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Implantation failure is the most frequent cause of pregnancy loss in couples who try to conceive, either in a 

natural way or using assisted reproductive techniques (ART). Identify the precise mechanisms of implantation 

failure can lead to identify couples at risk and also providing appropriate therapeutic options to affected couples. 

Despite the high prevalence of this disorder, a few causing factors are demonstrated so far. Recent studies 

indicate that genetic factors play an important role in the occurrence of recurrent implantation failure. Although 

some of these factors, such as numerical chromosomal aneuploidy are known to be causative factors, there are 

some other factors that solely increase susceptibility to this event. In the present review we try to list the genetic 

polymorphisms that are known as susceptibility factors in implantation failure. 

 

Key words: Gene, polymorphism, implantation failure 

 

 

                                                           
∗

Corresponding author: Department of Medical Genetics, School of medicine, Mashhad University of Medical Sciences, Azadi square, 
Mashhad, Iran…E-mail: nazarabadim@mums.ac.ir. 

regnancy loss can be caused by several factors 

which are involved in fundamental events 

during human reproduction. Anatomical, 

immunological, hormonal and infectious factors 

along with known genetic factors are involved in 

50% of such cases. Our previous findings have 

shown that 9.8% of pregnancy loss suffering 

couples have chromosomal balanced rearrangement 

(1). Furthermore single gene disorders seem to be 

important factor in pregnancy loss, as our previous 

results show that there is a correlation between 

consanguineous marriage and the occurrence of 

idiopathic spontaneous fetal loss (2). 

Since about 80% of pregnancies are lost 

during the first trimester, it has been postulated that 

the major cause of failed pregnancy is an error of 

embryo implantation (3). 

Genetic factors that lead to implantation 

failure have overlap with those involved in 

recurrent spontaneous abortion and infertility (4-6). 

Implantation failure is the most frequent cause of 

lack of pregnancy after in vitro fertilization (IVF) 

and embryo transfer, as implantation failure takes 

place in approximately 40% of IVF experiments 

(3). Successful implantation requires trophoblastic 

growth, invasion into the endometrium and 

stimulation of vascularization to provide its own 

blood supply (4-6). 

There are increasing numbers of evidence 

indicating that genetic factors regulating invasion 

p
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and angiogenesis processes are critical in embryo 

implantation. Genetic defect and even genetic 

polymorphisms of genes involved in these 

processes can lead, or at least increase susceptibility 

to implantation failure (4-6). 

In the present review we will attempt to 

provide a list of research studies performed in this 

area and genetic factors which are involved in 

implantation failure. 

P53 tumor suppressor gene 

P53 is mostly known as a “genome 

guardian” who has a pivotal role in genome 

integrity maintenance and tumor prevention. P53 

becomes activated by sense of wide variety of stress 

signals and initiate a transcriptional program 

leading to apoptosis, cell cycle arrest or senescence. 

P53 itself is under negative control of some genes 

such as Mdm2. By binding to the p53 protein, 

Mdm2 leads to p53 polyubiquitination and sending 

it to the proteosome (4-6). 

Phylogenic analysis of P53 revealed that P53 

is an evolutionary conserved gene and P53-like 

transcriptional factors exist in short - lived 

invertebrates that do not exhibit adult tumors. These 

findings suggest that P53 may have another initial 

role in these creatures. 

Several studies performed in recent decade 

indicate that p53 has a critical role in maternal 

reproduction (7, 8). While p53 -/- male mice show 

normal reproduction rate, p53 -/- female mice show 

reduced pregnancy ability and litter size when 

mated with p53 -/-,  p53 -/+ and p53 +/+ male mice and 

worst pregnancy rate and litter size in mating with 

p53 -/- male mice (9). It has been suggested that P53 

activates embryo implantation into the uterus as a 

stress signal and induces expression of several 

genes needed for initiation and establishment of 

embryo implantation. 

According to the high penetrance of p53 

mutations in tumor formation it was assumed that 

single nucleotide polymorphisms of p53 lead to 

infertility of clinically normal women. To date 

several functional SNPs have been identified in 

both p53 and its negative regulator, Mdm 2, which 

can alter the expression or function levels of  

p53 (10). 

P53 codon 72 single nucleotide polymorph-

ism is one of the most studied SNP of P53. 

Functional studies revealed that this polymorphism 

modifies the P53 transcriptional activity and show 

association with cancer susceptibility (11). 

Furthermore this SNP has approved effects on 

immune system and also chemoresistance of tumor 

cells (12-14). 

P72 allele is significantly more common 

than R72 between women with recurrent 

implantation failure (15-17). Two most accepted 

explanations offered are: 1) impact of this allele on 

the expression levels of LIF factor and 2) effect of 

this allele on maternal immune system function 

against implanting embryo. 

Several studies show that maternal immune 

system has an immune tolerance against implanting 

embryo but as has proven, P72 allele has an 

association with autoimmune disorders such as 

lupus erythematosis and arthritis rheumatoid (14). It 

is possible that presence of P72 allele may sensitize 

maternal immune system against implanting 

embryo and lead to embryo rejection.  

Expression analysis of cellular models 

bearing either of these tow alleles reveal that P72 

allele induces leukemia inhibiting factor (LIF) 

expression two fold lower  than R72 allele (18-19). 

As will be explained, LIF has an improved effect on 

the success rate of pregnancy (20). 

Leukemia inhibiting factor (LIF) 

The human LIF gene plays an essential role 

in embryo implantation. Expression of LIF is 

continuous in the uterus however it shows a 

transient expression peak during pregnancy and this 

peak coincides with the onset of implantation. 

Furthermore LIF−/− mutation in mice leads to defect 

in maternal reproduction attributable to failure of 

implantation (9, 21-24). LIF-/- mice embryo reach to 
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the blastocyst stage but cannot implant into uterus 

(25-35). 

p53−/− mice show decreased uterine LIF 

levels and impaired implantation. Interestingly, LIF 

levels rescue via injection of exogenous LIF, leads 

to a significant enhancement of implantation and 

eventually reproduction in p53−/− female mice (9, 

23, 36-37). These findings suggest that mutations of 

P53 may lead to the absence of LIF expression 

following embryo implantation (36, 38, 39). In 

addition to p53 variants effects, LIF polymorphic 

alleles have also significant effect on litter size in 

pigs (40). 

LIF overexpression in uterine secretions 

may be used as a potential indicator of uterine 

receptivity in fertile women (41-42). The majority 

of unexplained infertile women show significant 

decrease in LIF expression level, indicating the 

importance role of LIF in implantation (36). It has 

been recently identified that p53 has a specific 

binding site on LIF promoter and regulates both 

basal and inducible transcription of LIF (9, 43). 

Association of LIF SNPs with fertility rate 

has shown that rs929271 SNP of 3′UTR of LIF is 

significantly more common in idiopathic infertile 

young patients (<35years). In fertile women also 

this polymorphism is significantly associated with a 

history of infertility drugs usage. These results 

demonstrate an association of a SNP in the LIF 

gene with infertility, especially in patients under the 

age of 35 years (20-21, 44-45). However, several 

studies on the therapeutic use of recombinant LIF to 

enhance the success rate of IVF have failed. It 

seems that LIF role in human fertility is different 

from that in animals such as mice and further 

studies are needed to better understanding the 

importance of LIF in human reproduction and 

therapeutic uses of this factor. 

Other genes involved in p53 Pathway  

Recent studies suggest that several other 

genes involved in P53 pathway are implicated in 

implantation process and their polymorphisms have 

association with increased risk of implantation 

failure.  

Several studies on SNPs of P53 pathway, 

such as SNP309 in Mdm2, rs2279744 SNP of 

Mdm4 gene and rs1529916 SNP of Hausp gene has 

been performed (14, 20, 46, 47). 

Mdm2 gene is a negative regulator of P53 

and plays an important role in the regulation of 

mechanisms involved in implantation (14). 

Embryos having homozygous deletion of Mdm2 are 

not capable of implantation and survival. 

Interestingly implantation and survival ability of 

these embryos can be retrieved by homozygous 

deletion of p53 (12, 48-49).  

Interestingly, polymorphism of Mdm2 in 

Caucasian populations is evolutionary conserved. 

For example, the frequency of G allele in the Mdm2 

gene in the Caucasian population is four times more 

than African ancestral race (14). G allele leads to 

higher transcriptional activity and can result in p53 

diminished activity and eventually leads to a 

decrease in LIF gene expression. G allele of 

SNP309 increases the likelihood of implantation 

failure (10). This allele also accumulates in young 

patients with infertility and implantation failure (14, 

50-52).  

Mdm4 is the other gene involved in P53 

pathway which its polymorphism is related to 

increased risk of implantation failure. Mdm4 gene 

is structurally homologous of Mdm2 and in 

addition to regulating p53 gene negatively, 

regulates p73 gene (53, 54). Mice with homozygous 

deleted p73 gene were also impaired in 

implantation and thus infertile. T allele of Mdm4 

gene rs2279744 polymorphism shows a high 

frequency in the population of young patients 

suffering from infertility and also in elderly patients 

with this defect. It seems that Mdm4 may regulate 

human fertility through p53-dependent and p53-

independent pathways (14, 53). 

To date only one study has been performed 

on the frequency of p53 gene polymorphism in 
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Iranian patients with infertility. In this study, 70 

infertile patients with recurrent implantation failure 

(RIF) and 32 fertile women with at least two 

successful pregnancies were studied. This study 

showed the accumulation of P72 allele in patients. 

However, other polymorphisms of p53 pathway in 

Iranian population remain to be investigated . 

P53 pathway independent genes 

In addition to p53 pathway members, there 

are several other genes which are implicated in 

embryo implantation. Majority of these genes are 

involved in invasion of embryo into endometrium 

and also in pregnancy hormonal homeostasis.  

prostaglandin-endoperoxide synthase 2 (PTGS-

2) gene 

Cox-2 enzyme encoded by PTGS-2 gene, is 

an inducible enzyme in prostaglandin construction 

pathway which is induced by a range of stimuli 

such as growth factors and mitogens (11). 

Studies on the expression pattern of Cox 

isoforms in the preimplantation mouse uterus 

indicate the role of these enzymes in embryo 

implantation (11). Furthermore, studies on cox-2-/- 

mice indicate an impaired angiogenesis into the 

implantation site (55). Ptgs2 mutation leads to 

multiple defects in the reproductive process 

including implantation (56). In human, expression 

level of COX-2 in RIF and infertile women 

decreases in comparison to healthy controls (57). 

Given these results, the association between the 

promoter polymorphism -765G> C and RIF were 

evaluated and the results showed that -765C allele 

is associated with increased risk of RIF (58). 

MUC-1 gene 

Transmembrane mucin-1 (MUC-1) is a 

glycoprotein expressed on the endometrial cell 

surface and can act as a barrier to implantation. 

During uterine receptive period, MUC-1 expression 

shows a dramatic decrease (55-56). 

The gene that encodes this molecule is composed of 

a polymorphic tandem repeat of 60 nucleotides. 

Several studies indicate that MUC-1 genetic 

polymorphism is associated with implantation 

failure in patients with a history of recurrent 

abortion (55-56). 

Several studies indicated that smaller alleles 

of MUC-1 show a higher frequency in women with 

infertility due to embryo implantation failure when 

compared to patients with no history of infertility 

(59-60). However, results of some other 

experiments suggest that there is no effect of the 

polymorphic MUC-1 sequence on the implantation 

failure (3, 61-62). 

Considering the increase of MUC-1 

expression in response to progesterone and also the 

relationship of shorter MUC-1 alleles with 

infertility, the anti adhesive role of MUC-1 in 

human becomes controversial (62, 63). 

Horne et al. studies on endometrial 

pinopodes, using electron microscopy and 

immunohistochemistry confirmed that MUC-1 was 

linked with embryo adhesion. However they also 

showed that abnormal endometrial expression of 

MUC-1 is associated with failure of embryo 

implantation. This abnormal expression shows 

concordance with retention of nuclear progesterone 

receptor (PR) particularly in epithelial cells (3). 

Human progesterone receptor (hPR) gene  

Another genetic polymorphism which shows 

association with implantation failure risk, locates in 

human progesterone receptor gene. Human 

progesterone receptor (hPR) gene is a dual function 

gene which functionally encodes two different 

isoforms with different transcriptional factor 

activity, hPR-A and hPR-B (64, 65). In fact this 

gene is under control of two different promoters 

that lead to protein translation start from two 

distinct positions. As a result, the longer isoform, 

hPR-A, has  165 additional amino acid residues on 

its amino terminus end (66-68). The presence of 

this additional segment leads to the change of hPR-

B conformation and significant difference between 

the target genes and physiologic effects of the  two 

isoforms (66). 
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Isoforms deletion studies on animal models 

show that the imbalance between these isoforms 

expre--ssion leads to severe abnormalities in 

ovarian and uterine function and defective 

implantation (69). 

To date several polymorphisms in hPR gene 

have been identified. In 1995 a small (306 bp) 

insertion in G intron of hPR was found and named 

PROGIN (70). This variant together with two other 

SNPs that are linked to PROGIN, V660L and 

H770H, were named PROGIN complex. Further-

more, a fourth hPR genetic variant, +331G/A, was 

found that influences on hPR isoforms expression 

ratio (69, 71). 

Pisarska et al. demonstrated that this 

complex has significant association with idiopathic 

infertility, while Cramer et al. in 2003 showed that 

PROGIN complex has no clear effect on 

implantation failure risk (69, 72). However Cramer 

et al.’s investigation results surprisingly, suggest 

that PROGIN complex frequency increases with the 

number of implantation failure (69, 73).  

Mucin-4 (MUC-4) gene 

The most critical step in embryo 

implantation is adhesion of outer trophectoderm 

layer of the blastocyst into the luminal epithelium 

(74-77). This process is dependent on expression of 

adhesion molecules and suppression of anti 

adhesion molecules expression (22). Mucins are 

important group of adhesion molecules that show a 

wide range of tissue expression (78). Among mucin 

molecules, Muc-4 is an interesting candidate to 

explore because of its high expression level in 

endometrial epithelium (79). 

Muc-4 has an important role in invasion of 

human cytotrophoblasts into endometrium (80). 

Since lubricating function of muc-4 in lubricating 

of reproductive tracts it hypothesized, those 

different-size alleles of muc-4, resulting from 

VNTR polymorphisms of this gene, affect 

receptivity of endometrium and implantation 

success rate (81). However Koscinski et al. findings 

suggest that the different-sized muc-4 alleles do not 

interfere with implantation (82). Interestingly, other 

genetic variants of muc-4 were found to be corre-

lated with endometriosis related infertility (81).  
 

Conclusion 

According to the presented data, implanting 

embryo behave as a tumor against endometrium. 

Invasion and angiogenesis are critical steps in this 

process. By genotyping of RIF suffered couples we 

can predict the risk of IVF failure and present 

appropriate therapeutic options. 
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