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Abstract: The RAS–RAF–MEK–ERK pathway plays a key role in malevolent cell progression in
many tumors. The high structural complexity in the upstream kinases limits the treatment progress.
Thus, MEK inhibition is a promising strategy since it is easy to inhibit and is a gatekeeper for
the many malignant effects of its downstream effector. Even though MEK inhibitors are under
investigation in many cancers, drug resistance continues to be the principal limiting factor to achieving
cures in patients with cancer. Hence, we accomplished a high-throughput virtual screening to
overcome this bottleneck by the discovery of dual-targeting therapy in cancer treatment. Here,
a total of 11,808 DrugBank molecules were assessed through high-throughput virtual screening for
their activity against MEK. Further, the Glide docking, MLSF and prime-MM/GBSA methods were
implemented to extract the potential lead compounds from the database. Two compounds, DB012661
and DB07642, were outperformed in all the screening analyses. Further, the study results reveal that
the lead compounds also have a significant binding capability with the co-target PIM1. Finally, the
SIE-based free energy calculation reveals that the binding of compounds was majorly affected by the
van der Waals interactions with MEK receptor. Overall, the in silico binding efficacy of these lead
compounds against both MEK and PIM1 could be of significant therapeutic interest to overcome
drug resistance in the near future.

Keywords: drug-repositioning; MEK inhibitor; MM/GBSA; Glide docking; MD simulation; MM/PBSA

1. Introduction

Lung cancer accounts for about a quarter of all cancer deaths, among them 82%
of deaths were being caused by intentionally smoking cigarettes. The development of
advanced therapies for the management of the early and metastatic stages of lung cancer
were not yet discovered over the past 40 years. Although some treatment measures are
available to control the earlier stages of lung cancer, poor outcomes reduce the overall
patient survival rates. One of the common clinical symptoms of lung cancer is frequently
coughing for a particular period. For example, patients in the United States who had
been coughing for three weeks were finally identified with lung cancer [1]. In the United
Kingdom, smoking is responsible for 71% of lung cancer deaths, whereas 1% of the deaths
of passive smokers were reported. The Canadian researchers reports that the lung cancer
deaths in smokers were 15% higher than in non-smokers. In India, 9.3% of the cancer deaths
were associated with lung cancer, containing both male and female patients [2]. The low
lung cancer survival rates reflect the high number of patients diagnosed with metastatic
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disease (57%). Currently, surgery, radiation therapy, chemotherapy and targeted therapies
were used to treat the lung cancer patients. Among these methods, targeted therapies
demonstrated better outcome during the cancer treatment [3,4]. Genetic expression and
mutational studies were certainly used to identify the definitive target for lung cancer.
The incidence of particular mutations varies depending on ethnicity and location. The
EGFR mutations that were reported in Caucasians were found to be 10%, whereas 60%
of the mutational rates were reported in Asian people [5]. Ultimately, the tyrosine kinase
pathway plays a major role in the tremendous increase in lung cancer deaths. Mitogen-
activated protein kinase (MAPK) is one of the promising growth signaling pathways.
The aberrant activation of this pathway’s intermediates leads to uncontrolled cell growth
and differentiation. In many cancer types, concomitant mutations occurred in RAS and
BRAF, which is the reason for the consecutive activation of ERK, which is responsible for
the activation of many transcription factors [6]. Hence, targeting the pathway receptors
using checkpoint inhibitors leads to effective therapy in most cancers. However, a strong
association between RAS and GTP impedes the direct inhibition of RAS. The lack of
understanding regarding the allosteric sites is also a hindrance to the development of
RAS targeting inhibitors [7]. The next intermediate RAF is another important target when
there is an existence of BRAFV600 mutations. Nevertheless, the acquired resistance in
RAF selective inhibitors is the reason for the constant activation of the MAPK pathway
in many cancers [8]. Therefore, it is possible to affirm a downstream cut-off of the MAPK
pathway at a protein kinase called MEK. The MEK receptor is a key node in the MAPK
pathway, which is the only known substrate of its downstream effector, ERK. In the recent
decade, hundreds of MEK inhibitors were discovered to target the allosteric binding site
of MEK [9]. Although these selective inhibitors were effective at the allosteric site, a poor
cytotoxicity profile limits their treatment progress. For instance, the most potent kinase
inhibitors, such as binimetinib, selumetinib, cobimetinib and rafametinib, caused diarrhea,
elevated lipase levels and rashes as adverse effects [10,11]. It is important to note that
a recently approved MEK selective inhibitor trametinib showed the most efficacy in the
BRAF mutant tumors in combination with dabrafenib [12,13]. However, trametinib alone
showed additional side effects during the treatment period in non-small cell lung cancer
patients. For instance, trametinib specifically affects the ocular region of the patients.
Moreover, a severe complication in the ocular region may lead to permanent vision loss in
the patients [14]. In addition to their toxic effects, several MEK inhibitors were resistant to
the BRAF mutations through the activation of adjutant signaling pathway receptors. The
initial solution to the problem of resistance to therapy is the dual inhibition of crucial targets
with the administration of a single therapy. It is also interesting to note that the inhibition
of multiple kinases will produce better outcomes during clinical trials. For instance, the
combination of MEK and JAK2/STAT3 pathway inhibition reduces the potential impact on
drug resistance in colon cancer [15]. Similarly, a combination of MEK and PI3K inhibitors
is a powerful treatment option for NSCLC patients who have developed resistance to
EGFR–TKIs [16]. Note that dual inhibitors will produce more beneficial effects than the
combined inhibitors in terms of cost and time taken for the approval. Note also that PIM1
is a critical effector facilitating cross-talk across several neighboring pathways, in particular
to the MAPK pathway. Recent studies highlight that MEK inhibitors lead to the increased
expression of PIM1, thereby increasing cancer cell growth [17,18]. Keeping this in mind,
we framed an in silico-based drug repurposing workflow to screen the potential inhibitors
that act against both MEK and PIM1.

Drug repurposing has become one of the most popular ways for increasing the ef-
ficiency and cost-effectiveness of drug development. Importantly, the discoveries of the
novel indications of existing drugs were the major applications in drug repurposing strate-
gies. In recent years, almost 30% of the FDA-approved drugs and vaccines were discovered
by in silico approaches. For instance, the discovery of zanamivir was made possible using
a computer-aided drug design technique based on the crystal structure of influenza virus
neuraminidase [19]. Adding together the implementation of machine learning principles
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and virtual screening would certainly enhance the accuracy of screening results. Machine-
learning-based approaches produce more reliable results and provide faster outcomes by
learning existing experimental data [20]. Hence, we incorporated machine-learning-based
scoring functions (MLSF) to screen the potential compounds against the MEK receptor since
they have attained a plateau in their performance during the binding affinity prediction [21].
We are certain that the outcome of this study is of immense importance for the experimental
biologist involved in the screening of MEK inhibitors.

2. Methodology
2.1. Dataset

Structural information of proteins and ligand molecules were retrieved from the pro-
tein data bank (PDB) and DrugBank database, respectively. The 3D structure of two protein
molecules, such as MEK1 (PDB ID:3W8Q) and PIM1 (PDB ID: 5KZI), were downloaded in
the PDB format [22,23]. Eventually, the DrugBank molecules were downloaded as three
subsets containing FDA (Food and Drug Administration)-approved drugs (n = 3085), ex-
perimental drugs (n = 5689) and investigational drugs (n = 3034) for screening application.

2.2. Protein and Ligand Preparation

Preparation of the receptor molecules was carried out using protein preparation wizard
present in the maestro workspace. The four major pre-processing steps that were carried out
include: (i) bond order assignment, (ii) addition of missing hydrogen atoms, (iii) creation
of zero-order bond for the metal atoms and (iv) di-disulfide bond creation. The pre-
processed proteins were then subjected to a hydrogen bond optimization process. During
the optimization, the protonation state of each amino acid residue was calculated, and the
pH was adjusted to 7 ± 0.5 using the predicted pKa values. The predicted and adjusted pKa
values of amino acid residues of the proteins were presented in Supplementary Materials
Table S1. If the predicted pKa was less than pH value, the amino acid functional groups
were protonated during the optimization process. On the other hand, if the pKa was greater
than pH value, the deprotonation process took place in those amino acid functional groups.
Note that, if the pKa and pH values were equal, 50% protonation and 50% deprotonation
took place. Subsequently, the excess water molecules were removed because of the higher
occupancy at the receptor binding pocket. Finally, the heavy atoms were converged at
the RMSD (root-mean-square deviation) value of 0.30 Å using restrained minimization
process [24].

The ligand molecules were processed using LigPrep module in the maestro workspace.
Initially, all the ligand molecules were subjected to energy minimization using OPLS_2005
(optimized potentials for liquid simulations) force field at pH 7.0 ± 2. To avoid stereoiso-
mer formation, the chiral centers of all the ligand molecules were chosen to preserve
their original state. Notably, all the ligand molecules were allowed to generate only one
structural conformation.

2.3. Binding Site Analysis and Grid Generation

Binding site prediction and pocket druggability analysis are the few important perquisites
in drug repurposing strategy [25,26]. Here, we used the sitemap algorithm to predict the
binding as well as druggable pockets present is the target receptor. Sitemap predicts the
hot spots based on the number of hydrogen bond donors and acceptors, hydrophobic
atoms and the concave sites present in the receptor [27]. Later, the grid generation was
executed by using receptor grid generation wizard. The grid box was generated around the
predicted hot spot residues with the partial charge cut-off of 0.25 and a scaling factor of 1.

2.4. Glide Docking and MM/GBSA Analysis

All prepared ligand molecules were screened through the high-throughput virtual
screening (HTVS) method followed by being docked into the predicted binding sites using
Glide XP (Extra-precision) protocols. We have utilized a flexible docking method with the
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van der Waals radii scaling factor of 1 Å to soften the receptor binding site. The atoms
of the protein with partial charges less than or equal to 0.25 were scaled with a van der
Waals scale factor of 0.8 [28]. Later, the ligand interaction diagram was visualized for the
in-depth understanding of ligand contacts with the target receptor. Further, the docking
score was revalidated by the binding free energy calculations using Prime-MM/GBSA
(molecular mechanics with generalized born surface area) analysis. XP docked complexes
were further subjected to minimization at the local optimization feature with the force field
of OPLS_2005. Prime estimates the binding free energy by comparing the energy of the
complex state to the energy of the individual protein and ligand molecules [29].

2.5. Scoring Functions
2.5.1. RF-Score Analysis

The MLSF analyzes the molecular docking outputs of the existing protein–ligand
complex to predict the binding affinity of unknown compounds [30]. Here, we used
RF-Score-VS, which uses a random forest algorithm to predict the binding affinity of the
molecules. It is a standalone program (https://github.com/oddt/rfscorevs, accessed on
3 June 2021) that was implemented using the ubuntu terminal. In this tool, a random forest
model was robustly set to generate a maximum number of 500 trees. It is worth noting that
random forest model used in this study implicitly captures binding effects that are hard
to model explicitly. Protein and ligand molecules were supplied in sdf and pdb format,
respectively, for the RF score calculation.

2.5.2. Tanimoto Coefficient Calculation

Tanimoto coefficient is one of the most important similarity measures during the
virtual screening process [31]. BulkTanimotoSimilarity() function in the RDKit package
gets a fingerprint query and a collection of fingerprints to display the list of similarity
results for each fingerprint target. This metric estimates the proportion of the common
bits in the range of 0 to 1 between the chemical fingerprints. In this section, the Tanimoto
resemblances of all DrugBank compounds were tested against the fingerprints generated
by the trametinib.

2.6. Molecular Dynamics (MD) Simulations

The complex structures of two focused compounds and the known drug from molecu-
lar docking were dynamically simulated by the near-physiological-motion MD simulations.
The AMBER ff14SB force field and generalized AMBER force field version 2 (GAFF2)
were employed to treat bonded and non-bonded interaction parameters of all simulated
complexes [32]. The TIP3P water model [33] was used to solvate the system with mini-
mum padding of 10.0 Å between the protein surface and the solvation box edge. Then,
either sodium or chloride ions were randomly added to neutralize the overall charge of
the molecular system. Minimization of the hydrogen atoms and water molecules was
performed by using 500 steps of steepest descent (SD) followed by 1500 steps of conjugated
gradient (CG) methods. All studied systems were proceeded to run under the periodic
boundary condition with the isothermal–isobaric (NPT) scheme according to the previous
studies [34–38]. The electrostatic interactions were treated by the particle mesh Ewald
summation method [39], whereas The SHAKE algorithm [40] was used to constrain all
covalently connected hydrogen atoms. The temperature was controlled by the Langevin
thermostat [41] with a collision frequency of 2 ps−1 and gradually increased from 10
to 310 K. In addition, Berendsen barostat [42] was employed to control pressure with
a relaxation time of 1 ps. Each simulated system was subsequently simulated under the
NPT ensemble (310 K, 1 atm) until reaching 100 ns. The MD production for all systems
was set to 100 ns by the 2-fs increment of a time step. The root-mean-square displace-
ment (RMSD) and hydrogen bond (H-bond) occupations were calculated through the
cpptraj module, while per-residue decomposition energy (∆Gresidue

binding) was estimated by
MM/PBSA.py implemented in AMBER16.

https://github.com/oddt/rfscorevs


Pharmaceutics 2022, 14, 59 5 of 17

2.7. End-Point Binding Free Energy Calculations

To evaluate the ligand-binding capability, the total binding free energy (∆Gbinding) of
each complex was estimated based upon the solvated interaction energy (SIE) approach [43].
In theory, ∆Gbind can be estimated as the summation of the van der Waals (EvdW), electro-
static (Eele(Din)), reaction field (∆GRF(ρ,Din)), cavity (γ∆SA(ρ)), and a constant (C) value,
which was expressed as the following equation

∆Gbind (ρ,Din, α, γ, C) = α[EvdW + Eele(Din) + ∆GRF(ρ,Din) + γ∆SA(ρ)] + constant

where Din is the solute interior dielectric constant. EvdW and Eele are denoted as intermolec-
ular van der Waals and Coulombic interaction energies in the bound state, respectively.
∆GRF is the electrostatic polarization component of the solvation free energy to binding,
and ∆Gcavity (γ∆SA) represents the nonpolar contribution of the solvation free energy to
the binding. The coefficients set to every calculation are α = 0.105, γ = 0.013 and C = −2.89.

3. Result and Discussion
3.1. Binding Site Prediction

The identification and characterization of the druggable binding pocket of the MEK1
receptor were identified by employing the sitemap module. The best five binding sites of
MEK1 and their physiological characteristics predicted by the sitemap were tabulated in
Table 1. The larger quantity of hydrophobic residues at the top three sites shows improved
pocket adaptation for the ligand binding. Notably, the druggability score of each pocket
was in the range of 0.6 to 1. Sites 4 and 5 have a Dscore less than 0.7, which implies the poor
druggability of those pockets. Whereas, sites 1, 2 and 3 have resulted in a Dscore of ~1,
which indicates that these sites highly encourage the binding of drug-like molecules on their
pocket residues [44]. Although the enclosure of site 3 (0.673) is lower, the higher Dscore
(1.005) and sitescore (0.974) make the pocket suitable for molecule binding. The top three
sites that displayed significant physiological characteristics for the binding of drug-like
molecules are shown in Figure 1. Among these three binding sites, site 1 encompasses the
end of the activation loop region where the substrate ERK binds to MEK. In addition, site 1
comprises the important amino acid residues for the activation of the MEK receptor and
DGF motif, which is an important motif involved in the MEK phosphorylation process. In
addition, site 1 comprises amino acid residues, such as VAL 127, SER212, LYS97, VAL211
and ATP binding site [45]. Since site 1 comprises the crucial pockets, we have utilized the
results obtained from site 1 during the validation step and other analyses.

Table 1. The top five binding sites of MEK1 receptor predicted by sitemap.

Sites Site Score Dscore Binding Pocket Region

1 1.067 0.995
LEU74, GLY75, ALA76, GLY77, ASN78, GLY79, GLY80, VAL82, ALA95, LYS97, ILE99, VAL127,
MET143, GLU144, HIS145, MET146, GLY149, SER150, ASP152, GLN153, LYS192, SER194,
ASN195, LEU197, CYS207, ASP208, PHE209, GLY210, VAL211, SER212

2 1.028 1.05

GLU39, GLN45, GLN46, ARG49, LEU50, ALA52, PHE53, LEU54, GLN56, LYS57, LEU92,
VAL93, HIS119, GLU120, CYS121, ASN122, SER123, PRO124, TYR125, ILE126, VAL127,
GLY128, PHE129, TYR130, GLU144, HIS145, MET146, ASP147, LYS168, ILE171, ALA172,
LYS175, ASN199, ARG201, GLY202, GLU203, ILE204, LYS205, ASP365, VAL369, ASP370,
PHE371, ALA372

3 0.974 1.005 GLU39, LEU40, GLU41, LEU42, GLN46, ASN122, SER123, PRO124, TYR125, ILE174, LYS175,
THR178, TYR179, ARG181, GLU182, LYS183, VAL242, LEU352, LYS353, MET356

4 0.819 0.782 LEU118, HIS119, ILE126, LEU180, HIS184, LYS185, ILE186, MET187, HIS188, ARG189, ASP208,
PHE209, GLY210, GLY213, GLN214, ASP217

5 0.702 0.673 VAL254, VAL258, PRO262, PRO265, PRO266, LEU271, PRO321, PRO322, PRO323, LYS324,
LEU325, PRO326, SER327, GLN335, ASN339
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Figure 1. (a) Schematic representation of top three predicted binding sites. (b) Functionally important
residues in site 1.

3.2. Validation of Molecular Docking

The validation of Glide XP docking and RF-Score-VS were accomplished by using
external datasets (Table S2). The dataset consists of 25 active compounds and 75 decoy
compounds against mitogen-activated protein kinase, which were randomly sampled
from the Database of Useful Decoys-Enhanced (DUD-E) using the ‘sample()’ function in
pandas to validate the docking and RF-Score-VS analysis. The results were incorporated
into the maestro workspace for enrichment analysis [46]. The ‘enrichment calculator’ tool
was used here to evaluate the screening process. On both of the screening analyses, the
compounds were sorted by the respective scoring functions, for instance, the Glide XP
score and RF-Score-VS_v2 for molecular docking and RF-Score-VS analysis, respectively.
Later, the effectiveness of the screening methodologies to differentiate between the actives
in the decoy set of compounds was tested by producing a receiver operating curve (ROC)
(Figure S1). A total of 11 decoys were outranked during the screening process using RF-
Score-VS. On the other hand, seven decoys were outranked during the molecular docking
analysis. The smaller number of outranked compounds indicates the effectiveness of these
screening algorithms. Further, these measures were evaluated using receiver operating
characteristic curve (ROC) analysis. Importantly, the ROC value of docking and RF-Score-
VS were 0.902 and 0.850, respectively. Moreover, the area under the curve (AUC) was
calculated as 0.801 and 0.762 for molecular docking and RF-Score-VS, respectively. Since
the AUC value of docking and RF-Score-VS are above 0.7, we believe that both algorithms
have the potential to discriminate the active compounds from the target database. Further,
we have accessed Pearson’s and Spearman’s correlations between the docking score and
experimentally determined binding affinity of the 25 active compounds. It is worth noting
that Pearson’s and Spearman’s correlation values of 0.758 and 0.818, respectively, were
observed. All of these findings indicate that the lead compounds produced through these
screening approaches may potentially be effective towards further experimental works.
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3.3. Virtual Screening

A total of 11,808 molecules from the three subsets of Drugbank were screened through
the HTVS docking method. Later, the screened hit molecules (n = 7075) were docked
into the best predicted binding site, such as site 1, using the Glide XP method. Note that
trametinib was used as a reference compound in all the analyses. The XP docking score
of reference compound −3.423 kcal/mol in site 1 was then used as a threshold for further
screening of hit molecules. Subsequently, the top 50% of the molecules resulting from the
XP docking on site 1 were redocked to site 2 and site 3. A total of 3125 and 2813 compounds
were predicted to bind better than the reference compound on site 2 and site 3, respectively.
The results from the docking study were then integrated to eliminate the false positive
compounds. The results indicate that 2468 compounds were able to bind tightly with all
three binding sites predicted by the algorithm.

Recently, machine-learning-based scoring functions evolved to measure the binding
affinity of the compounds with their multiple characteristic features. In particular, RF-Score-
VS obtains a remarkable hit rate up to 88.6% throughout the DUD-E targets [21]. Hence,
we analyzed the binding ability of all the screened hit compounds using RF-Score-VS. It is
notable that the reference compound trametinib showed an RF-score of 6.565. Fortunately,
a total of 5152 compounds were ranked better than the reference compound in RF-Score-VS
analysis. The comparison of the docking study and RF-Score calculation yielded a total
of 1654 compounds. These compounds were screened through the Tanimoto coefficient
calculation using the rdkit package. All the compounds’ fingerprints were generated and
tested for structural similarity against the reference compound. The calculations of the
Tanimoto coefficients of the screened hit compounds were tabulated in Table S3. Here, we
chose a Tanimoto coefficient of 0.6 as a threshold value for screening the compounds [47].
Overall, 368 compounds gained a Tanimoto coefficient value above 0.6, which will be taken
for further screening studies.

3.4. MM/GBSA Analysis

Recent literature studies highlight that the total binding free energy values predicted
during the MM/GBSA calculation correlate well with the experimentally measured bio-
logical activity [48]. Thus, Prime-MM/GBSA was implemented as a post-scoring process
for the validation of the screened hit molecules. The pose viewer file generated during the
Glide XP docking on site 1 was considered as an input file for this analysis. The results of
the MM/PBSA studies on the top 15 hit compounds and their associated energy values
were represented in Table 2. Moreover, the replicability of the binding affinity by Glide
docking was evaluated through three-fold validation of XP docking on 15 hit compounds.
The binding free energy values obtained during the three iterations were represented in
Table S4. It is evident from the table that the 14 hit compounds were able to display a better
docking score than the reference compound in all three docking processes. Although the
docking score slightly differs during each docking simulation, the compounds ranking
was most likely the same as the initial docking simulation. These results demonstrate
the excellent consistency of the compounds ranking during the docking simulation. It is
evident from Table 2 that the binding free energy values of the compounds varied from −46
to −87 kcal/mol. The available literature information depicts that lipophilicity and van
der Waals energy were key factors for the proper binding of the ligand molecules with the
target receptor [49,50]. It is evident from the table that the lipophilicity of the compounds
DB12661, DB07642, DB01771 and DB07177 were highly favorable for the ligand binding.
Although two compounds, DB01711 and DB07177, showed better lipophilicity, the minimal
van der Waals interaction limits the total binding free energy of these compounds.

It should be noted that, except DB02849 and DB04841, most compounds in terms of
binding have been highly favored by van der Waals interaction energy. In particular, the
compounds DB12661 and DB07642 displayed a massive van der Waals interaction energy
value of −57.476 and −55.062 kcal/mol, respectively. Although these compounds show
limited coulombic potential, the maximum contribution of van der Waals interaction energy
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is responsible for the tight binding of these compounds with the MEK1 receptor. Moreover,
the total binding free energy values of these compounds, DB012661 and DB07642, were
much higher (>−80 kcal/mol), which is also higher than the other compounds investigated
in this analysis. Hence, we believe that the compounds DB012661 and DB07642 may more
tightly bind with the MEK1 receptor than the other compounds screened in our analysis.

Table 2. Molecular docking and binding free energy calculations of hit compounds against
MEK1 receptor.

Compound ID Docking Score
(kcal/mol)

∆Gbind
(kcal/mol)

∆Gbind
Coulomb

∆Gbind
Lipophilic

∆Gbind Solv
GB ∆Gbind vdW Ligand Strain

Energy

Reference −3.423 −46.137 −13.639 −32.888 32.888 −43.528 24.43
DB12661 −7.051 −87.013 −16.84 −46.647 31.692 −57.476 5.29
DB07642 −6.174 −83.845 −20.352 −42.431 28.151 −55.062 8.453
DB02366 −7.427 −76.925 −34.282 −36.488 39.865 −47.657 7.09
DB08251 −11.98 −75.956 −34.186 −24.74 27.909 −44.926 3.995
DB01771 −7.775 −75.093 −28.532 −45.543 38.739 −46.271 10.615
DB12847 −6.716 −66.948 −29.293 −28.799 31.254 −41.632 4.669
DB07177 −6.989 −65.876 −14.264 −51.153 31.763 −39.082 18.693
DB13174 −9.287 −64.939 −22.947 −21.409 20.618 −42.359 2.315
DB07125 −8.416 −63.963 −20.194 −26.628 25.206 −42.305 8.554
DB07773 −9.256 −61.255 −31.925 −29.541 32.325 −36.44 7.628
DB07546 −6.456 −61.064 −24.4 −37.67 35.031 −36.04 9.162
DB02849 −8.72 −59.793 −49.808 −16.914 42.084 −35.493 5.028
DB02709 −7.091 −59.576 −21.878 −29.309 21.114 −32.041 3.817
DB04241 −8.469 −57.965 −46.177 −23.207 30.706 −27.2 10.366

3.5. Structural Properties of Hit Compounds

The similarity between the ligand molecules was evaluated by mapping the pharma-
cophoric structure of the hit compounds. Here, we have used “2D structure alignment”
utility present in the maestro workspace to align the structure of the compound. Moreover,
we have predicted the ADME/T properties of the hit compounds using the QikProp mod-
ule available in the Schrödinger package. These results were incorporated in Table 3. Note
that these structures were aligned against the reference compound trametinib. Interestingly,
four hit compounds, such as trametinib, DB08251, DB02849, DB04241 and DB12847, had
pyridine as a common scaffold in their structures. Pyridine is an essential pharmacophore
and an extraordinary heterocyclic system in the realm of anti-cancer drug development [51].
It is also noted that the hit compounds displayed acceptable ADME/T values during
the QikProp analysis. The central nervous system activity prediction is one of the main
properties during the ADME/T prediction [52]. All the compounds except DB12661 and
DB07642 were exhibited at the in-active state, which is indicated by a CNS value of −2.
Moreover, the other properties, such as stars (acceptable range: 0–5) and HOA (acceptable
range: 1–3), were in the acceptable range in all the hit compounds.

Table 3. 2D structure of hit compounds with their predicted ADME properties.
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Reference
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DB12847 and DB08251, were positioned differently from the other compounds. Most of 
the ligand molecules were bound tightly in site 1, as indicated by the better docking score 
in Table S3. Hence, the ligand binding conformations of the top hit compounds in site 1 
were analyzed (Figure 2). It is evident from the figure that all the hit compounds exhibited 
two hydrogen bond interactions with the MEK1 receptor, while the reference compound 
displayed three hydrogen bond interactions with the binding site of MEK1. The iodoali-
nine moiety of trametinib produces a hydrogen bond interaction with SER 194 of the 
MEK1 receptor. On the other hand, the cyclopropyl moiety of trametinib makes two hy-
drogen bond interactions with SER 194 and ASN 195 of the MEK1 receptor. Surprisingly, 
the quinazoline moiety of the compound DB07642 and methoxy phenyl group DB012661 
were producing interactions with LYS 97, which is also an important catalytic residue 
present in the rooftop of the MEK1 binding pocket. It is also noted that LYS 97 located in 
the β strand is responsible for the pairing of ATP phosphate to GLU 114 on an adjacent 
alpha helix [45]. Moreover, the oxygen atom linked with the pyrimidine group of DB12661 
makes a hydrogen bond interaction with MET 146, a hinge residue that connects the N 
and C lobes in the MEK1 receptor [53]. Most importantly, the quinazoline moiety of 
DB07642 forms an additional hydrogen bond interaction with activation loop residue, 
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3.6. Binding Mode Analysis

The binding frequencies of the top 14 compounds on the three different binding sites
were represented in Figure S2. It is notable that the binding positions of the compounds
at each binding site were more or less the same in site 1 and site 3. Since the binding site
residues were dispersed larger in site 2, a few compounds, such as DB12661, DB02709,
DB12847 and DB08251, were positioned differently from the other compounds. Most of
the ligand molecules were bound tightly in site 1, as indicated by the better docking score
in Table S3. Hence, the ligand binding conformations of the top hit compounds in site 1
were analyzed (Figure 2). It is evident from the figure that all the hit compounds exhibited
two hydrogen bond interactions with the MEK1 receptor, while the reference compound
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displayed three hydrogen bond interactions with the binding site of MEK1. The iodoalinine
moiety of trametinib produces a hydrogen bond interaction with SER 194 of the MEK1
receptor. On the other hand, the cyclopropyl moiety of trametinib makes two hydrogen
bond interactions with SER 194 and ASN 195 of the MEK1 receptor. Surprisingly, the
quinazoline moiety of the compound DB07642 and methoxy phenyl group DB012661 were
producing interactions with LYS 97, which is also an important catalytic residue present
in the rooftop of the MEK1 binding pocket. It is also noted that LYS 97 located in the β

strand is responsible for the pairing of ATP phosphate to GLU 114 on an adjacent alpha
helix [45]. Moreover, the oxygen atom linked with the pyrimidine group of DB12661 makes
a hydrogen bond interaction with MET 146, a hinge residue that connects the N and C lobes
in the MEK1 receptor [53]. Most importantly, the quinazoline moiety of DB07642 forms
an additional hydrogen bond interaction with activation loop residue, such as SER 212,
which plays a major role in the phosphorylation of MEK1. It is evident from the literature
that most of the MEK 1/2 ligands generate strong interactions with SER 212 [54]. It is
important to note that both the lead compounds are bound on the same pattern where the
known MEK inhibitors bind. For instance, rafemetinib and RO4987655 interacted with the
amino acid residues LYS97 and SER212 of the MEK receptor. On the other hand, CI-1040,
PD-0325901, cobimetinib, TAK-733 and GDC-0623 were successfully involved in contact
with SER212 of the MEK receptor [6,45]. Based on these pieces of evidence, we are certain
that compounds such as DB07642 and DB12661 make strong contact with the functionally
important amino acid residues of MEK.

In general, the compound DB012661, also known as urapidil, acts as an antihyper-
tensive drug that inhibits the activity of α-adrenoceptor. It is worth noting that the
compound urapidil also resulted in substantial inhibitory activity in several cancer cell
lines [55]. On the other hand, the compound DB07642 (5-[1-(2-Fluorobenzyl)piperidin-
4-yl]methoxyquinazoline-2,4-diamine) contains crucial pharmacophores. For instance,
piperidine, a heterocyclic pharmacophore, has immense importance in the field of drug
development. The piperidine derivatives effectively block the several kinase targets (ERK 2,
VEGFR 2 and Alb 1) during the in vitro assessment in the liver cancer cell line (HepG2) [56].
Quinazoline is another important pharmacophore that is present in the many approved
anticancer drugs, such as erlotinib and vandetanib [57]. Overall, we believe that these
compounds may potentially block the activation of MEK, thereby reducing the risk of many
malignant effects.

3.7. Binding Analysis of Lead Compounds with PIM1

The binding abilities of the lead compounds were also tested on the PIM1 receptor,
which is frequently cross-talked with the MAPK pathway. Molecular docking and prime-
MM/GBSA analysis of the lead compounds tested against PIM1 were tabulated in Table S5.
It is notable that the recently identified dual inhibitor (MEK1 and PIM1) KZ-02 was used as
the reference compound in this analysis. The compound KZ-02 obtained a docking score
of −4.892 kcal/mol and a binding free energy value of −50.61 kcal/mol. It is notable that
both lead compounds displayed better docking scores and binding free energy values than
the PIM1 reference compound. The interactions of the lead compounds with the PIM1
receptor were represented in Figure S3. Interestingly, the compound DB07642 displayed
three hydrogen bond interactions and 2 pi-pi stacking with the PIM1 receptor. This implies
the greater binding potential of the compound DB07642 with the PIM1 receptor. Altogether,
we hypothesize that the lead compounds specified in this study may significantly inhibit
the activation of both MEK1 and PIM1.
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3.8. SIE-Based Free Energy of Binding

Since molecular recognition and drug binding have been recognized as dynamic
processes, it is thus particularly important to elaborate on the protein–ligand binding
capabilities in a presumed dynamic system. To this end, the free energy of binding (∆Gbind)
calculations based on the solvated interaction energy (SIE) were applied and theoretically
used to predict the inhibitory activity as it is directly proportional to an experimental
inhibitory parameter, Kd (∆Gbind = −RTln1/Kd) [58]. Here, the ∆Gbind values of two
focused compounds extracted from the last 10 ns (90–100 ns) snapshots, which were
considered to be reaching their equilibrated state (Figure S4), were listed in Table 4 in
comparison to the trametinib. The calculated molecular mechanics calculations showed that
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Van der Waal (vdW) is the main interactive force contributing to the process of molecular
complexation of all the focused compounds as well as trametinib (>five to six-fold than
electrostatic interaction energy), which corresponds to the molecular docking study by
Glide XP. Apart from that, the average ∆Gbind values of the focused compounds and
a reference drug were nearly the same, within the range of −8.4 to −7.5 kcal/mol. In
particular, DB12661 possessed a slightly lower ∆Gbind when compared to the trametinib
(∆Gbind of −8.41 and −8.17 kcal/mol, respectively), suggesting a minutely higher binding
strength than the known drug. On the contrary, compound DB07642 exhibited a slightly
higher ∆Gbind value (∆Gbind of −7.52 kcal/mol), which may imply a slight reduction in the
ligand binding capability. However, we believed that these two screened compounds could
be thermodynamically able to bind to the MEK1 at the ATP-binding site, and both are of
particular interest to be subjected to next-step experimental studies, for which DB12661
and DB07642 were rationally considered as a priority and a second top, accordingly.

Table 4. Average ∆Gbind values (kcal/mol) of focused compounds as well as trametinib in complex
with MEK1 calculated by the SIE method using α = 0.105, γ = 0.013 and C = −2.89, respectively.

Compounds
Energy Components

EvdW Eele Reaction Field Cavity ∆Gbind

Trametinib −51.05 ± 0.34 −9.58 ± 0.20 19.25 ± 0.26 −9.05 ± 0.07 −8.17 ± 0.04
DB12661 −52.08 ± 0.32 −4.29 ± 0.17 12.18 ± 0.24 −8.52 ± 0.05 −8.41 ± 0.04
DB07642 −43.91 ± 0.37 −6.90 ± 0.21 14.62 ± 0.36 −8.02 ± 0.06 −7.52 ± 0.04

3.9. Key Binding Residues

In order to elucidate the key binding amino acid residues within the ATP-binding
pocket located at the ATPase domain of MEK1, the decomposition free energy (∆Gbind

residue)
based upon the MM/GBSA method was computationally predicted, and the total con-
tribution of each amino acid of the known drug and focused complexes was plotted, in
which the negative and positive decomposition free energy values manifested the ligand
stabilization and destabilization, respectively, as illustrated in Figure 3. It was found that
the contributing amino acid residues observed in all the complexes were mainly stabilized
through van der Waals (vdW) interactions rather than electrostatic force. This indicates
that these two candidate compounds may rely on a mechanism of inhibitory action similar
to trametinib. In particular, the amino acids that largely contributed towards the tram-
etinib’s binding (∆G < −1.0 kcal/mol) include ASN78, VAL82, LYS97, SER150, SER194,
ASN195, LEU197 and ASP208, of which the SER194 and ASN195 were also found from
the docking pose. Among these, ASN78, LYS97 and ASN195 played a pivotal role in the
complex stabilization (∆G < −2.0 kcal/mol). In the case of the candidate compounds, it was
found that the key amino acid residues contributing to the DB07642 binding are mostly the
same residues responsible for trametinib’s binding (ASN78, VAL82, LYS97 and ASN195);
one additional residue, M143, was observed. Apart from that, compound DB12661 was
primarily stabilized through hydrophobic residue of VAL82 (∆Gbind = −2.73 kcal/mol),
while seven other residues (LEU74, GLY80, VAL81, LYS97, HIS145, MET146 and LEU197)
were also found in the stabilization of the complex via vdW interactions with ∆Gbind

residue in
the range of −2.0 to −1.0 kcal/mol. Nevertheless, one negatively charged residue, ASP208,
was found to be slightly destabilized; that was probably due to the charge–charge repulsion
in the complex system. To sum up, with a higher number of residues largely contributing
to DB12661 binding, this compound, as expected, possessed the lowest vdW interactive
and total binding free energy (Table 4), where the set of vdW interactions became the main
driving force towards the complex formation. On the contrary, some contributing amino
acid residues (observed in both trametinib and DB12661) may be somewhat lost during
the MEK1–DB07642 complex formation, resulting in the slightly lower ∆Gbind when com-
pared to the trametinib. We noted that these results are correlated well with the calculated
SIE-based ∆Gbind and each energy component, as listed in Table 4.
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3.10. Ligand–Protein Hydrogen Bonding

Hydrogen bonding is one of the non-covalent interactions observed in the formation
of protein–ligand complexes and could influence the ligand binding strength. Hence, the
intermolecular hydrogen bond interactions were investigated in terms of the percentage of
occupations and plotted in Figure 4. As expected, a few strong hydrogen bonds could be
observed in the screened compounds and even the trametinib since they are intrinsically
hydrophobic ligands. The reference drug trametinib created a strong hydrogen bond with
ASN195 (65%), which was also observed by the docking pose (Figure 2). In addition,
ALA76 and ASN78 moderately stabilized the drug through 45% and 44.5% of the hydrogen
bond occupations, while ASN78 could additionally interact with the drug through 35% of
it. For the MEK1–DB12661 complex, we found that the H atom in the backbone (-NH2) of
MET146 exhibited a very strong hydrogen bond, while the polar H atom in the imidazole
ring of HIS145 showed a moderate level. In the case of DB07642, there are three amino
acid residues stabilizing the DB07642 binding, which include ASN195, ASP208 and SER194.
Among these, the H atom in the amino side chain of ASN195 displayed the highest chance
of hydrogen bond occurrence with percentage occupations of 26%, while the other two
residues merely exhibited a weak hydrogen bond (≈17%). Altogether, these obtained results
suggested that the intermolecular hydrogen bond interactions did not play a major role
responsible for the complex stabilization observed in all the studied compounds, including
the trametinib. On the other hand, the ligand binding within the ATP-binding pocket of
MEK1 was predominantly contributed by vdW interactions, as discussed previously.
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4. Conclusions

In conclusion, the DrugBank compounds were screened through the different compu-
tational approaches to discover the potential MEK inhibitors. Initially, molecular docking
and various scoring functions were implemented to screen the active molecules against the
MEK protein. Overall, the screening demonstrated that compounds such as DB07642 and
DB12661 were able to tightly bind with the MEK receptor. Notably, the presence of crucial
pharmacophore moieties in the hit compounds gives additional support to their inhibitory
activity. In addition, the modes of action of these compounds were comprehended through
the connection of the ligand with the MEK active segment residues. Most importantly,
the compounds’ inhibitory activity was also examined with the PIM1 receptor since it
upregulated during the action of several MEK inhibitors. Further, the MD simulation
and end-point free energy calculation validated the binding mode of the lead compounds
with the MEK receptor. Thus, we hypothesize that further experimental validation of our
research findings will help to level up the cancer treatment in the near future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14010059/s1. Table S1: Predicted pKa values of
each amino acid residues at different conditions. Table S2: Compounds used for validation of docking
and RF-Score-VS. Table S3: Multiple screening analysis of the compounds against MEK1. Table S4:
Three-fold validation on glide docking analysis of hit compounds. Table S5: Molecular docking
and binding free energy calculations of top hit compounds against PIM1 receptor. Figure S1: ROC
analysis of screening methods. (a) Docking; (b) RF-Score-VS. Figure S2: Binding frequency of the
ligand molecules on top three predicted binding sites. The coloured dots represent the binding
sites: site 1 (red), site 2 (orange), and site 3 (yellow). The coloured chemical structures depict ligand
molecules binding positions on various binding sites. Ligand bound in site 1 (purple); site 2 (green);
site 3 (sky blue). Figure S3: Ligand interaction diagram of hit compounds (a) KZ-02 (Reference);
(b) DB012661; (c) DB07642 with PIM1 receptor. Figure S4: Root-mean-square displacement (RMSD)
plot for the backbone amino acid residues within a 5-Å sphere around the ligand. The data were
derived from the three independent runs with different initial velocities.
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