered into
Equation (6). This yields

6rc = 6A (A′A)
−1

((A′A)
−1

A′6A(A′A)
−1

)
−1

(A′A)
−1

A′6. (15)

It follows from (A
′
A)

−1
A

′
6 = cx

′
and from xc

′
= Acc

′
= A that

Equation (15) can be written as

6rc= xc′(cx′6−1xc′)
−1

cx′ = A(A
′

6−1A)
−1

A′. (16)

The covariance matrix reproduced from the component
loadings is

6A = AA′ = Acc′A′ = A(A
′
A)

−1
A

′
66−16A(A′A)−1A′

= AA′6−1AA′ = AA′6−1A(A
′
6−1A)

−1
A

′
6−1AA′.

(17)

It follows from (A′A)−1A′= A′6−1 that

6A= AA′6−1A(A′6−1A)
−1

A′6−1AA
′

= A(A′6−1A)
−1

A′. (18)

This completes the proof.
To summarize, the PCA loadings and -scores as well as the

SPFA loadings and score predictors reproduce the non-diagonal
elements of the observed covariance matrix equally well. In
contrast, the factor model and MFA has this property only when
one element of each column has a perfect communality.

Model Error and the SPFA Model
Even in a population without model error
of MFA, i.e., for tr

[

(6 − 3M3M
′ − diag

(6 − 3M 3M
′))′(6 − 3M3M

′ − diag(6 − 3M3M
′))

]

=

0, the error of the model implied by the MFA
factor score predictors could be substantial, i.e.,

tr
[

(6 − 3MH−13
′

M − diag(6 − 3MH−13
′

M))
′

(6 − 3MH−1

3
′

M − diag(6 − 3MH−13
′

M))
]

> 0 with H = 3
′

M6−13M .

In contrast, SPFA finds a least squares approximation of the
factor score predictor model to the non-diagonal elements of
the observed covariance matrix (Equation 10). For the model of
MFA and SPFA one might therefore expect

tr
[

(6 − 3M3
′

M − diag(6 − 3M3M
′))′

(6 − 3M3M
′ − diag(6 − 3M3M

′))
]

≤

tr
[

(6 − 3s3s
′ − diag(6 − 3s3s

′))′

(6 − 3s3s
′ − diag(6 − 3s3s

′))
]

≤

tr
[

(6 − 3MH−13M
′ − diag(6 − 3MH−13

′

M))′

(6 − 3MH−13
′

M − diag(6 − 3MH−13M
′))

]

.

(19)

Thus, one would expect that the model error of MFA loadings
is smaller or equal to the model error of SPFA factor score
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predictors which is smaller or equal to the model error of the
MFA factor score predictors. Dividing the traces in Equation (19)
by p(p-1) and taking the square root yields the standardized root
mean squared residual for non-diagonal elements (SRMRND) as
an index of model error that has been used elsewhere (Beauducel
and Hilger, in press). In the following, the relationship between
the SRMRND of the factor score predictor model derived from
MFA will be compared with the SRMRND of SPFA and PCA
for population data that fit perfectly to the factor model. PCA
will be included as a frame of reference because PCA has the
same property as SPFA in that the model fit computed from the
loadings equals the model fit that is computed from the scores
(Theorem 2).

RESULTS

Population Simulation for MFA, SPFA, and
PCA for Data Without Factor Model Error
The simulations were performed with IBM SPSS Version 24.

For 3
′

6−13 = 3
′

s6
−13s = I MFA and SPFA should have

an identical model fit in terms of Equation (19). According to
Equation (13), this condition holds when one variable on each

common factor has a perfect loading. Therefore, a population-
based simulation study starting with a loading matrix 31

containing one perfect loading per factor and a set of constant
non-zero loadings on each factor was performed. In the next step,
the perfect loadings were reduced by a decrement of 0.01 until all
non-zero loadings were nearly equal. In the following example,
the initial loading matrix 31 and the final loading matrix 3f is

given for q= 3 factors, p= 9 variables, and p/q= 3.

31 =





























1.00 .00 .00
.50 .00 .00
.50 .00 .00
.00 1.00 .00
.00 .50 .00
.00 .50 .00
.00 .00 1.00
.00 .00 .50
.00 .00 .50





























, ... , 3f =





























.51 .00 .00

.50 .00 .00

.50 .00 .00

.00 .51 .00

.00 .50 .00

.00 .50 .00

.00 .00 .51

.00 .00 .50

.00 .00 .50





























. (20)

For q = 3, p = 15, and p/q = 5 similar matrices were generated.
Figures 1A,B illustrates the fit of the model implied by the
factor/component scores of MFA, SPFA, and PCA in terms of

FIGURE 1 | Population factor models without model error: SRMRND based on PCA-, MFA-, and SPFA-scores with (A) q = 3, p = 9, p/q = 3 and (B) q = 3, p = 15,

p/q = 5; ρ for PCA-, MFA-, and SPFA-scores with (C) q = 3, p = 9, p/q = 3 and (D) q = 3, p = 15, and p/q = 5.
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TABLE 1 | Major MFA- and SPFA-factor loadings based on model error and Procrustes-rotation toward the initial (model error free) loadings of the major factors.

Equal non-zero initial loadings of 0.50 Non-zero initial loadings of 0.50 and one non-zero initial loading of 0.95

MFA SPFA MFA SPFA

F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3

0.46 −0.05 −0.01 0.40 −0.03 −0.03 0.47 −0.04 0.03 0.47 −0.05 0.03

0.62 −0.03 −0.03 0.98 −0.02 −0.01 0.53 −0.04 −0.05 0.51 −0.04 −0.06

0.42 0.01 0.03 0.38 −0.01 0.03 0.43 0.02 −0.01 0.43 0.02 −0.03

0.48 0.03 −0.09 0.42 0.03 −0.09 0.49 0.02 −0.07 0.49 0.02 −0.07

0.32 0.01 0.00 0.26 0.03 −0.01 0.73 0.01 0.02 0.96 0.02 0.01

−0.02 0.50 −0.06 −0.02 0.52 −0.04 0.01 0.48 −0.04 0.02 0.48 −0.04

0.01 0.36 0.04 0.02 0.34 0.05 −0.03 0.43 0.03 −0.04 0.43 0.03

−0.01 0.56 −0.12 −0.01 0.92 −0.12 0.02 0.52 −0.07 0.03 0.52 −0.07

0.04 0.45 −0.07 0.04 0.46 −0.06 0.04 0.46 −0.08 0.04 0.46 −0.09

−0.04 0.50 0.02 −0.03 0.47 0.05 −0.04 0.87 0.00 −0.04 0.98 −0.01

−0.07 −0.03 0.50 −0.09 −0.01 0.50 −0.02 −0.03 0.53 −0.01 −0.05 0.56

−0.03 −0.07 0.58 −0.02 −0.06 0.90 −0.03 −0.05 0.54 −0.04 −0.05 0.56

0.04 −0.06 0.46 0.04 −0.04 0.47 0.04 −0.07 0.48 0.04 −0.08 0.50

−0.02 −0.01 0.52 −0.01 −0.02 0.58 −0.06 0.01 0.50 −0.07 0.00 0.51

−0.02 −0.03 0.39 −0.04 0.01 0.39 −0.01 −0.01 0.76 −0.02 −0.02 0.94

Main loadings were given in bold face.

SRMRND for these loading matrices. The size of the largest
loading on each factor is given on the x-axis and the SRMRND

is given on the y-axis. The models implied by PCA scores have
consistently the largest SRMRND, i.e., the lowest fit, whereas
the models implied by SPFA factor score predictors have the
lowest SRMRND. The SRMRND of the model implied by the
MFA factor score predictors is in between. This shows that the
relationship between the MFA loading based SRMRND, the SPFA
factor score predictor based SRMRND, and the MFA factor score
predictor based SRMRND in Figure 1 is as predicted in Equation
(19). With increasing largest loadings, the SRMRND of the model
implied by MFA factor score predictors becomes more similar to
the SRMRND of the SPFA factor score predictors. For p/q = 5
(Figure 1B) the differences between the SRMRND of MFA, SPFA,
and PCA are smaller than for p/q = 3 (Figure 1A). It should be
noted that the SRMRND based on SPFA loadings is identical to the
SRMRND based on the SPFA factor score predictor (Theorem 1)
and that the SRMRND based on PCA loadings is identical to
the SRMRND based on component scores (Theorem 2). Since no
model error according to the factor model was introduced, the
SRMRND based on MFA loadings was always zero.

The determinacy coefficient, i.e., the correlation of the
regression (best linear) factor score predictor (Krijnen et al.,
1996) based on MFA (Grice, 2001) and on SPFA and of the
PCA scores with the factors (see below) for the corresponding
models are given in Figures 1C,D. The coefficient of determinacy
should regularly be computed in the context of factor analysis
(e.g., Grice, 2001; Lorenzo-Seva and Ferrando, 2013). Moreover,
the correlation of the PCA scores with the common factors as
well as the correlation of the SPFA factor score predictors with
the common factors were computed in order to as certain how
well these scores can be used in order to represent the common

factors. Since the correlation of the factor score predictors
with the common factor is typically not perfect, it might be
possible that PCA scores correlate in a similar magnitude with
the common factors as the factor score predictors. Similarly,
the SPFA factor score predictor might also correlate with the
common factors in a similar magnitude as the factor score
predictor. Since the scores of the wanted components are given

by (A′A)−1A′x = c with E(cc′) = I, their correlation with the
common factors is

ρPCA = diag(E(fc′)) = diag(E(fx′)A(A′A)
−1

= diag(83′A(A′A)
−1

). (21)

The best linear SPFA factor score predictor is given

by f̂SPFA = 3
′

s 6−1x and the standard deviation of this factor

score predictor is diag(f̂SPFA f̂SPFA
′)1/2 = diag(3s

′6−13s)
1/2 so

that its correlation with the factor is given by

ρSPFA = diag(E(ff̂′)) = diag(E(fx′)6−13s)

= diag(83′6−13sdiag(3s
′6−13s)

−1/2).
(22)

The results in Figures 1C,D are based on covariance matrices
without error of the factor model. Accordingly, the correlation of
the MFA factor score predictors with the factors is always larger
than the correlation of the SPFA factor score predictors and the
PCA scores with the factors. For largest loadings below 0.70, the
PCA scores have larger correlations with the factors than the
SPFA factor score predictor, for largest loadings greater 0.75 the
SPFA factor score predictor has larger correlations with the factor
than the PCA scores.
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FIGURE 2 | Population factor models with q = 3, p = 15, p/q = 5; large model error: (A) SRMRND for MFA loadings, MFA-scores, PCA, and SPFA; (B) ρ for PCA-,

MFA-, and SPFA-scores; moderate model error; (C) SRMRND for MFA loadings, MFA-scores, PCA, and SPFA; (D) ρ for PCA-, MFA-, and SPFA-scores.

Population Simulation for MFA, SPFA, and
PCA for Data With Factor Model Error
When model error was introduced according to Tucker,
the population correlation matrices were generated from the
loadings of major factors and from the loadings of 50 “minor
factors” as well as from the corresponding uniqueness. Minor
factors have been introduced by Tucker et al. (1969) in order
to represent small parts of the common variance, which are not
part of a given population model. These minor factors therefore
represent the “many minor influences” (Tucker et al., 1969),
which are not part of themodel but that affect the observed scores
in the real world (MacCallum, 2003). According to MacCallum
and Tucker (1991), the loading matrices of 50 minor factors were
generated from z-standardized normally distributed random
numbers. In the population with large model error, the relative
contribution of minor factors was successively reduced by the
factor 0.95, and the amount of variance explained by the minor
factors was set to 30% of the observed total variance. The random
numbers were generated by means of the Mersenne Twister
random number generator in IBM SPSS 24. All loadings of
minor factors were between−1 and+1. Since minor factors were
introduced into the population data and since they represent

30% of the total variance, a factor model that is only based on
the population loadings of the major factors contains necessarily

a substantial amount of model error. In the population with

moderate model error, the relative contribution of minor factors

was successively reduced by the factor 0.85, and the amount of
variance explained by the minor factors was set to 20% of the

observed total variance.
Orthogonal Procrustes-rotation (Schönemann, 1966) of

MFA-, SPFA-, and PCA loadings toward the initial loadings of
the major factors was performed in the following in order to
assure that different similarities of the loadings of MFA, SPFA,
and PCA to the initial loadings of the major factors are not
due to different rotational positions of the factors/components.
However, even when the loadings of the three major MFA and
SPFA factors were rotated by means of orthogonal Procrustes-
rotation toward the initial loading matrix containing only
non-zero loadings of 0.50, the resulting MFA and SPFA loadings
are quite different from the initial loadings of the major factors.
As an example, Table 1 contains the loadings for the population
with large model error. It is remarkable that the maximal
loadings of the MFA factors are considerably smaller than the
initial maximal loading of 0.95, even when the MFA loadings are
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FIGURE 3 | Mean SRMRND based on samples drawn from population factor models without model error for q = 3 with p = 15 and q = 6 with p = 30 for the

MFA-model, MFA-scores, PCA-scores, and SPFA-scores; λi = initial population loadings; λm = maximal population loadings; the error bars represent standard

deviations.

rotated toward the initial loading matrix by means of orthogonal
Procrustes-rotation. In contrast, the maximal loadings of the
Procrustes-rotated major SPFA factors are close to 0.95.

The SRMRND of MFA, SPFA, and PCA that were based on
threemajor factors with initial maximal non-zero loadings of 0.50
to 0.95 is given in Figures 2A,C. Even in data that were based on
the model error of the factor model, the fit of the MFA loadings
was the best. However, the SRMRND of the models implied by the
scores was smaller for SPFA than for MFA and PCA.

The correlation ρ of the regression (best linear) factor score
predictor based on MFA and on SPFA and of the PCA scores

with the major factors for the corresponding models based on
large model error are given in Figure 2B. For largest initial
major factor loadings below 0.75, the PCA scores have larger
correlations with the factors than the MFA and SPFA factor score
predictors. For largest initial factor loadings greater 0.75 the SPFA
factor score predictor has larger correlations with the factor than
the MFA factor score predictor and the PCA scores. Thus, in
presence of large model error of the factor model, the SPFA
factor score predictor can be a more valid measure of the original
major factor than the corresponding MFA factor score predictor.
This occurs probably in presence of a model error leading to
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FIGURE 4 | Mean SRMRND based on samples drawn from population factor models with model error for q = 3 with p = 15 and q = 6 with p = 30 for the MFA-model,

MFA-scores, PCA-scores, and SPFA-scores; λi = initial population loadings; λm = maximal population loadings; the error bars represent standard deviations.

underestimation of the initial maximal loadings on the major
factors by means of MFA (Table 1). Under such conditions, SPFA
may result in a more accurate estimation of the initial maximal
loadings and thereby in a more valid factor score predictor.
It should also be noted that the mean determinacy coefficient
was slightly larger for PCA scores than for MFA factor score
predictor when the size and variability of the main loadings were
small (see Figure 2B). Thus, for the respective population data,
the maximum determinacy coefficient was obtained for PCA
for small variability of main loadings and for SPFA for a larger
variability of main loadings. When model error was moderate,
the determinacy coefficient of theMFA factor score predictor was
mostly larger than the determinacy coefficient of the SPFA factor
score predictor (Figure 2D).

Sample-Based Simulation for MFA, SPFA,
and PCA
A sample-based simulation was performed in order to investigate
the size of the SRMRND and the determinacy coefficient (ρ)
for MFA, SPFA, and PCA when sampling error occurs across

a number of different conditions. Again, the Mersenne Twister
random number generator was used for the generation of
random numbers. The simulation was performed for q = 3
factors with p = 15 variables and for q = 6 with p = 30,
for n = 150 and 600 cases, for p/q = 5 variables with non-
zero population loadings per factor, and for non-zero initial
population loadings λi = 0.35, 0.40, 0.45, and 0.50. At each λi-
level, one of the non-zero population loadings per factor was
increased to a maximum loading of the model λm by 0.00,
0.15, 0.30, and 0.45. For example, for the λi = 0.40 solutions,
there was one simulation where all non-zero loadings were
λi = 0.40, one simulation with one loading λm = 0.55 per
factor, one simulation with λm = 0.70 per factor, and one
simulation with λm = 0.95 per factor. The simulations were
performed with model error and without model error. Model
error was based on 50 minor factors, which were generated
from z-standardized normally distributed random numbers. A
moderate amount of model error was introduced, where the
relative contribution of minor factors was successively reduced
by the factor 0.85, and the amount of variance explained by the
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FIGURE 5 | Mean determinacy coefficient (ρ) based on samples drawn from population factor models without model error for q = 3 with p = 15 and q = 6 with p = 30

for the MFA-scores, PCA-scores, and SPFA-scores; λi = initial population loadings; λm = maximal population loadings; the error bars represent standard deviations.

minor factors was set to 20% of the observed total variance.
For each level of λi and λm the same set of minor factors
was used in order to introduce the same population model
error across conditions. With a constant set of minor factors,
changes in the SRMRND and ρ can clearly be attributed to λi

and λm and not to a changing set of minor factors. Overall,
there were 128 conditions, i.e., 16 (= 4 λi-levels × 4 λm-
levels) loading patterns × 2 numbers of factors × 2 sample
sizes × 2 levels of model error. For each of the 128 population
conditions 1,000 samples were drawn and analyzed by means
of MFA, SPFA, and PCA. As for the population simulation,
orthogonal Procrustes-rotation (Schönemann, 1966) toward the
initial population loadings of the major factors was performed
in order to assure that different similarities of the MFA, SPFA,
and PCA loadings to the initial loadings of the major factors are
due to the method of variance extraction and not to different
rotational positions of the factors/components. For a subset
of the sample-based simulation conditions (q = 6, λi = 0.35
and 0.50, all λm-levels, n = 150 and 600, without and with

model error), Varimax-rotation was performed by means of the
gradient-projection algorithm provided by Jennrich (2001) and
Bernaards and Jennrich (2005) in order to compare effects of
factor rotation on ρ for MFA, SPFA, and PCA.

The results of the sample-based simulation study are as
follows: For the simulation without model error, the mean
SRMRND was smallest when based on the loadings of MFA
model, was larger when based on the SPFA scores, again larger
when based on the MFA scores, and largest when based on
PCA scores (see Figure 3). This result corresponds to Equation
(19). It was not necessary to show the SRMRND for the loadings
based on the SPFA and PCA because it is equal to the SRMRND

based on the respective scores (Theorem 1 and 2). The SRMRND

decreases with increasing λm so that the SRMRND become
more similar for the loadings of the MFA model, the SPFA
scores, and the MFA scores. The effect of sample size on mean
SRMRND is not very important, given that the larger sample
was four times larger than the smaller sample. However, the
standard deviation of the SRMRND decreased with increasing
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FIGURE 6 | Mean determinacy coefficient (ρ) based on samples drawn from population factor models with model error for q = 3 with p = 15 and q = 6 with p = 30

for the MFA-scores, PCA-scores, and SPFA-scores; λi = initial population loadings; λm = maximal population loadings; the error bars represent standard deviations.

sample size and with a larger number of factors. Moreover, a
larger number of factors resulted in smaller SRMRND differences
between MFA model, SPFA scores, MFA scores, and PCA scores
(see Figure 3). Results were rather similar for the condition
with model error (see Figure 4). The only substantial difference
of this condition is that the effect of λm on the SRMRND

was less pronounced. This implies that the differences between
the SRMRND of MFA and SPFA do not decrease substantially
when λm increases.

In the condition without model error, the mean determinacy
coefficient (ρ) was largest for PCA when λm was small, it was
largest for MFA when λm was large, and it was smallest for SPFA
when λm was small (see Figure 5). When λm > 0.75 mean ρ

was larger for SPFA than for PCA and comes close to MFA.
For increasing overall level of salient loadings (λi), the mean
ρ becomes more similar for MFA, SPFA, and PCA. Moreover,
the standard deviation of ρ was considerably smaller for the
larger sample size. In the condition with model error, the mean
ρ was smallest for SPFA only for models with the smaller number
of factors, small λi, and small λm. For the larger number of

factors, small λi, and large λm, the mean ρ was slightly larger
for SPFA than for MFA and PCA (see Figure 6). Again, for
larger λi the mean ρ becomes more similar for MFA, SPFA,
and PCA. The effect of sample size on the standard deviations
was less pronounced in the condition with model error than
in the condition without model error. For the conditions with
q = 6, for n = 150 and n = 600, with and without model
error, the mean ρ after Varimax-rotation was also computed for
MFA, SPFA, and PCA (Figure 7). Overall, the differences were
small and the mean ρ for SPFA reached the level of MFA. No
substantial advantages occurred for PCA when Varimax-rotation
was performed.

Empirical Example
In order to illustrate SPFA, we analyzed real data based on
a sample of 474 German participants (306 females, age/years:
M = 21.34, SD = 4.50), who answered 12 items from a
short knowledge test. Six items were from the knowledge
domain mathematics and six items were from the knowledge
domain of economics. Two PCA components, two MFA factors,
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FIGURE 7 | Mean determinacy coefficient (ρ) based on samples drawn from population factor models with model error for q = 6 with p = 30 for the MFA-scores,

PCA-scores, and SPFA-scores; λi = initial population loadings; λm = maximal population loadings; the error bars represent standard deviations.

and two SPFA factors were Varimax-rotated by means of the
gradient projection method provided by Bernaards and Jennrich
(2005) based on the R-script of Weide and Beauducel (2019).
The empirical correlations and the script of PCA, MFA, and
SPFA combined with GPR-Varimax rotation are available in
the Supplementary Material (section 2). The Varimax-loadings
of PCA, MFA, and SPFA clearly show the difference between
the two knowledge domains (see Table 2). Overall, the PCA
loadings are larger (see also Widaman, 2018) than the MFA
loadings. However, the largest SPFA loading is larger than
the largest PCA loading, but the size of the remaining SPFA
loadings is more similar to the MFA loadings. Thus, SPFA
gives more emphasis on the variables with the largest loadings.
Researchers expecting large differences in the quality of their
measured variables or with a few high-quality variables in
a set of moderate variables might therefore be interested
in SPFA. The SRMRND for the scores computed from the
solutions is 0.008 for PCA, 0.007 for MFA, and 0.004 for
SPFA. Thus, the model implied by the SPFA factor score
predictor has an optimal fit to the non-diagonal elements of the
covariance matrix.

DISCUSSION

The starting point of the present study was that the model
implied by the factor score predictors of the common factor
model does not reproduce the non-diagonal elements of the
observed covariance matrix as well as the common factors do
(Beauducel and Hilger, 2015). To address this discrepancy, it
was proposed to estimate factor loadings in a way that not
the loadings but the factor score predictors computed from the
loadings optimally reproduce the non-diagonal elements of the
observed covariance matrix. This estimation method is termed
“Score Predictor Factor Analysis” (SPFA) and based on a similar
estimation procedure as MFA, where the loadings are estimated
so that the reproduced matrix of the score predictors is as similar
as possible to the observed covariance matrix. It is shown that the
covariancematrix reproduced by the SPFA loadings is identical to
thematrix reproduced by the SPFA score predictors (Theorem 1).
It was also shown that the SPFA loadings will reproduce the non-
diagonal elements of the observed covariances less or equally
well than the MFA loadings and that the model implied by the
SPFA score predictor will reproduce the non-diagonal elements
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TABLE 2 | Varimax-rotated PCA-, MFA-, and SPFA- factor loadings of the 12 item

knowledge test.

PCA MFA SPFA

Item F1 F2 F1 F2 F1 F2

Math 1 0.49 0.28 0.39 0.26 0.43 0.28

Math 2 0.59 0.12 0.48 0.14 0.53 0.17

Math 3 0.63 0.05 0.50 0.09 0.55 0.13

Math 4 0.57 0.02 0.43 0.07 0.48 0.09

Math 5 0.55 0.19 0.43 0.20 0.46 0.24

Math 6 0.71 0.05 0.64 0.07 0.85 0.08

Econ 1 −0.07 0.72 −0.04 0.62 −0.17 0.97

Econ 2 0.21 0.35 0.18 0.26 0.20 0.25

Econ 3 0.12 0.58 0.15 0.42 0.22 0.36

Econ 4 0.14 0.37 0.14 0.24 0.18 0.23

Econ 5 0.22 0.56 0.22 0.43 0.29 0.37

Econ 6 −0.02 0.61 0.05 0.43 0.11 0.36

“Math”: mathematics; “Econ”: economics; loadings > 0.30 were given in bold face.

of the observed covariances equally or better than the model
implied by the MFA factor score predictor. Therefore, when
the focus is on the loadings, there are reasons for preferring
MFA and when the focus is on the factor score predictor, there
are reasons for preferring SPFA. Moreover, it is an empirical
question whether the error of MFA or the error of SPFA is
more substantial.

The evaluation of SPFA was based on a comparison with
MFA and PCA by means of a population-based simulation study
and a sample-based simulation study. One dependent variable of
the simulation studies was the standardized root mean square
residual based on the non-diagonal elements of the observed
covariance matrix (SRMRND). This fit index allows to investigate
how well the intended goal of SPFA to reproduce the non-
diagonal elements of the observed covariance matrix by means
of the model implied by the SPFA factor score predictors can be
achieved. Moreover, the mean coefficient of determinacy (ρ) was
computed in order to investigate the correlation of the MFA-,
SPFA-best linear factor score predictors, and PCA-components
with the population factors.

It was found in the simulations based on populations and
samples that the SRMRND based on the SPFA factor score
predictor was consistently smaller than the SRMRND based on
the MFA factor score predictor and PCA scores. The SRMRND

based on PCA scores was consistently larger than the SRMRND

based on theMFA- and SPFA-factor score predictor. These results
were also found when the simulations were based on population
data that do not fit perfectly to the factor model (i.e., when
model error occurs). Thus, the model implied by the SPFA-factor
score predictor allows for an optimal score-based reproduction
of the non-diagonal elements of the observed covariance matrix.
Therefore, SPFA estimation of factor loadings may be of interest
when factor score predictors are to be computed.

Finally, when there was some population error of the factor
model and when there were a few large main loadings, the SPFA

factor score predictor had a larger coefficient of determinacy
than the MFA factor score predictor. Thus, in case of bad model
fit and when a few large main loadings occur, the SPFA factor
predictor can be chosen to best represent the population factors
in terms of validity as well. Moreover, when there were rather
small and nearly equal main loadings, the PCA score had a larger
coefficient of determinacy than the MFA factor score predictor
and than the SPFA factor score predictor, so that the PCA score
may represent the original factors most appropriately under
these conditions. Although the differences between PCA and the
factor model have often been regarded as negligible (Velicer and
Jackson, 1990; Fava and Velicer, 1992), differences between these
models could occur from several perspectives (Widaman, 2018)
and also from the perspective of individual scores. However,
the differences between PCA and the factor model indicate a
low validity of a factor model when the component scores have
a larger correlation with a common factor than the respective
best linear factor score predictor. This may indicate problems
with the uncertainty of the factor that have been addressed in
Rigdon et al. (2019).

One strategy to decide whether the MFA factor score
predictor, the SPFA factor score predictor, or PCA scores should
be computed, could be to chose the score with the largest
coefficient of determinacy. The Equations (21) and (22) that were
given for the computation of determinacy coefficients for PCA
scores and SPFA factor score predictors can be used for this
purpose. If the SPFA factor score predictor or the PCA score
outperforms the MFA factor score predictor in terms of the
correlation with the MFA factor, this could be a good reason to
chose one of these scores.

However, whereas the results on the SRMRND are not
affected by factor rotation, the results for the determinacy
coefficient depend on factor rotation. The effects of factor
rotation on determinacy coefficients were therefore eliminated
in the first simulation study by means of orthogonal Procrustes
rotation in order to compare MFA, SPFA, and PCA as
methods for the extraction of variance. In a sample-based
simulation, determinacy coefficients for MFA, SPFA, and PCA
were compared for Varimax-rotated factors. It turns out that
the differences between the methods were less marked when
Varimax-rotation was performed. There was no substantial
decrease of the determinacy coefficients when SPFA was
combined with Varimax-rotation. Thus, SPFA-factor score
predictors optimally reproduce the non-diagonal elements of
the observed covariance matrix and provide similar determinacy
coefficients as MFA. Therefore, SPFA estimation of factor
loadings might be of interest when the factor score predictors
are important.

An empirical example based on a short knowledge test
demonstrates that SPFA gives more emphasis to the measured
variables with the largest absolute loadings than PCA and MFA.
Thus, when researchers expect that they have a few high-
quality variables in a set of variables with moderate quality, they
might be interested into SPFA. Moreover, the development and
investigation of methods of factor rotation that might further
enhance the focus on the variables with the largest loadings could
be of interest.
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Further research should be performed in order to investigate
SPFA estimation of loadings in different methods of factor
rotation, in the context of larger numbers of factors and variables.
The precision of methods that allow to determine the number
of factors to extract should also be investigated in the context
of SPFA.
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