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Abstract

SIRT1 plays crucial roles in glucose and lipid metabolism, and has various functions in different tissues including brain. The
brain-specific SIRT1 knockout mice display defects in somatotropic signaling, memory and synaptic plasticity. And the
female mice without SIRT1 in POMC neuron are more sensitive to diet-induced obesity. Here we created transgenic mice
overexpressing SIRT1 in striatum and hippocampus under the control of CaMKIIa promoter. These mice, especially females,
exhibited increased fat accumulation accompanied by significant upregulation of adipogenic genes in white adipose tissue.
Glucose tolerance of the mice was also impaired with decreased Glut4 mRNA levels in muscle. Moreover, the SIRT1
overexpressing mice showed decreased energy expenditure, and concomitantly mitochondria-related genes were
decreased in muscle. In addition, these mice showed unusual spontaneous physical activity pattern, decreased activity in
open field and rotarod performance. Further studies demonstrated that SIRT1 deacetylated IRS-2, and upregulated
phosphorylation level of IRS-2 and ERK1/2 in striatum. Meanwhile, the neurotransmitter signaling in striatum and the
expression of endocrine hormones in hypothalamus and serum T3, T4 levels were altered. Taken together, our findings
demonstrate that SIRT1 in forebrain regulates lipid/glucose metabolism and motor function.
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Introduction

Obesity is becoming a worldwide prevalent disease in recent

years. Various diseases including diabetes, hepatic steatosis and

atherosclerosis are associated with dysregulation of lipid metabo-

lism. SIRT1, a NAD-dependant deacetylase, has been reported as

a key regulator of energy homeostasis to be involved in lipid and

glucose metabolism [1,2,3]. SIRT1 has been reported to attenuate

adipogenesis and promote fat mobilization in adipocytes [4,5].

SIRT1 liver-specific knockout mice showed better glucose

tolerance and less fat accumulation in white adipose tissue

(WAT) and liver than wild type when fed high-fat diet [6].

Deletion of SIRT1 in hepatocytes impaired PPARa signaling and

decreased fatty acid b-oxidation [7]. SIRT1 induced hepatic

glucose output through deacetylating PGC-1a in an NAD+-

dependent manner [8]. Furthermore, our previous study showed

that SIRT1 and resveratrol improved insulin sensitivity by

repressing PTP1B transcription in hepatocytes or C2C12

myotubes [9]. SIRT1 also deacetylated PGC-1a and upregulated

mitochondrial genes and fatty acid oxidation genes in skeletal

muscle cells [10]. Moreover, pancreatic b cell-specific SIRT1

overexpressing transgenic mice exhibited improved glucose

tolerance and enhanced insulin secretion in response to glucose

stimulation [11]. And further study showed that SIRT1 repressed

the uncoupling protein 2 transcription and positively regulated

insulin secretion in pancreatic b cells [12]. Oral administration

with SIRT1 activator resveratrol or SRT1720 in high-calorie-diet

fed mice or diabetic mice improved hepatic, adipose and systemic

insulin sensitivity, prevented the development of fatty liver and/or

increased mitochondrial activity in the brown adipose tissue (BAT)

and muscle [13,14,15]. All these studies demonstrate that SIRT1

plays crucial roles in lipid and glucose metabolism in peripheral

tissues.

SIRT1 also plays important roles in central nervous system [16].

Overexpression of SIRT1 in APPswe/PSEN1dE9 mice alleviated

brain pathology and behavioral deficits, and SIRT1 brain-specific

knockout in the mice aggravated the symptoms [17]. Overexpres-

sion of SIRT1 in the CA1 region of p25 transgenic mice by

injection of lentivirus also protected against neurodegeneration

[18]. In addition, inhibition of SIRT1 in neurons increased IRS-2

acetylation and decreased phosphorylation of IRS-2 and ERK1/2

to protect neurons against oxidative stress [19]. Recently, brain-

specific SIRT1 knockout mice showed defects in somatotropic

signaling when fed ad libitum and defects in endocrine and

behavioral responses under calorie restriction condition [20].

Knockout of SIRT1 in pro-opiomelanocortin (POMC) neurons

caused reduced energy expenditure in mice and then hypersen-

sitivity to diet-induced obesity [21]. The mice overexpressing

SIRT1 driven by prion (PrP) promoter showed enhanced neural

activity in hypothalamic nuclei, higher body temperature and
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physical activity when diet restricted [22]. It was also reported that

SIRT1 played essential roles in memory and synaptic plasticity

[23,24]. Despite the huge progress in the understanding of

functional importance and molecular mechanisms of SIRT1, the

functions of SIRT1 in specific brain regions need more intensive

study.

Given the important roles of SIRT1 in central nervous system,

we developed a SIRT1 transgenic mouse model under the control

of CaMKIIa promoter and investigated the role of SIRT1 in

forebrain. We show that the transgenic mice exhibited increased

fat accumulation, impaired glucose tolerance and motor function.

And these changes were coupled with altered IRS-2 and

neurotransmitter signaling in striatum and impaired expression

of genes regulating lipid and glucose metabolism in various tissues.

Altogether, our results demonstrate that SIRT1 in forebrain is

very important for regulating lipid/glucose metabolism and motor

function.

Results

Generation of bitransgenic mice with forebrain-specific
SIRT1 overexpression

To further investigate the role of neuronal SIRT1, we first made

the TRE-SIRT1 construct, which contains a tTA-responsive

promoter followed by SIRT1 coding sequence with an N-terminal

myc tag, to generate TRE-SIRT1 single transgenic mice (Fig. 1A).

Then the single transgenic mice were crossed with CaMKIIa-tTA

mice, which specifically drive tTA expression in forebrain [25], to

create CaMKIIa-tTA/TRE-SIRT1 bitransgenic mice (Fig. 1B).

Western blot analysis revealed that SIRT1 protein level was increased

to 2.3-fold in striatum and 1.3-fold in hippocampus, but no obvious

change in cerebral cortex of bitransgenic mice when compared with

their littermate controls (Fig. 1C and D). Similar SIRT1 protein levels

between bitransgenic mice and their littermates were detected in

WAT, BAT, liver, pancreas, muscle and hypothalamus (Fig. 1E–J).

These results demonstrate that the bitransgenic mice exhibit a

forebrain-specific SIRT1 overexpression.

Fat accumulation increases in the bitransgenic mice
To explore the effect of forebrain SIRT1 on metabolism, we

examined the body weight, fat and lean content of the bitransgenic

mice. Interestingly, female bitransgenic mice showed progressive

increases in body weight compared with littermate controls when

measured at the age of 13, 18 or 22 weeks (Fig. 2A). Measurement

of fat and lean mass using NMR showed that the fat mass and fat

content of female bitransgenic mice was increased by two to three

folds compared with littermate controls (Fig. 2B and C), while the

lean content was slightly reduced (Fig. 2D). Therefore the

increased body weight was mainly due to the dramatic increase

of fat accumulation. Furthermore, we found that there was a

decrease in fasting triglyceride level of female bitransgenic mice,

while no significant changes were observed in the levels of total

cholesterol, low-density lipoprotein cholesterol and high-density

lipoprotein cholesterol (Fig. 2E).

PPARc is a master regulator of adipogenesis [26], so we

analyzed the mRNA levels of Pparg in WAT, BAT and liver.

Pparg1 and 2 were both increased by two folds in WAT of female

bitransgenic mice. Consistent with this result, the mRNA levels of

PPARc target genes including fatty acid binding protein 4 (Fabp4/

Ap2), fatty acid transporter Cd36 and lipoprotein lipase (Lpl) were

all increased markedly. And the mRNA levels of adipogenic gene

Cebpa, de novo lipogenic genes Acca and Fasn, cholesterol synthesis

gene Srebf1 and esterification genes Gpam and Dgat1 were not

changed in WAT of female bitransgenic mice (Fig. 2F). Mean-

while, only significant increase of Cd36 was observed in liver

(Fig. 2H), and no obvious difference was detected in BAT (Fig. 2G).

Collectively, these results suggest that the upregulation of Pparg

and its downstream genes in WAT probably accounts for the

increase of fat mass in the female bitransgenic mice.

We also examined the body composition of male bitransgenic

mice. They had similar body weight compared with their

littermate controls (Fig. S1A). The fat mass and fat content of

male bitransgenic mice also significantly increased as females (Fig.

S1B and C), and the lean content was also slightly decreased when

measured at the age of 18 or 22 weeks old (Fig. S1D). There were

no significant changes of fasting triglyceride, total cholesterol, low-

density lipoprotein cholesterol and high-density lipoprotein

cholesterol levels in male bitransgenic mice (Fig. S1E). Taken

together, these results show that forebrain-specific SIRT1

overexpression leads to the significant increase of fat content and

the slight decrease of lean mass in both male and female

bitransgenic mice.

Forebrain-specific SIRT1 overexpression decreases
glucose tolerance

Obesity is usually associated with impaired glucose tolerance

and insulin resistance [27], so we examined glucose tolerance and

Figure 1. Generation of transgenic mice with forebrain-specific
SIRT1 overexpression. (A) Schematic representation of the TRE-SIRT1
construct. (B) Genetic strategy to generate CaMKIIa-tTA/TRE-SIRT1
bitransgenic mice. (C) SIRT1 protein levels markedly increased in the
striatum of bitransgenic mice (biT) compared with littermate controls
(Con). Expression of SIRT1 in cerebral cortex (Cor.), striatum (Str.) and
hippocampus (Hip.) were monitored by western blot using myc-tag or
SIRT1 antibody. GAPDH was measured as loading control. (D)
Quantification of the relative SIRT1 protein levels corresponding to
(C). Except indicated, in this and all other figures, error bars represent
SD. n = 4 pairs. * P,0.05, ** P,0.01 versus littermate controls. (E–J)
SIRT1 protein levels were not changed in white adipose tissue (WAT) (E),
brown adipose tissue (BAT) (F), liver (G), pancreas (H), muscle (I) and
hypothalamus (J) as detected by western blot.
doi:10.1371/journal.pone.0021759.g001

Forebrain SIRT1 and Metabolism
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insulin sensitivity in the bitransgenic mice. Both female and male

bitransgenic mice displayed impaired glucose tolerance when

compared with their littermate controls (Figs. 3A, 3B, S2A, and

S2B). Meanwhile, insulin tolerance test revealed that insulin

sensitivity was not significantly altered in both female and male

bitransgenic mice (Figs. 3C, 3D, S2C and S2D). In addition, the

fasting serum insulin levels were not changed the bitransgenic mice

(Figs. 3E and S2E). The two key enzymes of gluconeogenesis,

G6pase and Pepck, remained unchanged in liver (Fig. 3G), while

the Glut4 mRNA level was decreased about 50% in gastrocnemius

and quadriceps, which might reduce the glucose uptake in muscle

(Fig. 3F). These results demonstrate that the forebrain-specific

SIRT1 overexpression leads to impaired glucose tolerance, which

might partially due to the decreased Glut4 levels in muscle.

Forebrain-specific SIRT1 overexpression decreases
energy expenditure

We further investigated the effects of forebrain-specific SIRT1

overexpression on food intake, physical activity, oxygen consump-

tion and body temperature. Female bitransgenic mice showed

similar food intake as littermate controls, and male bitransgenic

mice showed significantly decreased food intake when monitored

from 13 to 18 weeks of age (Figs. 4A and S3A). Using a

comprehensive laboratory animal monitoring system, female

bitransgenic mice at four months of age showed similar daily

physical activities but significantly reduced physical activities (by

about 40%) between 8pm and 9pm and have a different

spontaneous physical activity pattern at night (Fig. 4B). And the

female bitransgenic mice displayed significantly lower oxygen

consumption than their littermate controls at 12 months of age

(Fig. 4C). In addition, the rectal temperature of the female

bitransgenic mice were significantly decreased (Fig. 4D). Mean-

while, physical activity level, oxygen consumption and the rectal

temperature of the male bitransgenic mice were similar as their

littermate controls (Fig. S3B, C and D). These results demonstrate

that the forebrain-specific SIRT1 overexpression leads to

decreased energy expenditure which might contribute to the

increased fat accumulation.

BAT and muscle are the most important organs responsible for

regulating thermogenesis [28], so we examined the mitochondria-

related genes in BAT, gastrocnemius and quadriceps. The genes

including Pgc1a, Mfn2, Ucp2 and Pdk4 in gastrocnemius were

markedly downregulated (Fig. 4F). The same downregulation was

also observed with Ucp2 in quadriceps (Fig. 4G). However, these

genes did not significantly change in BAT (Fig. 4E). The

downregulation of mitochondria-related genes in gastrocnemius

and quadriceps muscles might contribute to the diminished

oxygen consumption and energy expenditure.

Forebrain-specific SIRT1 overexpression impairs motor
function

Because striatum has a fundamental role in the control of motor

activity [29], we evaluated the motor behavioral responses of the

bitransgenic mice by open field test. Female bitransgenic mice

crossed a lower number of squares than their littermate controls,

while no significant change was observed in male bitransgenic

mice (Figs. 5A and S4A). The number of rearings for both genders

was similar to that of respective littermate controls (Figs. 5B and

S4B). These data indicate that forebrain-specific SIRT1 overex-

pression in female mice impairs exploratory activity. When

measured with rotarod test, female bitransgenic mice showed

much shorter latency on rotarod than their littermate controls

when the rotating speed reached 15 rpm on both the first and

second days (Fig. 5C and D). The latency of male bitransgenic

mice was also shorter than that of the control mice on both the first

and second days (Fig. S4C and D). All these data indicate that

Figure 2. Female bitransgenic mice exhibit increased fat accumulation accompanied by increased expression of adipogenic genes
in WAT. (A) Body weights of female bitransgenic mice increased when compared with littermate controls (n = 7–11 for each group). (B–C) Fat mass
and fat content markedly increased in female bitransgenic mice compared with littermate controls (n = 7–11 for each group). (D) Lean content
decreased in female bitransgenic mice compared with littermate controls (n = 7–11 for each group). (E) Fasting serum levels of total triglyceride (TG),
cholesterol (TC), high-density lipoprotein cholesterol (HDLc), low-density lipoprotein cholesterol (LDLc) were measured at 3 months of age (n = 6–7
for each group). (F) The expression of some adipogenic genes increased in WAT of female bitransgenic mice. (G) The expression of the indicated
adipogenic genes was not significantly changed in BAT of female bitransgenic mice. (H) The expression of the indicated adipogenic genes except
Cd36 was not changed in liver of female bitransgenic mice. * P,0.05, ** P,0.01 versus littermate controls.
doi:10.1371/journal.pone.0021759.g002
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Figure 3. Forebrain-specific SIRT1 overexpression impairs glucose tolerance in female mice. (A) Glucose tolerance was impaired in 5-
month-old female bitransgenic mice as determined by glucose tolerance test (n = 7 for each group). ** P,0.01 versus littermate controls by two-way
ANOVA. Two-way ANOVA indicated that the curves for glucose tolerance were significantly different, P = 0.0199. (B) Forebrain-specific SIRT1
overexpression in females significantly increased the area under the curve (AUC) of the glucose tolerance test in (A). (C) 5-month-old female
bitransgenic mice have similar insulin sensitivity as littermate controls when determined by insulin tolerance test (n = 6 for each group). (D) The AUC
of the insulin tolerance test did not change in female bitransgenic mice. (E) Fasting serum insulin was measured at 3 months of age (n = 6–7 for each
group). (F) The Glut4 mRNA levels in WAT, quadriceps (Quad) and gastrocnemius (Gast) muscle. (G) The G6pase and Pepck mRNA levels were
comparable between bitransgenic mice and littermate controls. * P,0.05, ** P,0.01 versus littermate controls.
doi:10.1371/journal.pone.0021759.g003

Figure 4. Female bitransgenic mice show abnormal spontaneous physical activity and decreased oxygen consumption and body
temperature. (A) Food intake was similar between female bitransgenic mice and their littermate controls (n = 11 for each group). (B) Female
bitransgenic mice had different physical activity pattern but similar daily physical activities when measured at 16 weeks of age through a 12-hour light/
dark cycle using a comprehensive laboratory animal monitoring system (n = 7 for each group). Physical activity was presented as mean 6 SEM. The slope
coefficients of best-fit linear regression curves for the night activity were markedly different between bitransgenic mice and their littermate controls
(shown as insert). (C) Oxygen consumption decreased in female bitransgenic mice at 12 months of age, n = 7 for each group at the age of 4-month old,
n = 5 for each group at the age of 12-month old. (D) Body temperature decreased in female bitransgenic mice (n = 7 for each group). (E) The expression of
the indicated mitochondrial genes did not change in the BAT of female bitransgenic mice when measured by real-time PCR. (F) The expression of some
mitochondrial genes decreased in the gastrocnemius of female bitransgenic mice compared with littermate controls. (G) The expression of Ucp2
decreased in the quadriceps of female bitransgenic mice compared with littermate controls. * P,0.05, ** P,0.01 versus littermate controls.
doi:10.1371/journal.pone.0021759.g004
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forebrain-specific SIRT1 overexpressing mice develop impaired

motor function. Meanwhile, improved performance was observed

for both genotypes and both genders in the second day, which

suggest that motor learning is normal in bitransgenic mice (Figs. 5D

and S4D).

SIRT1 overexpression alters IRS-2 and neurotransmitter
signaling in striatum and expression of endocrine
hormones in hypothalamus

It has been reported that knockdown of SIRT1 in cultured

cortical neurons increased acetylation of IRS-2, and reduced

phosphorylation of IRS-2 and ERK1/2 [19]. So we further

examined these signaling events in forebrain of the female

bitransgenic mice. Consistent with the previous in vitro results,

SIRT1 was coimmunoprecipitated with IRS-2 in cerebral cortex,

striatum and hippocampus (Fig. 6A). The SIRT1 overexpression in

striatum decreased acetylation of IRS-2, and increased phosphor-

ylation of IRS-2 and ERK1/2 (Fig. 6A). ERK1/2 signaling is

essential for neuronal transcriptional regulation, and plays

important roles in glutamate and dopamine signaling in striatum

[30]. So we detected the expression of genes related to

neurotransmitter signaling in striatum. Both NMDA receptor

Grin2a and dopa decarboxylase Ddc increased in female

bitransgenic mice. In addition, the mRNA level of cannabinoid

receptor Cnr1, which regulates the release of neurotransmitters

from axon terminals [31], was significantly decreased in female

bitransgenic mice (Fig. 6B). Meanwhile, the mRNA level of SIRT1

in bitransgenic mice was markedly increased in striatum compared

with their littermate controls.

PGC1a is an important substrate of SIRT1, and its deficiency in

striatum is associated with certain behavioral abnormalities [8,32].

In female bitransgenic mice, the mRNA levels of Pgc1a and its

related genes in striatum were not changed when compared with

their littermate controls (Fig. S6C).

It has been reported that SIRT1 improved insulin sensitivity by

repressing PTP1B in C2C12 myotubes [9], and neuronal PTP1B

regulated body weight, adiposity and leptin action in hypothal-

amus [33]. So we examined the mRNA and protein levels of

PTP1B in the striatum and hypothalamus of female bitransgenic

mice, and found they were not significantly changed (Fig. S5A–C).

Meanwhile, the WAT leptin mRNA levels and fed serum leptin

levels were elevated in female bitransgenic mice (Fig. S5D),

suggesting that leptin might be involved in the forebrain SIRT1

function of metabolic regulation. Furthermore, leptin has been

shown to stimulate Socs3 expression [34]. So we checked the

mRNA levels of Lepr and Socs3 in the striatum and

hypothalamus of female bitransgenic mice, and found that they

were not altered (Fig. S5E). In addition, it has been shown that

leptin regulated the expression of MCH, POMC, AgRP, NPY

and CART in hypothalamus [35]. We found that the mRNA

Figure 5. Female bitransgenic mice show decreased motor
behavior by open field and rotarod tests. (A) Female bitransgenic
mice crossed fewer squares in the open field test than littermate
controls (n = 9–14 for each group). * P,0.05, ** P,0.01 versus littermate
controls. Two-way ANOVA showed significant difference between
groups, P,0.0001. (B) Female bitransgenic mice had similar number
of rearings in the open field test (n = 9–14 for each group). (C) Rotarod
performance on the first day was significantly decreased in female
bitransgenic mice (n = 11 for each group). Mice were placed on a rod
rotating for 60 seconds at the indicated speeds, and the latency to fall
off from the rotarod was measured. * P,0.05, ** P,0.01 versus
littermate controls by two-way ANOVA. Two-way ANOVA showed
significant difference between curves, P = 0.0156. (D) Rotarod perfor-
mance on the second day was significantly decreased in female
bitransgenic mice (n = 11 for each group). * P,0.05, ** P,0.01 versus
littermate controls by two-way ANOVA. Two-way ANOVA showed
significant difference between curves, P = 0.0113.
doi:10.1371/journal.pone.0021759.g005

Figure 6. SIRT1 overexpression activates IRS-2 and ERK1/2 in
striatum, and alters gene expression in striatum and hypo-
thalamus. (A) Representative blots showed the effect of SIRT1 on
acetylation of IRS-2 and phosphorylation of IRS-2 and ERK1/2 in the
cerebral cortex, striatum and hippocampus of 3-month old female mice.
The indicated tissues were lysed and immunoprecipitated with anti-IRS-
2 and blotted with anti-acetylated-lysine (AcK), phosphotyrosine (PY),
IRS-2 or SIRT1 antibody respectively. Lysates were also probed with IRS-
2, SIRT1, phospho-ERK1/2 (p-ERK1/2) or ERK1/2 antibody respectively.
(B) The expression of some genes involved in neurotransmitter
signaling were altered in the striatum of female bitransgenic mice
(n = 3 for each group). (C) Hypothalamic mRNA levels of some
endocrine hormones in female bitransgenic mice were decreased when
detected by real-time PCR (n = 6–7 for each group). * P,0.05 versus
littermate controls. (D) Serum T3 and T4 levels in female bitransgenic
mice were decreased when detected by ELISA (n = 10–11 for each
group). * P,0.05 versus littermate controls.
doi:10.1371/journal.pone.0021759.g006
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levels of neuropeptides including Pmch, Pomc, Agrp, Npy and

Cartpt were not changed in the hypothalamus of female

bitransgenic mice (Fig. S5F). These results are consistent with

the normal food intake in the female bitransgenic mice (Fig. 4A).

There were also normal SIRT1 mRNA levels in the hypothal-

amus of female bitransgenic mice, which is consistent with the

normal SIRT1 protein levels (Fig. 1J). However, the mRNA

levels of endocrine hormones including somatostatin, gonadotro-

pin-releasing hormone and thyrotropin-releasing hormone were

significantly decreased in the hypothalamus (Fig. 6C). Because

hypothalamic somatostatin inhibits the release of growth

hormone from the pituitary [36] and growth hormone regulates

body length [37], we compared the snout-anus length between

bitransgenic mice and controls. As shown in Fig. S6B, no

significant difference was observed. The serum levels of thyroid

hormones triiodothyronine (T3) and tetraiodothyronine (T4) in

female and male bitransgenic mice were decreased compared to

controls (Figs. 6D and S6C). The decreased expression of

thyrotropin-releasing hormone in hypothalamus and reduced

serum T3 and T4 levels might contribute to the changes in lipid

and glucose metabolism of the bitransgenic mice.

Discussion

In this study, we created CaMKIIa-tTA/TRE-SIRT1 bitrans-

genic mice which mainly overexpressed SIRT1 in striatum. The

bitransgenic mice showed increased fat content, impaired glucose

tolerance and decreased motor function. Further studies suggest

that these phenotypes in female bitransgenic mice result from the

altered IRS-2 and neurotransmitter signaling in striatum and

impaired expression of genes regulating lipid and glucose

metabolism in various tissues.

Our previous study showed that increased expression of SIRT1

can directly improve insulin sensitivity under insulin-resistant

conditions in C2C12 myotubes [9]. The SIRT1 transgenic mice

by knocking in SIRT1 cDNA into the b-actin locus became leaner,

and displayed decreased fasting blood insulin and glucose levels

and increased glucose tolerance, which was postulated due to

SIRT1 overexpression in adipose tissue [38]. BAC-based trans-

genic mice overexpressing SIRT1 in various tissues exhibited

normal fat mass and protected against high-fat diet-induced

impaired glucose tolerance and hepatic steatosis due to decreased

hepatic glucose production [39,40]. These studies demonstrate

that SIRT1 improves glucose and insulin tolerance in peripheral

cells and tissues. SIRT1 POMC neuron-specific knockout female

mice got more fat mass when fed on high-calorie diet [21].

Knockout of SIRT1 in Agrp neurons led to lower body weight,

lean mass and fat mass in female mice [41]. Interestingly, our

female bitransgenic mice overexpressing SIRT1 in forebrain,

showed significant increase of fat mass (Fig. 2B and C).

Furthermore, SIRT1 null mice displayed better glucose tolerance

and hypermetabolic [12,42]. SIRT1 brain-specific knockout mice

displayed a reduction in fasting blood glucose level [20].

Consistently, our forebrain overexpressing SIRT1 mice showed

impaired glucose tolerance (Figs. 3A and S2A) and decreased

energy expenditure (Fig. 4C). In addition, we found that the

SIRT1 mRNA levels were upregulated by fasting in hypothalamus

and hippocampus, but not changed in striatum and other tested

brain regions (Fig. S7). All the above findings suggest that SIRT1

may have different effects on glucose and lipid metabolism in

different brain regions and peripheral tissues.

The male and female bitransgenic mice differed in the degree of

fat accumulation at the same age (Figs. 2 and S1). The gender

difference in the impairment of glucose tolerance might be related

with the difference in the development of excess adiposity. The

male mice even did not show obvious changes in open field and

rotarod performance compared to female mice (Figs. 5 and S4).

To investigate whether the overexpression levels of SIRT1 are

contributed to the more obvious phenotype in female bitransgenic

mice, we measured SIRT1 protein levels and found that the

overexpression levels of SIRT1 are similar between the females

and males in both striatum and hippocampus (data not shown).

Thus, the more obvious phenotype in female bitransgenic mice

should be mainly due to the gender difference, especially

difference in gender-related hormones. The female bitransgenic

mice with more fat accumulation might be related to the fact that

females have a higher percentage of body fat, and adipocytes from

female mice have increased lipogenic rates compared with those

from males [43]. Although both male and female bitransgenic

mice show similar alteration in T3 and T4 levels compared to

control mice (Figs. 6D and S6C), the function and regulation of

thyroid hormone depend on gender differently [44,45]. In

consistent with our observation, it has been reported that the

mice with specific deletion of SIRT1 in POMC neurons show

more pronounced changes of body weight in females than in males

[21]. Similarly, the female mice with deletion of SIRT1 in Agrp

neurons showed a more marked phenotype with reductions in fat

mass than males [41]. Taken together, these studies indicate that

the roles of SIRT1 in some distinct neurons may be significantly

affected by gender.

The striatum is a major forebrain nucleus that has been

proposed to play important roles in the development of motor

deficits of Parkinson’s disease and Huntington’s disease [46]. The

female bitransgenic mice with high expression of SIRT1 in

striatum showed similar daily physical activity but reduced

physical activity at the time point when normal mice reached

peak activity (Fig. 4B), which is similar to the phenotype of mice

treated with SIRT1 activator resveratrol [15]. It should be pointed

out that the female bitransgenic mice maintained similar activity

level throughout the nighttime without a peak of activity level as

observed in the control mice (Fig. 4B). Both the SIRT1 transgenic

mice by knocking in SIRT1 cDNA into the b-actin locus and the

male mice treated with resveratrol showed improved rotarod

performance [15,38]. The bitransgenic mice overexpressing

SIRT1 in forebrain showed impaired rotarod performance

(Figs. 5C, 5D, S4C and S4D). The male mice treated with

resveratrol or overexpressing SIRT1 under the control of rat

neuron-specific enolase promoter, and the male SIRT1 null mice

all exhibited normal activity during open field exploration

[15,23,47]. Here, the male bitransgenic mice also showed similar

behavior as their littermate controls in the open field test, but the

female bitransgenic mice showed decreased crossed squares (Figs.

S4A and 5A). These results show that SIRT1 in striatum or other

tissues may regulate motor function, but the details need further

investigation.

It has been shown that neuronal PTP1B regulated body weight,

adiposity and leptin action [33], however the PTP1B expression

was not altered in the striatum and hypothalamus of female

bitransgenic mice (Fig. S5A–C). The WAT leptin mRNA levels

and fed serum leptin levels were significantly increased in female

bitransgenic mice (Fig. S5D). Meanwhile, the mRNA levels of

Lepr and Socs3 in the striatum and hypothalamus, and the leptin-

regulated neuropeptides including Pmch, Pomc, Agrp, Npy and

Cartpt in hypothalamus were not altered in female bitransgenic

mice (Fig. S5E). Combined with the normal food intake in the

female bitransgenic mice (Fig. 4A), these data suggest that mild

leptin resistant might be involved in the forebrain SIRT1 function

of metabolic regulation. SIRT1 regulates systemic metabolism by
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deacetylating various proteins including PGC1a and IRS-2 [3].

We found that the expression levels of Pgc1a and its related genes

did not alter in striatum (Fig. S6A), which suggests PGC1a is not a

key substrate of SIRT1 in striatum. It has been reported that

SIRT1 deacetylated IRS-2 in cultured cortical neurons, and the

inhibition of SIRT1 impaired ERK1/2 activation [19]. Here we

found that SIRT1 deacetylated IRS-2 and activated ERK1/2

signaling in striatum of female bitransgenic mice (Fig. 6A). ERK1-

null mice were hyperactive in multiple motility tests including

open field test [48,49]. Therefore, we speculated that the increased

phosphorylation of ERK1/2 might represent the underlying

mechanisms of impaired motor function in open field and rotarod

test for the bitransgenic mice. ERK1/2 mediated the NMDA,

dopamine and endocannabinoid signalings, which have critical

roles in the control of movement [46,50,51,52]. So the increased

expression of NMDA receptor Grin2a and dopa decarboxylase

Ddc, and the decreased expression of endocannabinoid receptor

Cnr1 in striatum might also contribute to the motor defects of the

bitransgenic mice (Fig. 6B). However, the precise mechanisms by

which SIRT1 regulate motor activity need to be further

investigated. On the other hand, hypothalamus is very important

in regulating metabolism. We detected the mRNA levels of

endocrine hormones in hypothalamus, and found that the

expression of somatostatin, gonadotropin-releasing hormone and

thyrotropin-releasing hormone were changed in female bitrans-

genic mice (Fig. 6C). And the thyroid hormones T3 and T4

concentrations decreased in serum of bitransgenic mice (Figs. 6D

and S6C). It was reported that thyroid hormones regulated

adipocyte differentiation [53] and the transcription of genes such

as UCPs [54]. Consistent with these reports, we found that some

important adipogenic genes were markedly upregulated in WAT

(Fig. 2F) and UCPs were decreased in muscle (Fig. 4G and H). It

has been reported that hypothyroid mice showed decreased

rotarod performance [55]. The rotarod performance of bitrans-

genic mice also decreased in our study (Fig. 5C and D). So the

decreased hypothalamic thyrotropin-releasing hormone level and

serum T3 and T4 levels might contribute to both the impaired

lipid/glucose metabolism and the impaired motor function. The

changes in hypothalamus may result from the alteration of the

neurotransmitter signaling in striatum through striatal-hypotha-

lamic circuitry [56]. These alterations in striatum and hypothal-

amus suggest a possible mechanism underlying the roles of

forebrain SIRT1 in lipid/glucose metabolism and motor function.

However, whether IRS-2 acetylation and tyrosine phosphoryla-

tion, ERK1/2 phosphorylation in striatum are essential for the

impaired lipid/glucose metabolism and motor function in female

bitransgenic mice needs to be studied in the future. Generation of

mouse strains with forebrain specific point mutation of IRS-2

acetylation site or tyrosine phosphorylation site and forebrain

specific deletion of ERK1/2 should be very helpful to elucidate the

underlying mechanisms.

In conclusion, our study demonstrates overexpressing SIRT1 in

mouse forebrain causes increased fat accumulation, impaired

glucose tolerance and motor defects. These findings show that

SIRT1 in different tissues may exert different impacts on lipid/

glucose metabolism and motor function, which provide novel

insights into the complexity and diversity of SIRT1 functions.

Materials and Methods

Generation of forebrain transgenic Mice
The generation of the TRE-SIRT1 mice using gene-targeting

strategy was carried out at the Model Animal Research Center of

Nanjing University (MARC). Briefly, the mouse SIRT1 cDNA

from pBabe-SIRT1 plasmid (kindly provided by Dr. Shin-ichiro

Imai, Washington University School of Medicine) was subcloned into

pCMV-Myc vector (Clontech). And then the myc-SIRT1 fragment

was introduced into pTRE2 vector (Clontech). After digested by

ApaLI and XbaI, the fragment containing the tTA-responsive

promoter followed by myc-SIRT1 was injected into mouse fertilized

oocytes derived from C57BL/66CBA F1 mice to generate TRE-

SIRT1 transgenic mice. And then the TRE-SIRT1 transgenic mice

were backcrossed for at least three generations with C57BL/6 mice

obtained from Slaccas (Shanghai, China). The mice generated

through the crossing of CaMKIIa-tTA mice [25] and TRE-SIRT1

mice were referred as bitransgenic mice, which were identified by

PCR from their genomic DNA. The primers CAAAGGAGCA-

GATTAGTAAGCGG and TCCCCCTGAACCTGAAACATAA-

A were used to detect the exogenous SIRT1. The primers CGC-

TGTGGGGCATTTTACTTTAG and CATGTCCAGATCGA-

AATCGTC were used to detect tTA.

Animal care
All animal experiments were performed in accordance with

National Institutes of Health guidelines and with the approval of

the Institutional Animal Care and Use Committee of the Institute

for Nutritional Sciences. Mice were kept in specific pathogen-free

conditions maintained at 2263uC with a fixed 12-h light/dark

cycle (lights on at 6:30 a.m.) with ad libitum access to standard chow

and water in an institutional animal facility.

Phenotypic analysis
In all the experiments, gender-matched littermates including

CaMKIIa-tTA or TRE-SIRT1 single transgenic and wild type

mice were used as controls. Mice were weighed at the indicated

time points. The food intake was measured every 2 days from 13

weeks to 18 weeks of age. Rectal body temperatures of 8-month-

old mice were measured using microprobe thermometer (Physi-

temp Instruments) between 14:00 and 16:00. Total body fat and

lean mass were measured in conscious mice using a Minispec

Mq7.5 Analyzer (Bruker). Mice were anesthetized with sodium

pentobarbital, and then cerebral cortex, striatum, hippocampus,

hypothalamus, liver, white adipose tissue, brown adipose tissue

and muscle were quickly removed and snap-frozen in liquid

nitrogen and stored at 280uC for western blot, immunoprecip-

itation and real-time PCR. For fasting and refeeding experiments,

8-week-old C57BL/6J female mice were fed ad libitum, fasted for

24 h, or fasted for 24 h and refed for 24 h (5–7 mice for each

group). Then, animals were sacrificed, and the indicated brain

regions were removed and snap-frozen for real-time PCR. Snout-

anus length was measured with a micrometer on 12-week-old

anaesthetized mice. Blood samples were obtained fed or after a 20-

h fasting and stored at 280uC. Fed leptin level was measured

using an ELISA kit from R&D systems. Serum insulin level was

measured using a radioimmunoassay kit and T3, T4 levels were

measured using ELISA kits from Beijing Beifang Institute of

Biological Products. Triglyceride, total cholesterol, high-density

lipoprotein cholesterol and low-density lipoprotein cholesterol

levels in serum were determined using enzymatic assay kits from

Shanghai Shensuo Unf Medical Diagnostics Articles Company.

Glucose tolerance test and insulin tolerance test
Glucose and insulin tolerance tests were performed as

previously described [9]. Briefly, after fasting for 12 h or 6 h,

mice were injected intraperitoneally with either 2 g/kg of glucose

or 0.75 U/kg of human insulin (Lilly France S.A.S) respectively.

Tail blood glucose was measured before and 15, 30, 60 or 120 min
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after the injection using the FreeStyle blood glucose monitoring

system (TheraSense).

Oxygen consumption and physical activity
Oxygen consumption and physical activity were determined

with mice fed ad libitum using a comprehensive laboratory animal

monitoring system (Columbus Instruments) according to the

manufacturer’s instructions. Mice were measured for 24 h after

acclimated to the system for 16 to 20 h.

Open field test
The open field consisted of a box (50630620 cm) with normal

room illumination, which was divided into 10610 cm squares and

open at the top. Each mouse at 12 weeks of age was placed in the

centre of the box, and the number of squares entered (all four paws

inside the square) and rearings were counted for 0.5 min for 4 times

with an interval of 1 min for each time. The box was thoroughly

cleaned to remove odor cues before each mouse had been tested.

Rotarod test
The rotating rod was 3 cm in diameter and divided by flanges in

five compartments to allow testing of up to five mice simultaneously

[57]. The animals had to walk on the rotating rod at the indicated

speeds, and the time until the mouse fell from the rod or maintained

for 60 s was recorded. Mice at 8 months of age were tested from the

lowest speed to gradually-increased speed, and were rested for about

40 min between each two tests with different speeds.

Western blot and coimmunoprecipitation
IRS2, SIRT1 and phosphotyrosine antibodies were from

Upstate; PTP1B antibody was from Novus Biologicals; acetylated-

lysine (AcK), ERK1/2 and phospho-ERK1/2 (Thr202/Tyr204)

antibodies were from Cell Signaling Technology; myc-tag antibody

was kindly provided by Dr. J. Zhou (Institute of Biochemistry and

Cell Biology, SIBS, CAS); GAPDH antibody was from Kangcheng

(Shanghai, China). Western blot and coimmunoprecipitation was

performed as previously described [58].

Real-time PCR
Total RNA from the collected tissues was isolated using TRIzol

reagent (Invitrogen). After treatment with RNase-free DNase I

(Takara), first-strand cDNA was synthesized with reverse transcrip-

tase and random hexamer primers (Invitrogen). Real-time PCR was

conducted using Power SYBR Green PCR Master Mix with the

ABI Prism 7900 sequence detection system (Applied Biosystems) as

described previously [59]. The primers used for real-time PCR are

mainly from PrimerBank (http://pga.mgh.harvard.edu/primer

bank), and listed in Table S1. 36B4 was measured for each sample

as the internal control. Three mice per group at 12 weeks of age

were used in real-time PCR except indicated.

Statistical analyses
Data are expressed as mean 6 SD except indicated. Statistical

analysis of differences was done via unpaired two-tailed Student’s

t test except indicated. Two-way analysis of variance (ANOVA)

followed by Bonferroni’s test was performed using GraphPad

Prism 5.0 (GraphPad Software). P,0.05 was considered statisti-

cally significant.

Supporting Information

Figure S1 Male bitransgenic mice exhibit increased fat
accumulation. (A) Body weights of male bitransgenic mice were

not changed compared with littermate controls (n = 6–8 for each

group). (B–C) Fat mass and fat content increased in male

bitransgenic mice when compared with littermate controls

(n = 6–8 for each group). (D) Lean contents decreased in male

bitransgenic mice when compared with littermate controls (n = 6–8

for each group). (E) Fasting serum levels of triglyceride (TG), total

cholesterol (TC), high-density lipoprotein cholesterol (HDLc) and

low-density lipoprotein cholesterol (LDLc) were measured at 3

months of age (n = 6–7 for each group). * P,0.05, ** P,0.01

versus littermate controls.

(TIF)

Figure S2 Glucose tolerance is moderately impaired in
male bitransgenic mice. (A) Glucose tolerance was impaired

in 5-month-old male bitransgenic mice as determined by glucose

tolerance test (n = 6–7 for each group). Two-way ANOVA

indicated that the curves for glucose tolerance are significantly

different, P = 0.0376. (B) The area under the curve (AUC) of the

glucose tolerance test in (A) was similar. (C) 5-month-old male

transgenic mice have similar insulin sensitivity as determined by

insulin tolerance test (n = 6–7 for each group). (D) The AUC of the

insulin tolerance test in (C) did not change in male transgenic mice

(n = 6–7 for each group). (E) Fasting serum insulin was measured at

3 months of age (n = 6–7 for each group). * P,0.05 versus

littermate controls.

(TIF)

Figure S3 Male bitransgenic mice show similar physi-
cal activity, oxygen consumption, body temperature and
decreased food intake. (A) Food intake of male bitransgenic

mice decreased when compared with littermate controls (n = 5 for

each group). (B) Physical activity did not change in male

bitransgenic mice at 16 weeks of age, measured through a 12-h

light/dark cycle (n = 5 for each group). Physical activity was

presented as mean 6 SEM. (C) Oxygen consumption did not

change in male bitransgenic mice (n = 4–5 for each group). (D)

Body temperature did not change in male bitransgenic mice at 8

months of age (n = 5 for each group). * P,0.05 versus littermate

controls.

(TIF)

Figure S4 Male bitransgenic mice show decreased
motor behavior by open field and rotarod performance
tests. (A) Crossed squares in the open field test did not change in

male bitransgenic mice (n = 5 for each group). Two-way ANOVA

showed no significant difference between groups. (B) Male

bitransgenic mice had similar number of rearings in the open

field test (n = 5 for each group). Two-way ANOVA showed no

significant difference between groups. (C) Rotarod performance

on the first day was decreased in male bitransgenic mice (n = 5 for

each group). ** P,0.01 versus littermate controls by two-way

ANOVA. Two-way ANOVA showed significant difference

between curves, P = 0.0225. (D) Rotarod performance on the

second day was slightly decreased in male bitransgenic mice (n = 5

for each group). * P,0.05, ** P,0.01 versus littermate controls by

two-way ANOVA.

(TIF)

Figure S5 Leptin is upregulated in female bitransgenic
mice, and the expression of PTP1B, Lepr, Socs3 and
some feeding related neuropeptides is not changed in
striatum or hypothalamus. (A) The mRNA levels of PTP1B

in the striatum (n = 3 for each group) and hypothalamus (n = 6–7

for each group) of female bitransgenic mice were not changed. (B)

The protein levels of PTP1B in the striatum and hypothalamus of

female bitransgenic mice were not changed (n = 3 for each group).
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GAPDH was measured as loading control. (C) Quantification of

the relative PTP1B protein levels corresponding to (B). (D) The

mRNA levels of leptin in WAT (n = 3 for each group) and fed

serum leptin levels (n = 10 for each group) of female bitransgenic

mice were significantly elevated. (E) The mRNA levels of Lepr,

Socs3 in the striatum (n = 3 for each group) and hypothalamus

(n = 6–7 for each group) of female bitransgenic mice were not

changed. (F) The mRNA levels of some feeding related

neuropeptides in hypothalamus of female bitransgenic mice were

not changed (n = 6–7 for each group). * P,0.05, ** P,0.01 versus

littermate controls.

(TIF)

Figure S6 The mRNA levels of Pgc1a related genes in
the striatum of female mice, the mouse snout-anus
length and male serum T3, T4 levels. (A) The expression of

Pgc1a and its related genes did not alter in the striatum of female

bitransgenic mice (n = 3 for each group). (B) The mouse snout-anus

length was similar between bitransgenic mice and controls (n = 6–7

for each group). (C) Serum T3 and T4 levels were decreased in

male bitransgenic mice (n = 10–11 for each group). * P,0.05

versus littermate controls.

(TIF)

Figure S7 The Sirt1 mRNA levels in different brain
regions under feeding, fasting and refeeding conditions.
The Sirt1 mRNA levels of olfactory bulb, cerebral cortex,

striatum, hippocampus, hypothalamus, thalamus and hindbrain

from 8-week-old female mice fed ad libitum, fasted for 24 h, or

fasted for 24 h and refed for 24 h were analyzed by real-time PCR

(n = 5–7). * P,0.05 versus fed ad libitum.

(TIF)

Table S1 Primers used in real-time PCR.

(DOC)
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