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Background: The SCN11A gene encodes the α-subunit of the Nav1. 9 channel, which

is a regulator of primary sensory neuron excitability. Nav1.9 channels play a key role

in somatalgia. Humans with the gain-of-function mutation R222S in SCN11A exhibit

familial episodic pain. As already known, R222S knock-in mice carrying a mutation

orthologous to the human R222S variant demonstrate somatic hyperalgesia. This study

investigated whether Scn11aR222S/R222S mice developed visceral hyperalgesia and

intestinal dysmotility.

Methods: We generated Scn11aR222S/R222S mice using the CRISPR/Cas9 system. The

somatic pain threshold in Scn11aR222S/R222S mice was assessed by Hargreaves’ test

and formalin test. The excitability of dorsal root ganglia (DRG) neurons was assessed

by whole-cell patch-clamp recording. Visceralgia was tested using the abdominal

withdrawal reflex (AWR), acetic acid-induced writhing, and formalin-induced visceral

nociception tests. Intestinal motility was detected by a mechanical recording of the

intestinal segment and a carbon powder propelling test. The excitability of the enteric

nervous system (ENS) could influence gut neurotransmitters. Gut neurotransmitters

participate in regulating intestinal motility and secretory function. Therefore, vasoactive

intestinal peptide (VIP) and substance P (SP) were measured in intestinal tissues.

Results: The R222S mutation induced hyperexcitability of dorsal root ganglion

neurons in Scn11aR222S/R222S mice. Scn11aR222S/R222S mice exhibited somatic

hyperalgesia. In addition, Scn11aR222S/R222S mice showed lower visceralgia thresholds

and slowed intestinal movements when compared with wild-type controls. Moreover,

Scn11aR222S/R222S mice had lower SP and VIP concentrations in intestinal tissues.

Conclusions: These results indicated that Scn11aR222S/R222S mice showed visceral

hyperalgesia and intestinal dysmotility.
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INTRODUCTION

The SCN11A gene encodes the α-subunit of voltage-gated
sodium channel subtype 1.9 (Nav1.9). Nav1.9 channels are highly
expressed in nociceptive neurons of the dorsal root ganglia
(DRG) and Dogiel type II neurons of the enteric nervous system
(ENS) (1, 2). Nav1.9 channels could regulate the resting potential
of the membrane and amplify subthreshold stimuli (3). Nav1.9
channels are involved in generating action potentials in neurons
and regulating neuronal excitability.

In the past, Nav1.9 channels were mainly considered to be
involved in the formation of pain sensing (4). Gain-of-function
pathogenic mutations in SCN11A cause familial episodic pain,
painful peripheral neuropathy, and congenital insensitivity to
pain. To date, no loss-of-function SCN11A mutations have been
reported to be disease causing (5). The sense of pain includes
somatic pain and visceralgia. Some patients with familial episodic
pain also experience abdominal pain except for somatalgia (6, 7).

Recently, Nav1.9 channels have been found to participate in
regulating colonic motility. Enteric motility is mainly regulated
by the ENS but it can also be influenced by automatic neurons,
gut hormones, and neurotransmitters. The ENS consists of
sensory neurons, interneurons, and motor neurons, such as
excitatory motor neurons and inhibitory motor neurons. Nav1.9
channels are expressed in sensory/Dogiel type II neurons
(2). The frequency of colonic movement was significantly
higher in Scn11a−/− mice than in controls (8). Scn11a+/L799P

mice carrying the orthologous mutation with L811P (gain-of-
function) in humans were affected by congenital insensitivity
to pain. Scn11a+/L799P mice showed a small shift toward
less frequent intestinal peristaltic movements (no statistical
significance) (9). Some pathogenic SCN11Amutations also cause
gastrointestinal dysmotility symptoms in patients (6, 7, 10, 11).

Our group previously reported a familial episodic pain
pedigree with a gain-of-function p.R222S SCN11A mutation
(NM 014139) (12). Here, we bred knock-in mice with the
R222Smutant in Nav1.9 (mNav1.9) channels. Thesemice showed
increases in thermal pain behaviors and inflammatory pain
responses, consistent with the results reported by Okuda et al.
(13). Moreover, we observed that Scn11aR222S/R222S mice showed
lower visceralgia thresholds and slowed intestinal movements
when compared with wild-type (WT) controls. These results
support a role for Nav1.9 channels in regulating the excitability
of the ENS that mediates visceral pain and intestinal motility.

MATERIALS AND METHODS

Generation and Validation of the Knock-in
Pain Model Mouse
Generation of Nav1.9 Knock-in Mouse
The R222S mutation is located on transmembrane segment S4
in domain I (DI) of the human Nav1.9 (hNav1.9) α subunit,
which is the allelic ortholog of the amino acid site, R222S, in the
mNav1.9 protein. The mutation was introduced into the mouse
Scn11a locus using the CRISPR/Cas9 system at the Nanjing
Biomedical Research Institute of Nanjing University (Nanjing,
China). The single guide RNA (sgRNA) targeting the region

around the mouse Scn11a R222 locus was designed using the
Optimized CRISPR Design web tool (14). The sgRNA sequences
are shown in Supplementary Table 1. Donor vectors carrying the
Scn11a R222S mutation site fragment were generated. The donor
vector and CRISPR/Cas9 system were microinjected into the
fertilized ovum of C57BL/6 mice to generate Scn11a+/R222S mice.
Under the guidance of sgRNA, the CRISPR/Cas9 system cut the
DNA strands at the targeting site. Fragments carrying the R222S
mutation were recombined to the target site by homologous
recombination. The genotypes of the offspring were confirmed
by Sanger sequencing using the primers, which are presented in
Supplementary Table 2. The PCR products were sequenced on
an ABI 3730XL Genetic Analyzer (Thermo Fisher Scientific, Inc.,
Waltham, MA, USA).

The knock-in andWTC57BL/6mice were fed and given water
ad libitum. They were housed in an air-conditioned room with
a 12 h light/dark cycle (light from 7:00 to 19:00) and controlled
temperature (23± 2◦C) and humidity (55± 10%). All tests were
conducted between 14:00 and 18:00. All experiments involved 8
mice at 6–8 weeks old weighing 18–20 g unless otherwise noted.
The animal protocol was approved by the ethics committee of
the Laboratory Animal Center of the Second Xiangya Hospital
of Central South University (Changsha, China). All experimental
procedures were performed according to the relevant guidelines
and regulations.

Somatic Pain Threshold Testing
For the Hargreaves’ test, hind-paw thermal withdrawal latencies
were tested using the Plantar Test Analgesia Meter (IITC Inc,
Life Science). The mice were placed in transparent plastic testing
chambers on glass plates for at least 30min before testing. When
the mice were resting but not sleeping, a movable radiant light
heat source located under the glass floor was used to heat the
plantar surface in the middle area of the hind paw. When the
mice felt pain and withdrew the hind paw, the heat source was
turned off and the reaction time counter was stopped. The paw
withdrawal latency of each mouse was tested 3 times with an
interval of 5min and averaged to determine the heat threshold.
To prevent tissue damage, the cutoff time was set as 20 s.

In the formalin test, the mice were placed in transparent
plastic testing chambers and acclimated to the experimental
environment for 15min before the tests. Formalin solution (5%,
20 µl) was injected into the plantar surface of the hind paw.
The total time of licking and flinching behaviors was recorded
and binned at 5-min intervals for 45min after injection. The
total time of pain response in phase I (0–5min) and phase II
(10–45min) was summarized.

Whole-Cell Patch-Clamp Recording of DRG Neurons
Small diameter DRG neurons were isolated from male WT,
Scn11a+/R222S, and Scn11aR222S/R222S mice (6–8 weeks old)
as previously reported (15). Two mice of each group were
euthanized by decapitation. Approximately 10–14 DRGs from
the spinal cords were immediately dissected. L4-S1 ganglia
harboring pelvic afferents from the colon were included. Then
the ganglia were dissociated with collagenase XI (Sigma -
Aldrich, Merck KGaA, Darmstadt, Germany) at 37◦C for 25min
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in an incubation medium containing Earle’s balanced salt
solution (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany).
Then, DRG cells were dispersed using fire-polished Pasteur
pipettes and centrifuged. The cells were subsequently seeded
onto poly-L-lysine-coated coverslips and maintained in Gibco
Dulbecco’sModified EagleMedium (DMEM) (Gibco) containing
10% heat-inactivated fetal bovine serum (FBS, Gibco) and 1%
penicillin/streptomycin at 37◦C in a humidified incubator with
5% CO2.

Whole-cell patch-clamp recordings were acquired using
the EPC-10 USB patch-clamp platform (HEKA Elektronik,
Ludwigshafen/Rhein, Germany) and Patchmaster software
(HEKA Elektronik, Ludwigshafen/Rhein, Germany) at room
temperature (20–25◦C). Fire-polished borosilicate glass
electrodes with resistances of 2.0–3.0 MΩ were fabricated
from 1.5-mm glass capillaries using a puller (PC-10; Narishige,
Tokyo, Japan). Data were filtered at 5 kHz and sampled at
20 kHz. The whole-cell recording configurations were achieved
over 5 min.

In the current-clamp model, the pipette solution
contained (in mM) 140 KCl, 0.5 ethylene glycol bis (2-
aminoethyl ether)-N,N,N’,N’-tetraacetic acid (EGTA), 5
4–1-piperazineethanesulfonic acid (HEPES), and 2 Mg-
(adenosine triphosphate (ATP; pH 7.3 adjusted with KOH), and
the bath solution contained (in mM) 140 NaCl, 3 KCl, 2 MgCl2,
2 CaCl2, and 10 HEPES (pH 7.3 adjusted with NaOH). All
chemical reagents for the intracellular and extracellular solutions
were purchased from Sigma-Aldrich (Merck KGaA, Darmstadt,
Germany). Action potential frequency was calculated by action
potential numbers during step current injections (500ms) from
0 to 240 pA with 20 pA increments and rheobases were collected.

Visceral Hyperalgesia Detection
AWR Test
The mice (12 weeks; 20–25 g) were deprived of food for 12 h.
Visceral hyperalgesia in response to colorectal distention (CRD)
was assessed using the AWR test. Mice were briefly anesthetized
with ether. A balloon was inserted into the descending colon,
and a catheter was fixed to the base of the tail. The mice were
allowed to acclimate after waking for 1 h prior to CRD. The
minimum threshold pressures resulting in strong contraction
of the abdominal muscles that lifted the abdomen of the mice
off the platform were recorded. The pressures resulting in the
mice arching their bodies and lifting their pelvic structures were
also recorded. The tests were repeated 3 times with an interval
of 5min. The pressure values for each mouse were averaged to
determine the threshold. To prevent tissue damage, 100 mmHg
was set as the cutoff pressure (16, 17).

Acetic Acid-Induced Writhing Test
Themice were deprived of food for 24 h and placed in transparent
plastic testing chambers for 15min to adapt the test environment.
Then, each mouse was intraperitoneally injected with 0.8% acetic
acid (0.1 ml/10 g). The number of writhing actions (contractions
of the abdominal muscles, accompanied by stretching) was
counted 20min after injection.

Formalin-Induced Visceral Nociception Test
Themice were deprived of food for 24 h, then received a glycerine
enema (0.1ml) using an Fr6 catheter to prepare the bowel. After
adapting for 1 h, 10% of formalin (10 µl) was instilled into the
colon using a capillary rubber hose (1.5mm external diameter),
2 cm from the anal sphincter. Then, the mice were inverted and
their anus was blocked for 1min using a finger. Vaseline was
smeared onto the perianal region to avoid local nerve stimulation.
Mice were then placed in transparent plastic testing chambers
and abdomen licking behaviors were observed for 60 min.

Intestinal Dysmotility Testing
Carbon Powder Propelling Test
The mice were deprived of food for 24 h before testing. A
charcoal meal was prepared as described previously with minor
modifications (18). In total, 5 g of activated carbon, 10 g of
sodium carboxymethyl cellulose, 8 g of cane sugar, 16 g of milk
powder, and 8 g of starch were mixed together. Then, the mixture
was slowly added to 250ml of distilled water and agitated for
1min. Finally, the total volume of the mixture was ∼300ml.
The test meal was stored at −20◦C. Two hours before use,
the test meal was removed from the refrigerator and allowed
to reach room temperature. The carbon powder propelling test
was performed similarly to a previously reported procedure
(19). After fasting, the mice were gavaged with the test meal
(0.5 ml/20 g). Twenty minutes later, they were euthanized by
decapitation. The small intestine was resected carefully without
artificially stretching the tissue. The distance charcoal traveled
along the gastrointestinal tract (GI) tract was measured and
quantified as a percentage of the distance traveled. The intestinal
propulsion rate was calculated as follows: intestinal propulsion
rate = charcoal meal transmission length/total small intestine
length× 100%.

Mechanical Recording of the Intestinal Segment

in vitro
The mice (10–12 weeks; 20–25 g) were deprived of food for
12 h. A part of the small intestine (2–4 cm from the pylorus)
was dissected. The isolated intestine was gently flushed and
placed in Tyrode’s solution (Coolaber Technology Co., Ltd.,
Beijing, China) at 4◦C. Then, the two ends were fixed on the
tonotransducer and hooked on the bottom of a 20ml measuring
cylinder in the constant temperature smooth muscle test system
(Techman Co., Ltd., Chengdu, China) using surgical sutures.
The Tyrode’s solution in the measuring cylinder was previously
warmed up to 37 ± 0.1◦C in a bath and equilibrated with
pumped air. The initial tension of the muscle was set to 1,000
± 100mg. The tissue was allowed to equilibrate for 5min. Then,
the number of contractions and area under the contraction
curve were continuously recorded for 3min using a BL-420F
biological signal acquisition and analysis system (Techman Co.,
Ltd., Chengdu, China).

The Neurotransmitters Measurement in Intestinal

Tissue
The concentrations of vasoactive intestinal peptide (VIP),
substance P (SP), and noradrenaline (NE) in the intestinal
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tissue of the mice were measured using ELISA kits (ZCIBIO
Technology Co., Ltd., Shanghai, China) according to the
directions of the manufacturer. The absorbance at 450 nm
was measured on an EL × 800 microplate reader (BioTek
Instruments, Inc., Vermont, USA).

Statistical Analyses
Data were analyzed with GraphPad Prism 7.0 (GraphPad
Software, San Diego, CA, USA). All data were presented as the
mean ± standard error of the mean (SEM). Statistical tests of
significance were conducted by one-way analysis of variance
(ANOVA) followed by Dunnett’s multiple comparison test or
two-way ANOVA followed by Tukey’s multiple comparison test.
The criterion for statistical significance was p < 0.05.

RESULTS

Increased Somatic Pain Sensitivity in
Scn11aR222S/R222S Mice
Scn11aR222S/R222S Mice Showed Increased Heat Pain

Sensitivity Under Basal Conditions
Both our team and Okuda et al. (13) have found that the
R222S mutation led to familial episodic pain. We constructed
this knock-in mouse using the CRISPR/Cas9 method to study
the molecular mechanisms of the pain-causing mutation. The
nucleotide change in mouse genomic DNA in Scn11a was
validated by Sanger sequencing (Supplementary Figure 1).

We measured the heat pain threshold under basal conditions
using Hargreaves’ test. The heat withdrawal latency in
Scn11aR222S/R222S mice was significantly shorter than that
in the WT group (WT mice: 5.5 ± 0.2 s, n = 8; Scn11a+/R222S

mice: 5.2 ± 0.1 s, n = 8; Scn11aR222S/R222S mice: 4.9 ± 0.1 s, n
= 8; p < 0.05, Scn11aR222S/R222S vs. WT mice; Figure 1A). The
Scn11aR222S/R222S mice exhibited a lower heat pain threshold.

Formalin Aggravated Somatalgia in

Scn11aR222S/R222S Mice
To investigate pain threshold changes in inflammatory
conditions, we performed a formalin test in 3 groups. A
significant increase in paw licking and lifting time was observed
in Scn11aR222S/R222S mice during phases I and II when compared
with WT mice (Figures 1B–D). However, the nociceptive
behaviors in Scn11a+/R222S mice were unaffected (phase I: WT
mice: 90.8 ± 13.6 s, n = 8; Scn11a+/R222S mice: 122.4 ± 8.3 s,
n = 8; Scn11aR222S/R222S mice: 152.5 ± 9.5 s, n = 8; p < 0.01,
Scn11aR222S/R222S vs. WT mice; Figure 1C; phase II: WT mice:
265.5 ± 15.3 s, n = 8; Scn11a+/R222S mice: 307.1 ± 22.1 s, n
= 8; Scn11aR222S/R222S mice: 426 ± 41.8 s, n = 8; p < 0.01,
Scn11aR222S/R222S vs. WT mice; Figure 1D). Therefore, these
results showed that the homozygotes were more sensitive to
acute inflammatory pain.

The Dorsal Root Ganglion Neurons of

Scn11aR222S/R222S Mice Demonstrated

Hyperexcitability
The patch-clamp whole-cell recording technique was used to
evaluate the excitability of DRG neurons. The examples of raw

FIGURE 1 | Somatic pain threshold comparison. (A) Hargreaves’ test. Paw

withdrawal latency was recorded using a radiant light heat source to heat the

hind paw. (B) Formalin test. Total time spent licking and lifting the injected hind

paw after intraplantar administration of formalin for 45min, binned at 5-min

intervals. (C) Data were summarized in Phase I (0–5min) in the formalin test.

(D) Data were summarized in phase II (10–45min) in the formalin test. Data

were presented as the mean ± SEM. Significance was tested with one-way

ANOVA followed by the Dunnett’s multiple comparisons test (A,C,D) or

two-way ANOVA followed by the Tukey’s multiple comparisons test (B). *p <

0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001 vs. WT mice. NS, no

significance; WT, wild-type (Scn11a+/+ mice); HET, heterozygote

(Scn11a+/R222S mice); HOM, homozygote (Scn11aR222S/R222S mice).

traces are shown in Figure 2A. The rheobase in Scn11aR222S/R222S

mice was significantly lower than that in WT mice, while the
rheobase in Scn11a+/R222S mice was similar to that in controls
(WT mice: 140 ± 27.33 pA, n = 6; Scn11a+/R222S mice: 77.5
± 17.02 pA, n = 16; Scn11aR222S/R222S mice: 55.56 ± 14.44 pA,
n = 9; p < 0.05, Scn11aR222S/R222S vs. WT mice; Figure 2B).
The numbers of action potentials were increased with a series
of current injections in Scn11aR222S/R222S mice while firing
frequency remained at a low level in WT mice (WT mice: n =

6, Scn11a+/R222S mice: n = 16, and Scn11aR222S/R222S mice: n
= 9; p < 0.0001, Scn11a+/R222S and Scn11aR222S/R222S mice vs.
WT mice; Figure 2C). The results indicated that DRG neurons
from Scn11AR222S/R222S mice evoked a higher frequency of action
potential firing.

Scn11aR222S/R222S Mice Showed Visceral
Hyperalgesia
The Visceral Mechanical Pain Threshold Decreased

in Scn11aR222S/R222S Mice
Most previous studies have focused on the relationship between
Nav1.9 channels and peripheral somatosensory pain. However,
in some cases, variants have also been found to cause visceral
dysfunction. Next, we investigated whether there was also a
correlation between the mutation and visceral dysfunction in the
knock-in animal model. The AWR test was conducted to test
the colonic mechanical pain threshold. The minimum threshold
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FIGURE 2 | The R222S mutation increased the excitability of DRG neurons in

electrophysiological examinations. (A) Action potential traces were recorded

from a representative WT, HET, and HOM mouse DRG neuron, respectively.

(B) The rheobases among 3 groups. (C) The number of action potential firing

elicited by the depolarizing current steps from 0 to 240pA in 20-pA increments

in DRG neurons. Data were presented as the mean ± SEM. Significance was

tested with one-way ANOVA followed by the Dunnett’s multiple comparisons

test (B) or two-way ANOVA followed by the Tukey’s multiple comparisons test

(C). *p < 0.05 and ****p < 0.0001 vs. WT mice. NS, no significance; WT,

wild-type (Scn11a+/+ mice); HET, heterozygote (Scn11a+/R222S mice); HOM,

homozygote (Scn11aR222S/R222S mice).

pressures of body arching and lifting the pelvic structure in the
Scn11aR222S/R222S group were significantly lower than those in
WT groups (WT mice: 72.0 ± 1.6 mmHg, n = 8; Scn11a+/R222S

mice: 70.9 ± 1.4 mmHg, n = 8; Scn11aR222S/R222S mice: 66.6
± 1.2 mmHg, n = 8; p < 0.05, Scn11aR222S/R222S vs. WT mice;
Figure 3A). However, there were no significant differences in
the minimum threshold pressure required to induce lifting the
abdomen off the platform among the 3 groups (WT mice: 42.0
± 2.9 mmHg, n = 8; Scn11a+/R222S mice: 41.2 ± 1.5 mmHg, n
= 8; Scn11aR222S/R222S mice: 38.5 ± 2.5 mmHg, n = 8; p = 0.5,
Scn11aR222S/R222S vs. WTmice; Figure 3B). Taken together, these
results suggested that Scn11aR222S/R222S mice were more sensitive
to colonic mechanical stimuli.

Acetic Acid Evoked More Serious Visceralgia in

Scn11aR222S/R222S Mice
Next, we investigated visceral sensitivity to acute inflammation
using writhing experiments. Intraperitoneal application of acetic
acid provoked a significant increase in writhing responses in
homozygotes when compared with WT controls (WT mice: 18.4
± 1.3, n = 8; Scn11a+/R222S mice: 20.5 ± 2.4, n = 8; Scn11a
R222S/R222S mice: 26.8± 2.0, n= 8; p< 0.05, Scn11aR222S/R222S vs.
WT mice; Figure 3C). Therefore, acute inflammation was more
likely to cause visceral pain in homozygotes.

Formalin Instillation Into the Colon Aggravated

Visceralgia in Scn11aR222S/R222S Mice
To test visceralgia sensitivity to acute inflammation, nociceptive
pain behaviors induced by formalin instillation into the colon

FIGURE 3 | The visceral pain thresholds in different genotypes. (A,B) AWR

test. The minimum thresholds of colorectal distention pressures were recorded

when mice lifted the abdomen and pelvic structures. (C) Acetic acid-induced

writhing test. The number of writhing actions (contractions of the abdominal

muscles, accompanied by stretching) was counted in 20min after

intraperitoneal injection with acetic acid. (D) Formalin-induced visceral

nociception test. The number of abdomen-licking behaviors was observed for

60min after instilling formalin into the colon. Data were presented as the mean

± SEM. Significance was tested with one-way ANOVA followed by Dunnett’s

multiple comparisons test. *p < 0.05 and **p < 0.01 vs. WT mice. NS, no

significance; WT, wild-type (Scn11a+/+ mice); HET, heterozygote

(Scn11a+/R222S mice); HOM, homozygote (Scn11aR222S/R222S mice).

were observed. Nociceptive pain behaviors were significantly
more frequent in Scn11aR222S/R222S mice than in normal controls
(WT mice: 41.8 ± 2.9, n = 8; Scn11a+/R222S mice: 42.5 ±

4.5, n = 8; Scn11a R222S/R222S mice: 62.6 ± 4.8, n = 8;
p < 0.01, Scn11aR222S/R222S vs. WT mice; Figure 3D). The
data demonstrated that Scn11aR222S/R222S mice had visceral
hyperalgesia in response to acute inflammation.

Scn11aR222S/R222S Mice Manifested
Intestinal Dysmotility
Scn11aR222S/R222S Mice Presented With Longer

Intestinal Transit Time in vivo
The carbon powder propelling test was used to investigate the
difference in intestinal motility among the 3 groups in vivo. The
distances of the carbon powder traveled in the Scn11aR222S/R222S

group were significantly shorter than those in the control WT
group (WT mice: 75.5 ± 1.1%, n = 8; Scn11a+/R222S mice:
71.7 ± 2.2%, n = 8; Scn11a R222S/R222S mice: 67.5 ± 1.9%, n
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FIGURE 4 | Intestinal motility comparison among 3 groups. (A) Carbon

powder propelling test. Twenty minutes after gavage with a charcoal meal,

distances traveled by charcoal meal along the intestine in mice were measured

and quantified as a percentage of distance traveled. (B) The traces of the

intestinal segments contraction curves were recorded from a representative

WT, HET, and HOM mouse, respectively. (C,D) The tonotransducer

continuously recorded the number of contractions and calculated area under

the contraction curve for 3min. (E,F) The concentrations of SP and VIP (tested

by ELISA) were decreased in the intestinal tissues of Scn11a knock-in mice.

Data were presented as the mean ± SEM. Significance was tested with

one-way ANOVA followed by Dunnett’s multiple comparisons test. *p < 0.05,

**p < 0.01, ***p < 0.001 vs. WT mice. NS, no significance; WT, wild-type

(Scn11a+/+ mice); HET, heterozygote (Scn11a+/R222S mice); HOM,

homozygote (Scn11aR222S/R222S mice).

= 8; p < 0.01, Scn11aR222S/R222S vs. WT mice; Figure 4A). The
results indicated that intestinal tract movement was slower in
Scn11aR222S/R222S mice.

Intestinal Segments of Scn11aR222S/R222S Mice

Showed Less Peristalsis in vitro
Themechanical activity of small intestine segments was evaluated
to investigate intestinal motility. The examples of raw traces are
shown in Figure 4B. The number of contractions in intestinal
segments from Scn11aR222S/R222S mice was lower than that in
those from WT mice, whereas the number of contractions
in segments from Scn11a+/R222S mice was not different (WT
mice: 97.6 ± 3.5, n = 8; Scn11a+/R222Smice: 94.6 ± 2.6,
n = 8; Scn11aR222S/R222S mice: 86.8 ± 2.0, n = 8; p <

0.05, Scn11aR222S/R222S vs. WT mice; Figure 4C). No significant
difference in the area under the contraction curve was observed
among the 3 groups (WT mice: 125 ± 8.9 g × s, n = 8;
Scn11a+/R222S mice: 124.8 ± 9.6 g × s, n = 8; Scn11aR222S/R222S

mice: 130.6 ± 7.2 g × s, n = 8; p = 0.9, Scn11aR222S/R222S vs.
WTmice; Figure 4D). These data revealed less frequent intestinal
peristaltic movements in Scn11aR222S/R222S mice.

VIP and SP Were Decreased in Intestinal Tissue From

Scn11aR222S/R222S Mice
To investigate the changes of neurotransmitters in the ENS, we
measured SP, VIP, and NE by ELISA. The concentrations of SP
in intestinal tissues in Scn11aR222S/R222S mice were significantly
lower than those in WT mice, while those in Scn11a+/R222S mice
were similar to those in controls (WTmice: 28.8± 3.6 pg/ml, n=

FIGURE 5 | The potential mechanisms for hyperexcitability in sensory afferents

lead to reduced intestinal motility. (A) The influence on entero-enteric inhibitory

reflexes. PVG: prevertebral ganglion, IFANs: intestinofugal afferent neurons,

NE: noradrenaline, LM: longitudinal smooth muscle, MP: myenteric plexus,

CM: circular smooth muscle, SMP: submucosal plexus. The paragraph was

modified from Spencer and Hu (26). (B) The alteration in peristalsis reflexes.

IPANs: intrinsic primary afferent neurons. This paragraph was modified from

Fung and Vanden Berghe (32). (C) The abnormal peristalsis reflexes triggered

by hyperexcitability sensory neurons might disrupt intestinal peristalsis waves.

WT, wild-type (Scn11a+/+ mice); HOM, homozygote (Scn11aR222S/R222S

mice). This paragraph was modified from Mawe (31).

4; Scn11a+/R222S mice: 25.9± 1.7 pg/ml, n= 7; Scn11aR222S/R222S

mice: 14.7± 1.8 pg/ml, n= 4; p< 0.01, Scn11aR222S/R222S vs. WT
mice; Figure 4E). Scn11aR222S/R222S also showed significantly
lower VIP concentrations than those in WT controls (WT mice:
n = 5, 15.8 ± 1.3 pg/ml; Scn11a+/R222S mice: n = 7, 15.2 ± 0.8
pg/ml; Scn11aR222S/R222S mice: n= 5, 9.1± 0.6 pg/ml; p < 0.001,
Scn11aR222S/R222S vs. WT mice; Figure 4F). Scn11aR222S/R222S

mice showed a slight increment in NE concentrations in
intestinal tissues. However, there were no significant differences
among the 3 genotypes (Supplementary Figure 2).

DISCUSSION

The mechanical recording of the intestinal segment and
carbon powder propelling test revealed enteral dysmotility.
Scn11aR222S/R222S mice showed a lower contraction frequency
and longer small intestinal transit time than those in WT mice.
In another study, a patient with the L811P gain-of-function
mutation in SCN11A showed reduced small intestine peristaltic
waves by laparotomy (11). Scn11a+/L799P mice carryingmutation
orthologous with the human L811P mutation show a small
shift toward less frequent intestinal peristaltic movements (no
statistical significance), and the gastrointestinal transit time
was unaffected overall. However, Scn11a L799P/L799P mice were
not tested (9). L811P and R222S are both gain-of-function
mutations. However, the former causes pain insensitivity while
the latter causes familial episodic pain. Despite these differences,
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both mutations are associated with the same tendency toward
reduced intestinal peristaltic movements. In addition, some
patients with gain-of-function SCN11A mutations experience
constipation, diarrhea, or mixed symptoms, demonstrating
opposite symptoms. Its mechanism was not clarified. Therefore,
the functional impact of Nav1.9 mutations on ENS needs further
investigation. Scn11a+/L799P mice exhibited insensitivity to pain,
but sensitivity to pruritus (11, 20). The functional influence of
Nav1.9 in different sensory modalities also needs further study.

The SP secreted by excitatory motor neurons is an excitatory
neurotransmitter in the ENS that causes intestinal smoothmuscle
contraction. Conversely, VIP is an inhibitory neurotransmitter
that causes intestinal smooth muscle relaxation. VIP can also
increase intestinal secretion. VIP tumors (Verner-Morrison
syndrome) abnormally secret excess VIP. In patients, this
increase in VIP causes secretory diarrhea (21). A rat model
with constipation has been shown to have decreased expression
of VIP levels in colon tissues (22). Overall, VIP can decrease
transit time. In our study, Scn11aR222S/R222S mice showed lower
concentrations of SP and VIP. This result indicated a slower
intestinal transmission speed in Scn11aR222S/R222S mice.

Gastrointestinal sensory mechanisms play a crucial role in
triggering motor reflexes by transmitting sensory information to
the enteric reflex circuits that perform local control via afferent
pathways to the central nervous system (23). There are mainly
four types of afferent neurons in the gut, i.e., primary afferent
neurons with cell bodies in DRG, primary afferent neurons with
cell bodies in vagal sensory ganglia, intrinsic primary afferent
neurons (IPANs) in the ENS, and intestinofugal afferent neurons
(IFANs) in the ENS (24). IFANs with Dogiel type II morphology
project to sympathetic prevertebral ganglia (PVG) neurons, and
their cell bodies are within enteric ganglia (25). In addition,
IPANs mainly belong to Dogiel type II neurons (26). The Nav1.9
channel expresses in the ENS, which is located on Dogiel type
II neurons in mice (2, 27), and may involve in regulating the
neuronal excitability.

Intestinofugal afferent neurons convey signals to sympathetic
PVG neurons, and the activation of sympathetic PVG neurons
could inhibit intestinal peristalsis (entero-enteric inhibitory
reflexes) (24). The excess stimulation by visceral afferent
(sensory) fibers could modulate motor neurons in PVG, which
may influence local gastrointestinal motor function and induce
dysmotility (28). The sympathetic neurons mainly release
the neurotransmitter NE. Moreover, the NE could dampen
peristalsis (29). Therefore, the hyperexcitability of IFANs might
activate sympathetic neurons via PVG (Figure 5A). Nav1.9
channels in Scn11aR222S/R222S mice had hyperexcitability. In
addition, Scn11aR222S/R222S mice showed a slight increment in
NE concentrations in intestinal tissues. These data indicated
that entero-enteric inhibitory reflexes in Scn11aR222S/R222S mice
might be abnormally activated.

The trinitrobenzene sulfonic acid (TNBS)-colitis induced
hyperexcitability of myenteric afferent neurons. The TNBS-
colitis model leads to temporarily halted motility or obstructed at
sites of ulceration. Moreover, suppression of the excitability
of afterhyperpolarization (AH) neurons/IPANs could
restore colonic motility in guinea pigs ex vivo following the

inflammation. These results support that enhanced excitability
of AH neurons/IPANs could contribute to dampened propulsive
colonic motility (30). The gain-of-function alteration of Nav1.9
in Scn11aR222S/R222S mice also induced hyperexcitability of
IPANs, which may reduce intestinal contractions.

In the intestinal peristalsis reflex, the mechanical and/or
chemical stimulation causes activation of IPANs at the location
of the stimulus. These IPANs, along with interneurons, convey
signals ascendingly to activate excitatory motor neurons and
descendingly to activate inhibitory motor neurons. The outcome
is a pressure gradient, which propels the intestinal luminal
contents distally (Figure 5B). Moreover, as the process repeats
itself, the peristalsis wave is generated (31, 32).

In the regions of inflammation, IPANs are spontaneously
active and synaptic activity is augmented. The alterations cause
overlapping descending inhibitory and ascending excitatory
signals in the regions. In addition, inhibitory neuromuscular
transmission is decreased. Peristalsis is disrupted by the mixed
signals and the suppressed neuromuscular transmission in the
inflammation region (31). Scn11aR222S/R222S mice also existed
overactive firing in IPANs, which might lead to overlapping
paradoxical signals. The mixed signals may contribute to disrupt
normal pressure gradients in peristalsis (Figure 5C). However,
due to the complexity of gastrointestinal regulations, the exact
mechanisms linking the hyperexcitability of the sensory neurons
with delayed peristalsis need further investigations.

Scn11aR222S/R222S mice exhibited an enhanced response
to heat and formalin stimulus. These results suggested a
decreased somatic pain threshold in these mice. Additionally,
Scn11aR222S/R222S mice showed visceral hyperalgesia in the
AWR test, acetic acid-induced writhing test, and formalin-
induced visceral nociception test. The excitability of DRG
neurons in Scn11aR222S/R222S mice was higher than that in
WT mice. DRG neurons are the primary neurons that conduct
pain. Therefore, their hyperexcitability could cause somatic and
visceral hyperalgesia. Another study also recognized that Nav1.9
channels play a key role in visceral pain by affecting nociceptive
neurons (33).

CONCLUSIONS

In conclusion, this study revealed that Scn11aR222S/R222S mice
have slower small intestine peristalsis than that in WT controls
and increased visceral hypersensitivity. Our results indicate
that the Scn11a gene contributes to the regulation of visceral
sensitivity and intestinal motility.
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