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The pathognesis of psoriasis still remains not fully elucidated. Recent advances favor the idea that interactions between innate
and adaptive immune response drive inflammatory process in this disease. Innate antimicrobial peptides and proteins (AMPs)
are diverse group of small molecules that provide the first line of defense against invading pathogens. In recent years, the novel
functions of AMPs have been identified.There are three subclasses amongAMPs that have gained the special interest as a potentially
important player in the pathogenesis of psoriasis: cathelicidin, S100 proteins, and defensins. These AMPs have been shown to
modulate and trigger host immune response in psoriasis acting as interplayer between innate and adaptive immune mechanisms.
Overexpressed in psoriatic lesions, they prime immune cells for enhanced production of proinflammatory mediators and act as
chemoattractant for leukocytes.Therefore, the novel term describing AMPs alarmins has been suggested. Asmultifunctional player
in pathogenesis of psoriasis, AMPs may constitute potential target for therapeutic interventions. However, further investigations
are required to establish the methods of downregulation of the aberrant proinflammatory functions of AMPs without increasing
the risk of infections.

1. Introduction

Psoriasis is a chronic immune-mediated inflammatory skin
disease that affects approximately 1–3% of the population
worldwide and significantly impairs patients’ quality of life.
Psoriatic skin lesions are sharply demarcated scaly plaques.
They are histologically characterized by epidermal changes,
inflammatory skin infiltrate, and increased angiogenesis.The
pathogenesis of psoriasis is multifactorial and remains not
fully elucidated. It is thought to result from the combination
of genetic, environmental, and immunological factors [1–5].
Psoriasis is currently regarded as T-cell mediated inflam-
matory skin disease with certain systemic consequences,
including increased cardiovascular risk and diabetes. Con-
siderable progress in the understanding of the psoriasis
immunopathogenesis has been resulting in the development
of targeted systemic immunotherapies [4, 5]. Despite the
crucial role of T helper 1 (Th1),Th17,Th22 cells and associated

cytokines in psoriasis, recent studies highlight the significant
role of innate immune mechanisms [3–8]. Most current
concepts favor the idea that cell- and mediator-dependent
interactions between innate and adaptive immune system
together with keratinocyte defect may drive inflammatory
process in this disease. The keratinocytes within psoriatic
plaques show abnormal proliferation and differentiation and
likely influence T-cells and other immune cells by production
of various proinflammatory mediators. Recent evidence also
underlines the role of other innate immune cells, such
as dendritic cells in psoriasis [3, 7–9]. The characteristic
abnormality of psoriatic skin lesions is excessive production
of innate antimicrobial peptides andproteins (AMPs) [10–15].

Antimicrobial peptides and proteins (AMPs) are diverse
group of small molecules (12–100 amino acid residues) that
constitute primary effector system of innate immunity. They
provide the first line of defense against pathogens. Phyloge-
netically old, they may present similar sequences in various
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species. They lack the specificity of antigen recognition and
any characteristic biologically active amino acid sequence but
possess certain common structural features responsible for
their antimicrobial activity. AMPs contain positive charge,
relatively hydrophobic and amphipathic structure that allow
them to interact with negatively charged phospholipids
of microbial membrane. This results in pores formation
and antimicrobial activity. AMPs, produced in response to
danger, are able to kill in short time wide spectrum of
the microbes, such as bacteria, fungi, viruses, or protozoa
[15–20].

In 1990s the AMPs were discovered to be expressed in
human skin [11, 12]. They may be produced by both resident
skin cells and infiltrating immune cells, either constitutively
or in response to danger, such as infection, trauma, wound
healing, or chronic inflammation. Keratinocytes and phago-
cytes are the main source of AMPs in the skin [15, 20–
24]. Although the integral role of these molecules is to kill
pathogenicmicroorganism, in recent year the novel functions
of AMPs, far beyond their antimicrobial activity, have been
identified. In vertebrateAMPs seem tomaintain their biologi-
cal relevance acting through variety of mechanisms and con-
stitute important part of skin immune system. They control
host physiological functions, such as angiogenesis, wound
healing, and inflammation. Several AMPs have been shown
to modulate host immune-mediated inflammatory response
acting as chemotactic agents, angiogenic factors, regulators of
cell proliferation and differentiation, and proteinase inhibitor
[15, 16, 20–23]. They are able to trigger antigen-driven
immune response, acting as interplayer between innate and
adaptive immune systems. In the view of more functions of
AMPs than the antimicrobial activity the alternative term
describing these molecules has been proposed—alarmins
[23]. AMPs may influence cells through several mechanisms:
direct binding to specific receptors, changing the membrane
domain of receptors without acting as a ligand, or stimulation
of the release of membrane bound growth factors [15, 19].
Recent advances in our understanding of the novel functions
of AMPs have opened new perspective on the functioning
of immune system and shown the association between their
altered production and various human diseases. AMPs have
been demonstrated to be abundantly expressed in some
chronic immune-mediated inflammatory diseases, such as
psoriasis, and to contribute to their pathogenesis as important
mediator of epidermal-dermal communication. Dysregula-
tion of AMPs may contribute to the disease phenotype and
influence T-cell mediated response and epidermal changes.
Among AMPs there are three subclasses that have gained
the special interest as a potentially important player in the
pathogenesis of psoriasis: cathelicidin, S100 proteins, and
defensins [15, 17, 19, 20].

1.1. Cathelicidin. In the last decades the relevance of abnor-
mal production of cathelicidin for the development of pso-
riasis has been highlighted. Cathelicidins are one of the
major families of AMPs with N-terminal prosequence and
C-terminal antimicrobial domain, found in both vertebrates
and invertebrates Cathelicidin is named from highly con-
served N-terminus “cathelin” domain [10–12, 16, 25–27].

Application ofmousemolecular geneticmodels with targeted
deletion of cathelicidin showed that this AMP is essential
for the normal functioning of the innate host defense [28].
Contrary to other species, in human single cathelicidin gene,
cathelicidin antimicrobial peptide CAMP, located on chro-
mosome 3 has been identified as a coding region for inactive
precursor protein [29]. The expression of cathelicidin has
been shown to be upregulated in psoriatic skin lesions [10].
Moreover, the processing of cathelicidin precursor protein
is specific for psoriasis. Contrary to healthy skin, LL-37
peptide is the exclusively detectable form of cathelicidin
found in psoriatic lesions with possible consequences for
disease phenotype. LL-37 is the carboxy-terminal peptide
derived from the cleavage of precursor protein by proteases.
Its name comes from 37 amino acid residues starting with
the pair of leucines; it has a positive charge and forms
amphipathic, alpha-helical structure [30–33]. Keratinocytes
and phagocytes serve as a main source of LL-37 in psoriatic
lesions; however, it may be also produced by other cell types,
such as T-cells, NK-cells, monocytes, mast cells [10, 11, 15,
16, 23, 24, 27]. LL-37 has capacity to kill variety of microbes,
including Staphylococcus aureus, Escherichia coli, and Can-
dida albicans thatmay reflect enhanced antimicrobial defense
of disrupted skin barrier and lower frequency of infection in
patients with psoriasis [10, 19, 34]. However, additionally to
its antimicrobial capacity, LL-37 has been shown to modify
host immune responses and significantly contribute to the
pathogenesis of psoriasis [9, 15, 19, 20, 33, 35–37]. LL-37 has
been proposed to drive autoimmune inflammatory process
in psoriasis by variety of mechanisms including the peptide-
nucleic acid binding phenomenon [9].

Despite the considerable progress in understanding the
various aspects of psoriasis immunopathogenesis, the initial
step driving the inflammatory process in psoriasis is still not
fully elucidated [1–5, 8, 9].The secretion of IFN-𝛼 by activated
plasmacytoid dendritic cells (pDCs) is thought to be one of
the earliest events in psoriasis pathogenesis that subsequently
primes local innate and adaptive immune system [8]. Overex-
pressed in psoriatic skin lesions, LL-37 has shown to be cru-
cial mediator of pDCs activation. By formation of aggregates
with self-DNA, LL-37 enables pDCs to recognize self-DNA
released from damage cells through pattern recognition
receptors Toll like receptor (TLR) 9. Self-DNA-LL-37 com-
plexes prime pDCs for production of large amount of IFN-𝛼
Table 1(a) [9].This phenomenonmay represent an important
mechanism in which LL-37 initiates an autoinflammatory
cascade in psoriasis. The stimulated DCs have capacity to
influence the differentiation of naive T-cells into Th1/Th17
cells with production of associated cytokines that further
drive development of psoriatic lesions. According to classical
concept TLR-9 recognizes unmethylated DNA sequences
found in microbial DNA and serves as an innate warning
system against infections. In health pDCs are unable to
recognize self-DNA [9, 15, 38]. LL-37 has been also reported
to form complexes with self-RNA in psoriatic lesions leading
to the activation of both pDCs and myeloid DCs (mDCs)
and production of proinflammatory cytokines by these cells.
Self-RNA-LL-37 complexes prime pDCs for production
of IFN-𝛼 through TLR-7 and trigger production of tumor
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necrosis factor (TNF)-𝛼, IL-6, by mDCs in TLR-8-mediated
manner Table 1(a) [39]. Human slan (6-sulfo LacNAc) DCs
and the novel subtype of DCs are also activated by complexes
formed of LL-37 and self-RNA through TLR-7, TLR-8,
and TLR-9. These cells have been shown to abundantly
produce TNF-𝛼 and to induce Th1/Th17 differentiation. The
stimulation of slanDCs by self-RNA-LL-37 complexes results
in production of several proinflammatory cytokines by these
cells Table 1(a) [40]. LL-37 has been also shown to transport
self-DNA into monocytes that resulted in activation of these
cells with production of IFN-𝛼.The stimulation ofmonocytes
ismediated by double-strandedDNA, independently of TLRs
Table 1(a) [41]. Furthermore LL-37 has been demonstrated
to prime keratinocytes for production of type I IFNs (IFN-𝛼
and IFN-𝛽) and other proinflammatory cytokines, acting
as alarmin and amplifying inflammatory process in the
skin Table 1 [35, 36]. Activation of keratinocytes by LL-37
enhanced TLR-9 expression by these cells and subsequently
responsiveness to self-DNA [35]. Recently Chen et al. [42]
showed that LL-37 modulates proinflammatory response
in human keratinocytes. LL-37 induces production of
IL-6 and CXCL-8/IL-8 by human keratinocytes, acting
synergistically with Th17/Th22 cytokines (IL-17 and IL-
22) Table 1(a). Because of abundance of keratinocytes in
psoriatic skin lesions this mechanism may have crucial
relevance to the pathogenesis of psoriasis. Keratinocytes with
the ability to modulate immune host response may constitute
attractive target for therapeutic intervention in psoriasis
[35]. LL-37 also inhibits apoptosis of keratinocytes by
upregulation of cyclooxygenase-2 (COX-2) and inhibitor of
apoptosis-2 (IAP-2) and primes neutrophils for production
of reactive oxygen species and human alpha-defensins
Table 1(a) [43, 44]. Self-DNA and RNA complexes with
excessively produced LL-37 may constitute the trigger factor
that initiate and drive T-cell mediated autoinflammatory
process in psoriasis by activation of antigen presenting cells,
phagocytes, keratinocytes, and inhibition of apoptosis of
the latter cells. The epidermis is a rich source of self-nucleic
acids that can be released by external stimuli, such as
trauma, infection, or excessive keratinocytes differentiation.
Therefore, the above mentioned mechanisms may also partly
explain Koebner phenomenon [15, 19].

Cathelicidin may trigger inflammatory cell recruitment
and cytokines release acting also through other mecha-
nisms. LL-37 is a potent chemoattractant for mast cells,
monocytes/macrophages, T-cells, and neutrophils acting
through activation of formyl-peptide receptor-like 1 (FPRL-1)
Table 1(a) [23, 24, 45]. Cathelicidin also promote neovas-
cularization in psoriatic lesions, inducing the proliferation
and migration of endothelial cells that is crucial process in
formation of new blood vessels Table 1(a) [46]. Vitamin D3
has been identified as a potent inducer and regulator of LL-
3. IL-17A, a key mediator in psoriasis pathogenesis, has been
shown to enhance the induction of cathelicidin by vitamin
D3 [47, 48]. Furthermore, the immunomodulatory function
of LL-37 in psoriasis reflects its dual action on keratinocytes,
both pro- and anti-inflammatory, depending on location.
The extracellular or endosomal LL-37 enhances TLR9 expres-
sion in keratinocytes leading to increase in type I IFNs

production; intracellular or cytosolic LL-37 blocks the DNA-
triggered formation of absent in melanoma 2 in melanoma
2 (AIM2) inflammasomes in keratinocytes, inhibiting IL-
1𝛽 release [35, 49]. The latter mechanism may explain the
effectiveness of vitamin D analogues in the treatment of
psoriasis that regulate keratinocytes proliferation and differ-
entiation but increase expression of LL-37 [49]. The elevated
serum levels of cathelicidin have been shown in patients with
psoriasis. Cyclosporine therapy reduced cathelicidin serum
level, whereas NB-UVB therapy increased both serum levels
of vitamin D and LL-37 [50, 51]. The above mentioned data
underlines the important role of cathelicidin in initiating and
driving an autoinflammatory cascade in psoriasis.

1.2. S100 Proteins. In the last decades, S100 proteins have been
increasingly emerging as a key player of innate immunity,
important in the pathogenesis of various inflammatory,
metabolic, and neoplastic disorders. S100 proteins are a
multigenic family of small (9–13 kDa), acidic proteins that
are characterized by the presence of two calcium binding EF-
hands motifs. They are found exclusively in vertebrates and
most of them are encoded within epidermal differentiation
complex (EDC) on chromosome 1q21. More than twenty
different types of S100 proteins have been identified so
far. They are produced as monomers and spontaneously
form dimers/multimers [52–54]. The tissue and cell-specific
expression patterns of S100 proteins may suggest their
functional complexity and diversification. They are involved
in intracellular calcium-dependent and zinc-dependent sig-
naling, regulation of cells metabolism, proliferation and
differentiation, intercellular adhesion and invasion. Some
AMPs have been shown to regulate inflammatory response
acting through various mechanisms, including regulation
of transcriptional factors, modulation of enzymatic activity,
or cytoskeletal dynamics. In addition, S100A7 (psoriasin),
S100A8 (calgranulin A), S100A9 (calgranulin B), S100A12
(calgranulin C), and S100A15 (koebnerisin) show antimicro-
bial activity [15, 52–55].

1.2.1. S100A7 (Psoriasin)/S100A15 (Koebnerisin) Subfamily.
Human psoriasin (S100A7) and koebnerisin (S100A15) were
first identified as overexpressed in psoriatic plaques [13,
14]. They are encoded by genes located within the EDC
on human chromosome 1q21 that was identified as one of
psoriasis candidate loci (PSORS4). Additionally, koebnerisin
reveals an unusual genomic organization and is transcribed
into two alternate isoforms, S100A15-S (short isoform) and
S100A15-L (long isoform); they share the same coding region
but are differentially regulated through alternate promoters
[14]. The main difference between these two proteins is
the presence of a calcium-binding EF-hand motif in N-
terminus of S100A15 that is not found in S100A7. Despite
the highest homology among the S100 family (over 90%
sequence identity) both proteins show expressional and
functional diversity. S100A7 and S100A15 are overexpressed
by the epidermal suprabasal compartment in psoriatic lesion,
where both proteins show antimicrobial activity against
Escherichia coli [56, 57]. S100A15 is additionally produced in
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the epidermis by basal keratinocytes, langerhans cells, and
melanocytes and in the dermis by dendritic cells, smooth
muscle cells, and the endotheliumof blood vessels [55, 58, 59].
Upregulated in psoriatic lesions, psoriasin and koebnerisin
potentiate immune-mediated inflammatory process in the
skin. Both proteins act as chemoattractants for various leuko-
cyte subsets, linking innate and adaptive immune mecha-
nisms. S100A7-dependent signaling is mediated through the
multiligand receptor for advanced glycated end products
(RAGE), whereas S100A15 acts through a pertussis toxin
sensitive Gi-protein-coupled receptor (GiPCR). Psoriasin has
been shown to attract all three leukocytes subtypes: lympho-
cytes, monocytes, and granulocytes at similar concentrations.
Koebnerisin acts as a chemotactic factor for myeloid cells:
granulocytes and monocytes Table 1(b) [60]. Both proteins
are induced by Th1-, Th17-, and Th22-derived cytokines,
important in the pathogenesis of psoriasis that create charac-
teristic psoriatic proinflammatory milieu [61, 62]. However,
IL-17A, TNF-𝛼, and IL-22 differentially regulate koebnerisin
and psoriasin that indicate regulatory diversification of these
proteins [62]. IL-17A, a crucial player in pathogenesis of
psoriasis, is principal inducer of both proteins which acts
synergistically with other propsoriatic cytokines to induce
S100A7 and S100A15 [59, 62]. Furthermore, S100A15 and
S100A7 act as alarmins to prime keratinocytes for enhanced
production of proinflammatory cytokines that are crucial in
development of psoriatic lesions, such as TNF-𝛼, IL-6, and
IL-8 Table 1(b) [62]. Both proteins amplify the inflammatory
process in the skin. S100A7 and S100A15 are upregulated
in psoriasis by similar mediators and synergize to promote
inflammation. Thus, targeting S100A7-/S100A15-mediated
inflammatory loopmay have beneficial effect in the treatment
of psoriasis, as shown for the vitamin D analoque calcipotriol
and TNF-𝛼 inhibitors [61, 62].

Moreover, psoriasin has been demonstrated to regulate
neutrophils functions. It activates neutrophils to produce
proinflammatory cytokines and chemokines, such as IL-6,
IL-8, and TNF-𝛼, macrophage inflammatory protein, (MIP)-
1𝛼, MIP-1𝛽, and stimulates generation of reactive oxygen
species by these cells. Therefore psoriasin may contribute
to neutrophils stimulation during inflammation Table 1(b)
[57]. S100A7 promotes also angiogenesis by induction of
endothelial cells proliferation Table 1(b) [63]. The positive
associations between the levels of psoriasin and severity
of psoriasis as well as body mass index have been found
[64]. It should be pointed out that RAGE transduces signals
mediated by other S100 proteins, such as S100A8, S100A9,
S100A11, S100A12, and S100A13. S100-RAGE interactions
activate multiple intracellular signaling pathways, includ-
ing nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-𝜅B), activator protein 1 (AP-1), signal trans-
ducer, and activator of transcription 3 (STAT3) resulting
in increased expressions of proinflammatory cytokines and
cellular adhesion molecules. RAGE is expressed at relatively
low level in homeostasis and its expression increases in
situation of cells activation or stress. S100 protein interactions
with RAGE have been implicated in many disorders, for
example, in the pathogenesis of diabetes and atherosclerosis
[55, 65].

The increased susceptibility to develop inflammatory
lesions upon exposure to various environmental triggers
(Koebner phenomenon) is a hallmark of psoriatic skin [66].
As disease candidate genes, both psoriasin and koebnerisin
are already constitutively upregulated in inflammation-prone
psoriatic epidermis. S100A7 and S100A15 share an ancestral
protein in mice, mS100a7a15 [58]. Mirroring the increased
expression in psoriasis, transgenic mouse model primes the
skin for inflammation andmediates an increased susceptibil-
ity to develop a psoriasis-like phenotype upon exposure to
environmental stimuli [61]. The resulting immune response
is dependent on RAGE and characterized by immune cell
infiltration and elevated concentrations of Th1 and Th17
proinflammatory cytokines, which have been linked to the
pathogenesis of psoriasis. This pathogenetic psoriasis model
uses a psoriasis candidate gene to link the epidermis and
innate immune system in inflammation priming, highlight-
ing the S100A7A15-RAGE axis as a potential therapeutic
target.

1.2.2. Calgranulins. S100A8 (calgranulin A, migration
inhibitory factor-related protein 8, MRP-8) and S100A9
(calgranulin B, MRP-9) are members of S100 protein family,
mainly produced by myeloid cells such as neutrophils,
monocytes, andmacrophages.However, their expressionmay
be induced in some other cell types, including keratinocytes,
endothelial cells, and vascular muscle cells [67–70].

S100A8/S100A9 have been demonstrated to be excessively
produced by psoriatic keratinocytes. Overexpressed in psori-
atic epidermis, they have been shown to act through positive
feedback loop and stimulate proliferation and growth of
keratinocytes [67, 70, 71]. Contrary, it has been also suggested
that upregulation of S100A8 and S100A9 may inhibit ker-
atinocyte proliferation and survival and promote their differ-
entiation through intracellular, calcium-dependent signaling
[69, 70]. One possible explanation is that S100A8/S100A9
released to extracellular space may induce keratinocyte pro-
liferation and abnormal differentiation, whereas intracellular
form of these proteins may reduce mitotic activity of ker-
atinocytes [69]. Benoit et al. [70] suggested that effect of
S100A8/S100A9 in psoriasis is mainly dependent on extra-
cellular signaling. Moreover, S100A8/S100A9 are involved in
interactions between keratinocytes and other immune cells
and contribute to the pathogenesis of psoriasis by generat-
ing specific psoriatic milieu. They prime keratinocytes for
enhanced production of proinflammatory and proangiogenic
cytokines, such as IL-6, IL-8, and TNF-𝛼, growth-related
gene product (GROs) Table 1(b) [71]. Both proteins attract
immune cells to the sites of inflammation and thus contribute
to development of psoriatic skin lesions. Furthermore, they
promote angiogenesis by inducing endothelial cells prolifera-
tion and formation of new blood vessels Table 1(b) [71]. It has
been shown that S100A8/S100A9 are involved in development
of autoimmunity by induction of autoreactive CD8+T-cells
[72]. The elevated serum level of S100A8/S100A9 has been
demonstrated, likely as a result of excessive production of
these proteins in skin lesions [69]. S100A12 (calgranulin C)
have been also shown to be overexpressed in psoriatic



Journal of Immunology Research 7

plaques; however its exact role in psoriasis need further
investigation [73]. Calgranulins act through RAGE signaling
[69].

1.3. Human Defensins. Defensins are group of AMPs with six
conserved cysteine residues that form three intramolecular
disulfide bridges. They are divided into 𝛼-, 𝛽-, 𝜃-defensins,
depending on amino acid sequences of cysteine residues
and disulfide bridge alignment. Six human 𝛼-defensins,
alternatively termed human neutrophil peptides (HNPs),
have been identified. They are produced by neutrophils
(HNP 1-4) and intestinal Paneth cells (HNP 5,6). HNP1-3
have been extracted from psoriatic scale [11, 15, 16, 19, 24].
Four human 𝛽-defensins (HBD1-4) have been identified in
the human skin. They are produced mainly by epithelia of
skin and respiratory tract but also by peripheral blood cells.
These peptides have broad spectrum of antimicrobial activity
against both gram-positive and gram-negative bacteria,
fungi, and viruses that may be clinically associated with low
level of skin infections in patients with psoriasis [12, 16, 74].
It has been demonstrated that 𝛽-defensin-1 knock-out mice
showed higher mortality after influenza virus infection
compared to wild-type mice [75]. HBD1 is constitutively
expressed in human skin. Although HBD1 has only minor
antimicrobial activity in comparison with other AMPs, when
reduced by thioredoxin it becomes potent AMP [76, 77].
The expression of HBD2-4 in keratinocytes is very low in
homeostasis but becomes upregulated during infection,
inflammation, and wound healing. HBD2 and HBD3
have been found to be upregulated in psoriatic skin lesions
[12, 74].Their expression is induced byTh1- andTh17-derived
proinflammatory cytokines, including TNF-𝛼, IL-1𝛽, and
INF-𝛾. Additionally, IL-17A and IL-22 have been shown to
stimulate expression of HBD2 [12, 74, 78]. 1,25-(OH) Vitamin
D3 is another inducer of defensins expression [79, 80]. It
has been demonstrated that individual high HBDs genomic
copy number is associated with susceptibility to develop
psoriasis [81]. Serum level of HBD-2 correlates with disease
activity and has been proposed asmarker of psoriasis severity
[82]. However, further studies involving larger population
of patients as well as commercially available sensitive
ELISA tests are needed to establish HBD-2 serum level as a
marker of psoriasis severity in daily practice. Furthermore,
HBDs have been shown to have chemotactic effect on
immune cells, in GiPCRs-mediated manner. HBD1-3 act as
chemotactic factor for memory T-cells and DCs. HBD2 has
additionally chemotactic effect onmast cells and neutrophils,
whereas HBD3-4 attract also monocytes/macrophages
Table 1(c) [23]. Furthermore, HBD2-4 act as alarmins
and prime keratinocytes for enhanced production of
proinflammatory cytokines and chemokines, including
IL-6, IL-10, monocyte chemoattractant protein-1 (MCP-1),
macrophage inflammatory protein-3𝛼 (MIP-3𝛼), regulated
upon activation normal T-cell expressed and secreted
(RANTES) and interferon-gamma-inducible protein-10
(IP-10) that is mediated by GiPCR and 5-phospholipase C
(PLC) Table 1(c) [83]. HBD2-4 also stimulate keratinocyte
proliferation and migration [76]. Furthermore, HBD3-4

induce degranulation of mast cells and production of
prostaglandin D2 and pruritogenic cytokines-IL-31 as
well as increase mast cell-mediated vascular permeability
in skin. This mechanism may contribute to the pruritus,
reported in patients with psoriasis Table 1(c) [84, 85]. HBD-2
activates immature dendritic cells through TLR-4 dependent
mechanism and induces T helper type 1 response [86].
Recently Tewary et al. [87] showed that HBD-2 and HBD-3,
similarly to LL-37, activate pDCs. By formation of aggregates
with self-DNA,HBD-2 andHBD-3 enable pDCs to recognize
self-DNA through TLR-9 that results in production of IFN-𝛼
by these cells Table 1(c).

2. Conclusions

AMPs have emerged as an important multifunctional player
in pathogenesis of psoriasis. Recent advances highlight the
role of cathelicidin, S100 proteins, and defensins for disease
susceptibility and manifestation of psoriasis. The functional
diversity and activity of AMPs are far beyond simple antimi-
crobial action only. These host molecules play significant
role in interactions between resident keratinocytes and skin
infiltrating immune cells. They act as interplayer and link
innate and adaptive immune mechanisms. Overexpressed in
psoriatic lesions, they act as alarmins on keratinocytes and
other immune cells and as chemoattractant for leukocytes.
AMPs are able to prime keratinocytes for the enhanced
production of proinflammatory mediators and potentiate
inflammatory process in the skin. Furthermore, LL-37, HBD-
2, and HBD-3 have been demonstrated to activate antigen
presenting dendritic cells initiating early phase of inflamma-
tory cascade in psoriasis and driving autoimmune response.
Thus, AMPs may constitute potential target for therapeutic
interventions in psoriasis. Current therapeutic strategies in
psoriasis focus on inhibition of certain proinflammatory
cytokines or pathways, crucial in pathogenesis of psoriasis.
The inhibition of the early steps of inflammatory cascade
in psoriasis, mediated by AMPs with subsequent suppres-
sion of Th1-/Th17-cells differentiation might constitute inter-
esting therapeutic option. However, further investigations
are required to downregulate proinflammatory functions of
AMPs without inducing significant immunosuppression. As
previously suggested [35], the normalization of aberrant,
upregulated expression of AMPs in keratinocytes might
provide a therapeutic “topical” strategy without risks of
significant systemic immunosuppression.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Authors’ Contribution

R. Wolf and J. C. Szepietowski contributed equally to this
work.



8 Journal of Immunology Research

References

[1] F. O. Nestle, D. H. Kaplan, and J. Barker, “Mechanisms of
disease: psoriasis,” New England Journal of Medicine, vol. 361,
no. 5, pp. 444–509, 2009.

[2] G. Tonel and C. Conrad, “Interplay between keratinocytes
and immune cells-Recent insights into psoriasis pathogenesis,”
International Journal of Biochemistry and Cell Biology, vol. 41,
no. 5, pp. 963–968, 2009.

[3] B. J. Nickoloff, J.-Z.Qin, and F.O.Nestle, “Immunopathogenesis
of psoriasis,” Clinical Reviews in Allergy and Immunology, vol.
33, no. 1-2, pp. 45–56, 2007.

[4] J. C. Prinz, “From bench to bedside-translational research in
psoriasis,” Journal of the European Academy of Dermatology and
Venereology, vol. 24, supplement 6, pp. 1–4, 2010.

[5] G. Girolomoni, U. Mrowietz, and C. Paul, “Psoriasis: rationale
for targeting interleukin-17,” British Journal of Dermatology, vol.
167, pp. 717–724, 2012.

[6] M. A. Lowes, A. M. Bowcock, and J. G. Krueger, “Pathogenesis
and therapy of psoriasis,”Nature, vol. 445, no. 7130, pp. 866–873,
2007.
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Enerbäck, “Psoriasin (S100A7) increases the expression of ROS
and VEGF and acts through RAGE to promote endothelial cell
proliferation,” Breast Cancer Research and Treatment, vol. 134,
no. 1, pp. 71–80, 2011.

[64] R. H. Salama, H. A. Al-Shobaili, A. A. Al Robaee, and A.
A. Alzolibani, “Psoriasin: a novel marker linked obesity with
psoriasis,” Disease Markers, vol. 34, no. 1, pp. 33–39, 2013.

[65] S. Park, S.-J. Yoon, H.-J. Tae, and C. Y. Shim, “RAGE and
cardiovascular disease,” Frontiers in Bioscience, vol. 16, no. 2, pp.
486–497, 2011.
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