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Group (pooled) testing is becoming a popular strategy for screening large pop-
ulations for infectious diseases. This popularity is owed to the cost savings that
can be realized through implementing group testing methods. These methods
involve physically combining biomaterial (eg, saliva, blood, urine) collected on
individuals into pooled specimens which are tested for an infection of inter-
est. Through testing these pooled specimens, group testing methods reduce the
cost of diagnosing all individuals under study by reducing the number of tests
performed. Even though group testing offers substantial cost reductions, some
practitioners are hesitant to adopt group testing methods due to the so-called
dilution effect. The dilution effect describes the phenomenon in which biomate-
rial from negative individuals dilute the contributions from positive individuals
to such a degree that a pool is incorrectly classified. Ignoring the dilution
effect can reduce classification accuracy and lead to bias in parameter estimates
and inaccurate inference. To circumvent these issues, we propose a Bayesian
regression methodology which directly acknowledges the dilution effect while
accommodating data that arises from any group testing protocol. As a part of
our estimation strategy, we are able to identify pool specific optimal classifica-
tion thresholds which are aimed at maximizing the classification accuracy of the
group testing protocol being implemented. These two features working in con-
cert effectively alleviate the primary concerns raised by practitioners regarding
group testing. The performance of our methodology is illustrated via an exten-
sive simulation study and by being applied to Hepatitis B data collected on Irish
prisoners.
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1 INTRODUCTION

Group (pooled) testing was first proposed by Dorfman1 as a strategy that could be used to screen United States Army
inductees for syphilis during the Second World War. The strategy outlined by this seminal work suggested that pooled
specimen be formed, by amalgamating biomaterial (eg, blood, urine) collected from individuals, and tested for the
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infection of interest. Based on the outcomes of the pool tests, individuals are either diagnosed as being negative or are
subjected to further testing. In particular, as a part of Dorfman’s original strategy, individuals contributing to pools that
test negative would be diagnosed as such, while positive pools would be resolved by retesting contributing individuals
one-by-one. If the infection/disease of interest is relatively rare, it is easy to see that this testing strategy can confer a sub-
stantial reduction in testing cost, that is, in such settings a majority of the pools will be negative allowing practitioners to
diagnose all contributing individuals at the expense of a single diagnostic test per pool. Given these potential cost savings,
group testing has been adopted to screen for a variety of infectious diseases (eg, HIV,2 Zika,3 influenza,4 SARS-CoV-25)
as well as in alternate application areas (eg, animal testing,6,7 bio-terrorism detection,8 drug discovery,9 genetics10).

In addition to case identification (ie, determining which specific individuals have a disease, prior infection, etc.),
group testing has also been posited as a tool that can be used to reduce costs associated with conducting surveillance.
This is accomplished by designing statistical methodologies that can estimate population level characteristics based on
data arising from implementing a group testing protocol. The origins of the group testing estimation problem can be
traced to Thompson11 and Chiang and Reeves,12 who independently developed a prevalence estimator based on test
outcomes taken solely on pooled specimens. Since this proposal, the prevalence estimation problem has received consid-
erable attention, for example, see Hung and Swallow13 for a nice review. Extending these works to allow for the inclusion
of covariate information, a number of regression procedures have been developed, which include parameteric,14-16 semi-
parameteric,17,18 and non-parametric19-21 techniques. A common limitation among the aforementioned methodologies
is that they do not account for the dilution effect, which, if present and unaccounted for, can lead to bias in parameter
estimates and inaccurate inference.

To understand the underpinnings of the dilution effect, one must consider the underlying mechanism by which diag-
nostic tests classify the infection status of a specimen (pooled or unpooled). Most assays render a binary diagnosis based
on the measured concentration of a continuous biomarker (eg, antibody level, antigen concentration) which is indicative
of the infection of interest. Thus, a diagnosis is levied based on whether a measured biomarker concentration exceeds
a diagnostic threshold, with elevated concentrations typically being indicative of infection. With this in mind, the dilu-
tion effect describes the phenomenon by which an assay’s sensitivity (ability to classify a truly positive sample as such)
is adversely impacted by pooling multiple biospecimens. This impact is due to the biomarker concentration of a positive
specimen being diluted when pooled with several negative ones.

To account for the dilution effect, a number of regression methodologies have been developed. McMahan et al22

was the first to propose such a procedure, though this proposal incorporates data from master pools only. Wang et al23

expanded on this approach by incorporating data arising from retesting protocols. Other approaches include Delaigle
and Hall24 and Warasi et al.25 More recently, Mokalled et al26 developed a regression methodology which acknowledges
the dilution effect by assuming that the observed testing outcomes are continuous biomarker concentrations. A primary
strength of this work is that the underlying biomarker distributions for the positive and negative individuals are assumed
to be unknown and are estimated as part of the regression procedure, thus circumventing restrictive assumption made
by previous proposals. However, this approach cannot accommodate data observed from resolving positive pools and it
ignores the potential for measurement error.

To overcome these limitations, herein we develop a Bayesian group testing regression methodology which specifi-
cally accounts for the dilution effect. Our approach, unlike Mokalled et al,26 can accommodate testing data arising from
any group testing protocol, can easily be implemented under any biomarker distributional assumptions, and directly
acknowledges the error associated with measuring the biomarker concentrations. In developing our approach, we con-
sider four commonly encountered settings; namely, (1) the information available on the biomarker distributions is poor
quality, (2) there is limited information available, (3) there is a great deal of information available, and (4) the distri-
butions are known. Through analyzing continuous outcomes measured on pools, our approach can estimate both a
regression function and the distributions of the biomarker concentrations of positive and negative individuals. Further,
in settings where limited/poor information is available for the biomarker distributions, we propose a two-stage procedure
under which our proposed modeling framework can be used to set diagnostic thresholds to minimize misclassifications,
thus merging the classification and estimation problems. To facilitate model fitting, an easy to implement Markov chain
Monte Carlo (MCMC) posterior sampling algorithm is developed. The finite sample performance of our approach is
illustrated through in-depth numerical studies and by being applied to Hepatitis B virus (HBV) data collected on Irish
prisoners.

The remainder of this article is organized as follows. In Section 2, we develop our Bayesian regression methodology
for group testing data. This includes deriving the observed data likelihood, developing the proposed MCMC posterior
sampling algorithm, and outlining our two-stage procedure for estimating pool-specific thresholds. Section 3 covers case
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identification. In Section 4, we use simulation to assess the performance of both the proposed estimation and case iden-
tification aspects of our work. In Section 5, we apply our methods to the HBV data. In Section 6, we conclude with a
summary discussion. Additional details are provided in the Web Appendix.

2 METHODOLOGY

2.1 The model

Suppose we are screening N individuals for a disease/infection of interest via a group testing protocol. Let Yi denote the
true infection status of the ith individual, for i = 1, … ,N, with the convention that Yi = 1 indicates that the individual
is infected and Yi = 0 otherwise. We assume that an individual’s true disease status can be associated with a set of Q
individual-level covariates, denoted xi, through the following model

Yi|xi, 𝜷
ind∼ Bernoulli{g−1(x′i𝜷)}, for i = 1, … ,N, (1)

where 𝜷 is a Q-dimensional vector of regression coefficients and g(⋅) is a known binary link function, for example, logistic
or probit. As is common in the literature, we assume that the individuals’ statuses (ie, the Yi’s) are conditionally indepen-
dent given the covariate information. Moreover, it is important to note that in the presence of imperfect testing the Yi’s
are unobservable, even under individual level testing.

In our proposed modeling framework, we relate the individuals’ true statuses to the outcomes measured on pools
through their true biomarker concentrations. To this end, let 𝜁i denote the true biomarker concentration of the ith
individual, and we assume that these variables are conditionally (given Yi) distributed as

𝜁i|Yi,𝜽0,𝜽1 ∼ (1 − Yi)f𝜁−(𝜁 |𝜽0) + Yif𝜁+(𝜁 |𝜽1), (2)

where f
𝜁
−(⋅|𝜽0) and f

𝜁
+(⋅|𝜽1) are the probability density functions of the biomarker concentrations of the negative and pos-

itive individuals, respectively, and 𝜽 = (𝜽0,𝜽1)′ is a vector of parameters governing these distributions. A few comments
are warranted. First, given the individuals’ true statuses, we assume that the 𝜁i are conditionally independent of each
other and the covariates. Second, as with the individuals’ true statuses, in the presence of imperfect testing the 𝜁i’s are
unobservable. Lastly, in some settings it may be reasonable to assume 𝜽 is known, while in others it may be unknown.
When 𝜽 is unknown, some information (of various quality and quantity) might nevertheless be available. Our method
facilitates the inclusion of such information if it exists.

To develop a general methodology, we note that many group testing protocols have been proposed for classifi-
cation1,27-29 and/or quality control purposes.30,31 Most of these protocols require a number of the individuals under
study to be tested in multiple pools. To track pool membership, we introduce the index set j which identifies the
individuals who contributed to the jth pool, for j = 1, … , J, that is, i ∈ j if and only if individual i contributes
biomaterial to pool j. Herein, unlike previous proposals, we assume that the observed data collected from assaying
the jth pool consists of its measured biomarker concentration, which we denote by j, for j = 1, … , J. To relate the
individuals’ true biomarker concentrations to those measured on pools, we assume that the (true) biomarker con-
centration of the jth pool, 𝜁j , is the arithmetic average of the concentrations of the contributing individuals, that
is, 𝜁j = |j|

−1 ∑
i∈Pj

𝜁i. This assumption is common among the literature23,26 and is reasonable as long as pools are
formed from equal volume aliquots. To relate these two variables, we assume the following classical measurement error
model

j|𝜻 , 𝜏
2 ind∼ Normal(𝜁j , 𝜏

2) for j = 1, … , J,

where 𝜻 = (𝜁1, 𝜁2, … , 𝜁N)′, and 𝜏2
> 0 is an unknown error variance. A few comments are warranted. First, it would be

relatively easy to allow for other types of measurement error. For example, one could allow the magnitude of the error
variance to depend on the biomarker concentration being measured by assuming that

j|𝜻 , 𝜏
2 ind∼ Normal(𝜁j , 𝜁j𝜏

2) for j = 1, … , J.
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Conceptually, this would be easy to incorporate into our approach, however for simplicity, we restrict our attention to
constant error variance scenario. Second, given that a number of the individuals may contribute to multiple pools, the
j’s are generally not independent. Although, under our assumed measurement error model, the j’s are conditionally
independent given the true biomarker concentrations of the pools (or equivalently 𝜻).

This observation forms the crux of our model fitting strategy. In particular, by exploiting the conditional independence,
one can express the conditional distribution of the observed data as:

𝜋(|𝜹) =
∫
𝜋(|𝜻 , 𝜹)𝜋(𝜻|𝜹)d𝜻

=
∫
𝜋(|𝜻 , 𝜹)

∑

Y∈𝒴
𝜋(𝜻|Y, 𝜹)𝜋(Y|𝜹)d𝜻

=
∫

J∏

j=1
f (j|𝜁j , 𝜏

2)
∑

Y∈𝒴

N∏

i=1
f
𝜁
−(𝜁i|𝜽0)1−Yi f

𝜁
+(𝜁i|𝜽1)Yi g−1(xi𝜷)Yi{1 − g−1(xi𝜷)}1−Yi d𝜻 ,

where  = (1,2, … ,J)′, 𝜹 = (𝜽, 𝜷, 𝜏2)′, Y = (Y1,Y2, … ,YN)′,𝒴 = {y = (y1, y2, … , yN)′ ∶ yi ∈ {0, 1}}, and f (⋅|a, b) is
the probability density function of a normal random variable with mean a and variance b. Given the observed data model,
we can complete our Bayesian model by assigning prior distributions for the model parameters. To this end, we specify
normal and inverse gamma priors for 𝜷 and 𝜏2, respectively, that is, 𝜷 ∼ N(0,𝚺

𝛽
) and 𝜏2 ∼ IG(𝛼

𝜏
, 𝛽
𝜏
). In practice, the

hyperparameters of these priors are selected so that they are diffuse,32 though if the magnitude of measurement error is
well-understood for the laboratory procedure under consideration, an informative prior distribution could be used; for
more information on how this can be accomplished see Klauenberg et al.33 The prior specifications for 𝜽0 and 𝜽1 are
intrinsically tied to the assumed distributional families of f

𝜁
− and f

𝜁
+ . To avoid loss of generality, we will denote these

prior distributions by 𝜋(𝜽0) and 𝜋(𝜽1) while leaving their particular form unspecified. It is important to note that the
model in (2) hierarchically represents a mixture model and in therefore subject to the “label switching” problem, where
the rolls of f

𝜁
− and f

𝜁
+ can be reversed. This issue is common in mixture models34,35 and is typically resolved by applying

a relabeling algorithm,35-37 imposing constraints on the parameters,38 or by assigning informative prior distributions.39,40

Herein, we adopt the last strategy, and note that the role of the informative priors is primarily to discourage the label
switching problem by diminishing the interchangeability of the biomarker distributions. However when high quality
biomarker information is available, the informative priors also provide a means of incorporating this information into the
model. As we show in our simulation study and data application, these informative prior distributions do not need to be
correctly specified in order for our method to perform well. In fact, our method performs well in our data application even
when 𝜋(𝜽0) and 𝜋(𝜽1) are egregiously misspecified and strongly informative. Web Appendix A provides further discussion
of other strategies for preventing or resolving the label switching problem, as well as guidance for selecting the most
appropriate strategy for particular applications.

2.2 Estimation

While the observed data likelihood simplifies considerably under certain group testing protocols, obtaining a
“closed-form” simplified expression for the general case can prove to be quite cumbersome, if at all possible. Moreover,
evaluating the likelihood via numerical integration is computationally impractical since it would require computing an
N-dimensional integral whose integrand includes a 2N -dimensional sum. To circumvent these difficulties, we propose a
two-stage data augmentation approach which begins by introducing 𝜻 and Y as latent random variables. Proceeding in
this fashion yields the following augmented data likelihood

𝜋(, 𝜻 ,Y|𝜹) =
J∏

j=1
f (j|𝜁j , 𝜏

2)
N∏

i=1
f
𝜁
−(𝜁i|𝜽0)1−Yi f

𝜁
+(𝜁i|𝜽1)Yi g−1(xi𝜷)Yi{1 − g−1(xi𝜷)}1−Yi

. (3)

The next stage in our data augmentation strategy introduces 𝝍 = (𝜓1, 𝜓2, … 𝜓N)′ as a means to decompose the binary
regression model, thus making the posterior sampling of 𝜷 straightforward. The distribution that 𝜓i obeys is specifically
tied to the specified link function. Herein, we focus on the case in which g(⋅) is either the probit or logistic link, which
leads to 𝜓i being specified as a truncated normal or Pólya-Gamma random variable, respectively; for further details see



4686 SELF et al.

Albert and Chib41 and Polson et al.42 Under either link function, the augmented data likelihood after the second stage
can be expressed as

𝜋(, 𝜻 ,Y,𝝍|𝜹) =
J∏

j=1
f (j|𝜁j , 𝜏

2)
N∏

i=1
f
𝜁
−(𝜁i|𝜽0)1−Yi f

𝜁
+(𝜁i|𝜽1)Yi f (hi|xi𝜷, 𝜔i)h(𝜓i), (4)

where hi = 𝜓i, 𝜔i = 1, and h(𝜓i) = I(𝜓i > 0,Yi = 1) + I(𝜓i < 0,Yi = 0) under the probit link, while under the logis-
tic link, hi = 𝜅i∕𝜓i, h(𝜓i) = exp{𝜅2

i ∕(2𝜓i)}𝜑(𝜓i), 𝜅i = Yi − 0.5, 𝜔i = 𝜓−1
i , and 𝜑(⋅) denotes the density function of a

Pólya-Gamma(1,0) random variable; for further details see Polson et al.42

To develop our posterior sampling algorithm, we note that based on the forms provided in (3) and (4), it is easy to
identify the full conditional distributions of several parameters. In particular, we have that

𝜷|Y,𝝍 ∼ N(𝝁∗
𝛽

,𝚺∗
𝛽

),

𝜏

2|, 𝜻 ∼ IG (𝛼∗
𝜏
, 𝛽

∗
𝜏
) ,

Yi|𝜁i, 𝜷,𝜽0,𝜽1 ∼ Bernoulli
(

p∗i
)
,

where the specific forms of 𝝁∗
𝛽

, 𝚺∗
𝛽

, 𝛼∗
𝜏

, 𝛽∗
𝜏

, and p∗i are provided in Web Appendix B. Further, when g(⋅) is taken to be the
probit or logistic link we have that the full conditional distribution of 𝜓i is

𝜓i|𝜷,Yi ∼ TN{xi𝜷, 1,(Yi)},
or

𝜓i|𝜷 ∼ PG(1, xi𝜷),

respectively, where(⋅) controls the support of the truncated normal distribution, with(0) = (−∞, 0) and (1) = (0,∞),
and PG(a, b) denotes the Pólya-Gamma distribution with parameters a and b.

We now turn attention toward the remaining parameters, namely 𝜁i, 𝜽0, and 𝜽1. The full conditional distributions of
these variables are given by

𝜋(𝜁i|, 𝜻 ,Y, 𝜹) ∝
∏

j∈i

f (j|𝜁j , 𝜏
2)f

𝜁
−(𝜁i|𝜽0)1−Yi f

𝜁
+(𝜁i|𝜽1)Yi

,

𝜋(𝜽0|𝜻 ,Y) ∝
N∏

i=1
f
𝜁
−(𝜁i|𝜽0)1−Yi

𝜋(𝜽0),

𝜋(𝜽1|𝜻 ,Y) ∝
N∏

i=1
f
𝜁
+(𝜁i|𝜽1)Yi

𝜋(𝜽1),

where i = {j ∶ i ∈ j}. Regretfully, under common biomarker distributional assumptions (eg, gamma, log-normal)
these full conditionals are not recognizable as a member of a common family. For this reason, and generality, we make use
of a Metropolis-Hastings (MH) algorithm to sample these terms. Thus, the proposed Markov chain Monte Carlo (MCMC)
sampling algorithm consists of a Metropolis-Hastings-within-Gibbs sampling scheme. For a detailed implementation of
our posterior sampling algorithm, see Web Figures 1-4. Note, in implementing the proposed approach, if the biomarker
distributions are known with certainty, then 𝜽0 and 𝜽1 can be treated as fixed constants instead of being sampled from
their posterior distributions. For example, if high quality data is available on a large number of positive and negative
individuals, then 𝜽0 and 𝜽1 can be estimated from this data a priori and held constant during the model fitting process.

3 CASE IDENTIFICATION

The dilution effect can also adversely impact the classification accuracy of group testing protocols. This effect can be mit-
igated by setting diagnostic thresholds that acknowledge the dilution effect based on a priori knowledge of the biomarker
distributions; for further discussion see Wang et al.43 In practice, the information available for the biomarker distributions
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can be of varying quality and quantity. In the context of a rare or newly emerging infectious disease, the available infor-
mation might be limited to a handful of measurements on positive and negative individuals. Even in more established
diseases, if the causative pathogen mutates rapidly, available information may quickly become outdated. Alternatively, if
the disease exhibits heterogeneity among different populations, information available from one population may not gen-
eralize well to other populations. In an effort to guard against the dilution effect and to improve classification accuracy of
group testing strategies in settings where limited/poor information is available for the biomarker distributions, we propose
a two-stage procedure which leverages testing information to guide case identification. In the first stage, our estimation
methodology is used to estimate “optimal” pool specific diagnostic thresholds which acknowledge the dilution effect.
Based on these diagnostic thresholds, retesting is completed via a group testing protocol. In the second stage, we make
use of the retesting information to refine the estimated thresholds with an eye toward identifying pools (or individuals)
who were potentially misclassified in the first stage. It is important to note that we consider the setting in which lim-
ited information is available about the biomarker distributions and researchers do not feel comfortable specifying these
distributions exactly, that is, there is considerable uncertainty regarding f

𝜁
+ and f

𝜁
− . If these distributions were known a

priori and researchers were interested in classification only, the work of Wang et al could be used to set the diagnostic
thresholds.43

3.1 Optimal threshold selection

In what follows, we seek to identify the optimal diagnostic threshold for a pool consisting of c individuals, which we
denote by t▿(c). If the biomarker distributions were known, one can identify t▿(c) as

t▿(c) = argmax
t

{Sp(c, t) + Se(c, t) − 1},

where Sp(c, t) is the probability that a pool consisting of c negative individuals will test negative under a diagnostic thresh-
old t and Se(c, t) is the probability that a pool consisting of 1 positive and c − 1 negative individuals will test positive under
a diagnostic threshold t. Formally, under the model formulation discussed above, we have that

Sp(c, t) =
∫

t

−∞∫

∞

−∞
cf (u|v, 𝜏2)f c(0)

𝜁

(cv)dvdu,

Se(c, t) =
∫

∞

t ∫

∞

−∞
cf (u|v, 𝜏2)f c(1)

𝜁

(cv)dvdu,

where f c(q)
𝜁

= f (c−q)∗
𝜁
− ∗ f (q)∗

𝜁
+ , “∗” denotes the usual convolution operator, and f (q)∗

𝜁

denotes the q-fold convolution of f
𝜁

with
itself. For further discussion on the derivation of these expressions, see McMahan et al.22 A few comments are warranted.
First, the objective function used to identify the thresholds was inspired by the Youden index, which is commonly adopted
for setting diagnostic thresholds for individual level testing. Second, as a strategy for setting thresholds, this approach has
been well explored by Wang et al.43 Lastly, computing the thresholds as discussed above requires one to know f

𝜁
+ and f

𝜁
− ,

or equivalently 𝜽0 and 𝜽1.
In settings where such knowledge about the biomarker distributions is unavailable, one can estimate the thresholds

described above by replacing the unknown parameters 𝜽0 and 𝜽1 by their estimates. To this end, we assume that we
have access to j, for j = 1, … , J, arising from the first stage of a group testing protocol, for example, the biomarker
concentrations measured on master pools as a part of the first stage of Dorfman testing or row and column pool results
from implementing array testing. Based on these assessments, the estimation methodology described above can be utilized
to estimate 𝜽0 and 𝜽1 and hence the optimal thresholds. Admittedly, especially in high volume settings, it is expected that
the estimates of 𝜽0 and 𝜽1 will stabilize after enough data is collected and analyzed by the proposed approach. After this
has occurred, one could use the method of Wang et al to set diagnostic thresholds treating the biomarker distributions as
known quantities.

3.2 Quality control stage

Once the thresholds have been determined by the approach outlined above, the group testing protocol can be completed,
that is, initially tested pools can be classified and retesting can be conducted as necessary. As a part of the retesting
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F I G U R E 1 This figure presents a flowchart that outlines our quality control adapted variants of Dorfman (left panel) and array (right
panel) testing. These adaptations require iterating between testing, classification, and retesting. At each iteration, estimation results are used
to update classification thresholds

process, we gain more information by resolving positive pools which can be assimilated into our model to refine our
understanding about the unknown model parameters. Thus, as a part of the second stage of our proposed procedure,
we assert that our model should be re-fit to this extended dataset and that the diagnostic thresholds be re-estimated.
Once this process is complete, one can use the updated diagnostic thresholds to identify discrepancies, for example,
pools/individuals initially diagnosed to be negative that are re-classified as positive. In some cases, this could require
that additional pools be resolved. Given the numerous group testing protocols that have been proposed, it is hard to
enumerate how all possible discrepancies could arise and whether they would necessitate further retesting. That is to say,
the retesting process would have to be protocol specific. Figure 1 provides flowcharts depicting the implementation of two
such strategies under Dorfman and array testing. This cycle of retesting and re-estimation could be allowed to continue
until no discrepancies remain, or until a pre-specified number of updates have been performed.

4 SIMULATION STUDY

4.1 Simulation configuration

To demonstrate the performance of the proposed methodology, we conducted an extensive simulation study. As a part of
this study, we generated true disease statuses for N individuals, for N ∈ {900, 1800}, from the following population-level
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models

M1: P(Yi = 1|xi) = g−1(𝛽0 + 𝛽1xi1 + 𝛽2xi2); xi = (xi1, xi2)′, 𝜷 = (𝛽0, 𝛽1, 𝛽2)′ = (−5, 2, 1)′,
M2: P(Yi = 1|xi) = g−1(𝛽0 + 𝛽1xi1 + 𝛽2xi2); xi = (xi1, xi2)′, 𝜷 = (𝛽0, 𝛽1, 𝛽2)′ = (−3, 0.5, 1.5)′,

where g(⋅) is the logistic link, xi1 ∼ N(0, 1), and xi2 ∼Bernoulli(0.5). Models M1 and M2 yield overall disease prevalences
of 5% and 12%, respectively. To simulate biomarker concentrations for the positive and negative individuals, we consider
2 separate specifications:

D1: 𝜁i|Yi = y ∼ Gamma(𝛼y, 𝜙y); 𝜹 = (𝛼0, 𝛾0, 𝛼1, 𝛾1, 𝜷
′)′ = (2.5, 0.5, 80, 2, 𝜷′)′,

D2: 𝜁i|Yi = y ∼ Gamma(𝛼y, 𝜙y); 𝜹 = (𝛼0, 𝛾0, 𝛼1, 𝛾1, 𝜷
′)′ = (2.5, 0.5, 20, 1, 𝜷′)′,

where the specification in D1 allows for near perfect separation, while D2 allows for overlap between the 2 distributions;
see Figure 2.

F I G U R E 2 Simulation results: Summary of the posterior mean estimates of ̂𝜽 from model M1, under biomarker distributions D1 (top
row) and D2 (bottom row) obtained from individual (A1), Dorfman (A2), and array (A3) testing. The curves represent the average estimate of
the biomarker distributions, plotted against the true densities. The left column corresponds to N = 900 and the right to N = 1800
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To illustrate our methodology, we simulate the process of testing the N individuals using our quality control adapted
variants of 2 common group testing procedures, that is, Dorfman and array testing, with one round of retesting and one
associated model update. The step-by-step implementation of these protocols are outlined in Figure 1. In this study, we
randomly assigned individuals to pools of size c for Dorfman testing and c × c arrays for array testing, where c ∈ {3, 5, 10}.
To provide a baseline for comparison, we also simulated individual level testing. For all three testing protocols the observed
biomarker concentration for pools and individuals were simulated as j = |Pj|

−1 ∑
i∈j

𝜁i + 𝜖j, where 𝜖j ∼ N(0, 𝜏2 = 0.0052)
provides the measurement error. This process was repeated 500 times for each combination of sample size, population
model, biomarker model, and testing protocol leading to a total of 28 000 datasets.

To complete our Bayesian model, prior distributions for 𝜷 and 𝜏2 were assigned as described in Section 2 with 𝚺
𝛽
=

100I and 𝛼
𝜏
= 𝛽

𝜏
= 3. The biomarker distribution parameters were assigned independent gamma priors whose parameters

were specified according to the strategy outlined in Web Appendix A, reflecting the more difficult scenario in which
limited and imperfect information is available about the biomarker distributions. We found that this approach all but
eliminated the label switching problem, with only 0.02% of model fits exhibiting the problem. The results from these
datasets were removed and replaced. To analyze each dataset, a posterior sample of 10 000 realizations was generated
using the algorithm outlined in Section 2, after discarding a burn-in sample. Most scenarios required a burn-in period of
20 000 iterations with a few of the individual testing and Dorfman testing with pools of size 10 scenarios requiring 50 000.
Convergence of the MCMC chains were assessed in the usual manner (eg, trace plots). Based on the posterior sample,
we obtain point estimates (estimated posterior means) of the model parameter and associated measures of uncertainty
(estimated posterior SD). Further, based on the estimated diagnostic thresholds, we also classify each individual.

4.2 Simulation results

Table 1 provides a summary of our estimates of 𝜷 under population model M1 and biomarker concentration model D2.
This combination represents the most difficult estimation setting considered, that is, M1 provides for the lowest preva-
lence and D2 provides for overlapping biomarker distributions. Web Tables 1-3 provide the same summary under the other
considered simulation configurations. The presented summary includes the empirical bias, average estimated posterior
SD, and the SD of our estimators, along with the empirical coverage probability associated with 95% credible intervals.
From these results, one will first note that the proposed approach provides both accurate point estimates as well as reli-
able inference. That is, using the results from individual level testing as a baseline for comparison, we first note the bias
in point estimates are relatively small. Moreover, this bias tends to disappear as the sample size increases, as one should
expect. Further, the variability of the estimates obtained by the group testing procedures are roughly equivalent to those
attained from individual level testing and the coverage probabilities attain their nominal level. In making these compar-
isons, it is important to remember that it takes approximately twice as many tests to collect the individual level data than
the group testing data; see the average number of tests reported in the right hand column of Table 1. Attention is now
turned to classification accuracy, Table 1 also provides the empirical true positive, true negative, false positive, and false
negative classification rates that were obtained based on our estimated diagnostic thresholds. For comparative purposes,
the same accuracy measures are provided for the case in which the true diagnostic threshold was known. From these
results, we see that our quality control step provides near “oracle” like performance, that is, our approach, which has to
estimate the diagnostic threshold, classifies the individuals with the same level of precision as the approach that is given
the true diagnostic threshold. This is made possible by the fact that our approach is capable of precisely estimating the
biomarker distributions of the positives and negatives, which is demonstrated by Figure 2. That is, this figure displays
a summary of the estimated biomarker distributions for all simulation configurations under model M1. Similar results
under model M2 are provided in Web Figure 5. In summary, the findings from this simulation study suggests that the
proposed approach can simultaneously estimate the regression model and the biomarker distributions, as well as provide
a path for precise classification, all while directly accounting for the dilution effect and measurement error.

To further explore the performance of the proposed approach, several complementary simulations studies were per-
formed. In particular, we consider the performance of our methodology under several different biomarker distributional
settings. These include normal and log-normal specifications. Further, we also examine the case in which the biomarker
distribution for the negative individuals is known and concentrates around zero, which is indicative of the absence of the
biomarker for negative individuals. To consider other group testing protocols, we also simulated testing under rectangu-
lar arrays and array testing with master pool testing. For further details on these additional studies and a summary of the
results see Web Appendix C. Briefly, the findings from these studies reinforce all of the conclusions discussed above. That
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is, that the proposed methodology can simultaneously estimate the regression model and the biomarker distributions
while directly accounting for the dilution effect and measurement error.

5 DATA APPLICATION

To further assess the performance of our methodology, we make use of a Hepatitis B dataset collected on an Irish prisoner
population. The dataset contains 1193 individuals, though 95 individuals were missing key variables and were excluded
leaving 1098 individuals for analysis. Available information included hepatitis B virus (HBV) infection status, age, sex, and
continuous optimal density (OD) reading from a Murex ICE enzyme immunoassay on oral fluid samples. For complete
details regarding the data and associated study protocol, see Allwright et al.44 This dataset contains individual patient OD
readings, allowing us to construct, test, and decode master pools according to the three classification approaches outlined
in Section 3. In so doing, we follow the approach of McMahan et al,22 Delaigle and Hall,24 and Mokalled et al,26 who also
used this data to demonstrate the performance of various group testing methodologies. We consider the performance of
our method under four different information settings (limited information, inaccurate information, high quality infor-
mation, and perfect information). Our goal is threefold: to estimate the logistic regression model linking the individuals’
disease statuses to their associated risk factors, to estimate the underlying distribution of the OD values of the positive
and negative individuals, and to correctly classify each individual as positive or negative for HBV. To relate the patients’
ages and sexes to their infection statuses, we assume

P(Yi = 1|x1i, x2i) = g−1(𝛽0 + 𝛽1x1i + 𝛽2x2i),

where x1i and x2i denote the age and sex of the ith patient, respectively.
We evaluated the performance our method on the HBV data using the three classification approaches outlined in

Section 3: individual, Dorfman, and array testing. Our quality control variant of Dorfman testing was implemented with
pools of size 3 and 5 and our array based testing procedure with 3 × 3 and 5 × 5 arrays. We note that N = 1098 does not
divide equally into pools of size 5 or 5 × 5 arrays. One approach to address this is to utilize “remainder pools” or to test
“left over” individuals individually. However, both of these options make it difficult to compare performance fairly across
testing methods and pool sizes. Instead, we constructed and simulated testing of 500 datasets, each of which consisted of
900 randomly selected individuals. Proceeding in this fashion allows for a direct comparison across the three classification
techniques. In implementing these techniques, individuals were assigned to pools/arrays at random and pooled responses
were simulated by taking the arithmetic mean of OD readings of the members of each pool. We applied the retesting
approaches depicted in Figure 1 using one round of retesting and one associated model update. If an individual was
retested, their individual OD reading was used as their retest observation.

To fit our model, we assume that the distributions of the OD readings for positive and negative individuals are
well-approximated by gamma distributions; Mokalled et al26 concluded that this assumption was reasonable for these
data. The parameters of these distributions were assigned independent gamma priors whose parameters were selected
to reflect four different settings; namely, a limited information, inaccurate information, high quality information, and
perfect information setting. For specific details of these specifications see Web Appendix A. This was done to gauge the
performance of our methodology across a broad spectrum of potential settings a practitioner may face. In all scenarios,
prior distributions for 𝜷 and 𝜏2 were assigned as described in Section 2 with 𝚺

𝛽
= 100I and 𝛼

𝜏
= 𝛽

𝜏
= 3. Our posterior

sampling algorithm was used to obtain a sample of size 10 000 from the posterior distribution, after discarding a burn-in
sample to ensure convergence. The individual testing scenarios and the high quality information setting for Dorfman
testing with pools of size 5 required a burn-in period of 50 000 iterations with the other scenarios requiring only 20 000
iterations. Convergence was assessed via trace plots. The label switching problem occurred in approximately 2% of the
datasets, with the overwhelming majority of label switching (all but 8 of the instances) occurring in the unreliable prior
scenarios. These instances were replaced with additional model fits. Based on the posterior sample, we obtain point esti-
mates (estimated posterior means) of the model parameter and associated measures of uncertainty (estimated posterior
SD). Further, based on the estimated diagnostic thresholds, we also classify each individual.

Table 2 contains the average posterior mean estimate and the average estimated posterior SD. The table also sum-
marizes the average number of tests and the classification performance, using the HBV statuses in the data as the true
statuses. From these results, we see that analyzing data arising from our variants of Dorfman and array testing provide for
approximately the same level of accuracy as analyzing individual level data, though there was a modest increase in the
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F I G U R E 3 Data application results: The figure displays both the empirical and the average estimated biomarker distributions for
negative and positive individuals obtained from individual (left), Dorfman (center) and array (right) testing using inaccurate information for
the HBV data application. Note that the axis scales differ between the histograms of the negative and positive individuals

size of the SEs for Dorfman testing with pools of size 5. Further, it took approximately half the number of tests to attain
these estimates, with virtually no loss in classification accuracy. Notably, the precision and accuracy under the misspec-
ified priors are comparable to that observed for the other prior configurations, indicating that our method is robust to
prior misspecification. Figure 3 displays the estimated biomarker distribution for positive and negative individuals from
the inaccurate information configurations, plotted against a histogram of the OD reading from positive and negative indi-
viduals. Results for the other three configurations are displayed in Web Figures 6-8. From this figure we again see that the
proposed approach is capable of well estimating the biomarker distributions, even when strongly informative misspeci-
fied prior distributions are used. In summary, the findings from this analysis reinforce the findings from our simulation
studies. That is, the proposed approach can estimate both the regression model linking the individuals’ disease statuses
to their associated risk factors and the underlying biomarker distributions, and in so doing our approach provides a path
for precise classification, all while directly accounting for the dilution effect and measurement error.

6 DISCUSSION

We have developed a Bayesian group testing regression methodology which can be applied to continuous observations
arising from any group testing procedure (Dorfman testing, array testing, etc.) for the purposes of estimating both a
regression function and the underlying biomarker distributions of the positive and negative individuals. Our modeling
technique allows us to directly account for the dilution effect as well as measurement error. Further, our approach can
be used to estimate optimal pool and individual classification thresholds via the estimated biomarker distributions. We
have assessed the performance of our method under a variety of conditions with an in-depth simulation study and we
have further demonstrated our technique by applying it to HBV data collected on Irish prisoners. Given the multitude
of group testing protocols which have been proposed, an exploration of which protocol is most efficient for our method
would be a worthwhile pursuit. To further disseminate our work, code (written in R) which implements every aspect of
our approach has been developed and has been made freely available at https://github.com/scwatson812/GT_Dilution.

A number of possible extensions of this methodology are possible. While an appropriate distributional family exists
for many biomarker concentrations, a semi-parametric or non-parametric approach would be desirable for scenarios in
which researchers are uncomfortable making assumptions about the underlying form of the biomarker distributions.
Further, the work described herein may not be applicable to polymerase chain reaction (PCR) testing. That is, PCR tests
render a diagnosis via a cycle threshold (CT) value, which represents the number of amplification cycles required for the
signal from the targeted genetic sequence to cross the detection threshold. While CT values are related to the amount of
targeted genetic material present in the original sample, the relationship is more complex than the relationship assumed
in Section 2. That said, once the distributional relationship for PCR testing is made, our general framework can be applied
seamlessly. Based on this realization, coupled with the widespread use of PCR based testing, we believe extending our
proposed methodology in this manner would be a worthwhile pursuit. Further, given that our approach can estimate

https://github.com/scwatson812/GT_Dilution
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the parameters of the biomarker distributions through the analysis of group testing data. These estimates can then be
used to set diagnostic thresholds. Over time, as more information becomes available it might be reasonable to treat these
estimates as “known” quantities. Proceeding in this fashion would allow one to identify optimal thresholds based on the
approach of Wang et al.43 Given this potential, further work is needed to determine the optimal time for transitioning to
fixed thresholds, and the consequences of transitioning too early. Lastly, another direction for future work could involve
developing methods that can be used to assess goodness-of-fit for regression models that are fit based on group testing
data. This could be particularly challenging given that the individuals’ true infection statuses are latent.
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