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ABSTRACT
Oral squamous cell carcinoma (OSCC) is the sixth most common cancer worldwide, which appears
as a consequence of multiple molecular genetic events in various chromosomes and genes. In order
to unveil the possible mechanisms underlying OSCC tumorigenesis, the OSCC-related gene
expression variance and the gene interaction network should be further investigated. Herein, we
conducted the NimbleGen Human Gene Expression Microarray to analyze expression
heterogeneity between OSCC primary tumor tissue and its adjacent normal tissue from two
patients. A total number of 7872 out of 32,448 detected genes are differentially expressed in
OSCC. Gene ontology (GO) analysis demonstrated that these differentially expressed transcripts
were critical in a series of metabolic processes, cancer-related signal pathways, and biological
regulations. KEGG signaling pathway enrichment suggested a number of pathways (metabolic
process and immune response) which are frequently enrolled during cancer progression. 15
most differential regulated genes between OSCC tumor and non-tumor were confirmed by
quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, the
interaction network analysis of these confirmed genes by STRING database showed the two
subunits of RACK1 had direct interaction with 14 differential proteins. This bioinformatics
research lends support about the critical role of RACK1 which functions as a key node protein
driving OSCC development.
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Introduction

Oral squamous cell carcinoma (OSCC) is among the most
lethal malignancies with 30,000 new cases diagnosed
and approximately 11,000 deaths every year (Chaturvedi
et al. 2008; Wang et al. 2013). Early-to-moderate-stage
OSCC (American Joint Committee on Cancer stages I-III)
is often treated surgically, with radiotherapy given in
the presence or absence of chemotherapy in the post-
operative adjuvant setting for high-risk patients(Lo
et al. 1976). In advanced (stage IV) cases, multidisciplin-
ary non-surgical approaches are being applied with
increasing frequency to improve disease control,
prolong survival, and maintain life quality for patients.
Even when the appropriate combination of surgical
and non-surgical approaches is used, more than half of
patients still experience cancer recurrence (Massano
et al. 2006). Furthermore, recurrent and distantly

metastatic OSCC carry particularly poor prognosis
(Johnson et al. 1992). Therefore, it is necessary to
conduct studies on OSCC mechanisms to develop more
effective and efficient therapies.

Like other tumor types, the OSCC occurrence is
regarded as an outcome of multiple factors (Anneroth
et al. 1987; Miller and Johnstone 2001; Chiou et al.
2008) and a complicated process involved in the
network among multifarious genes and proteins (Hu
et al. 1991; Xia et al. 1999). Currently, most of OSCC
researches mainly focus on the critical role of a single
gene or protein during tumor deterioration, such as
oncoprotein EZH2 (Shiogama et al. 2013) and histone
modifier hMOF (Li et al. 2015). However, to well under-
stand the mechanism of OSCC tumorigenesis, specific
attention should be paid to the difference of signal
network channel protein and OSCC-related genes
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instead of a single gene or protein, and the interaction of
these proteins also deserves diligent evaluation.

DNAmicroarray (also commonly known as DNA chip or
biochip) is a collection of microscopic DNA spots attached
to a solid surface, which is often used to measure the
expression levels of a batch of genes simultaneously or
genotype of multiple genomic regions (Schena et al.
1995; Eisen et al. 1998; Golub et al. 1999; Tusher et al.
2001). The pre-designed oligonucleotides are densely
and orderly arranged to form a chip. With fluorescence
dye samples (such as Cy3, Cy5 etc.) labeling the probe, oli-
gonucleotides on the chip interact with the probe accord-
ing to the principle of base pairing (DeRisi et al. 1997). The
result then can be detected and collected by various
means such as confocal laser scanning and fluorescence
signal acquisition. The obtained sequence information is
finally analyzed by bioinformatics interpretation
(Kononen et al. 1998; Olsen et al. 2010). Computational
technologies are used to accelerate or fully automate
the process, quantification and analysis of massive
highly informed biomedical imagery. DNA microarray is
able to analyze the sequence and function of genes in a
high through output at the same time.

In this study, the DNAmicroarray is applied in analyzing
the difference of gene expression between OSCC and
adjacent normal tissue. The gene distribution and charac-
teristic of the differentially expressed gene patterns were
analyzed by the GO analysis, indicating that these deregu-
lated genes were involved in a series of metabolic pro-
cesses, cancer-related signal pathways, and molecular
functions. Furthermore, we have also selected out the
representative 15 differently expressed genes with the
consistent protein expression profile proved by our pre-
viously report. We have further demonstrated that these
gene expressions are significantly different between
OSCC tumor and non-tumor by qRT-PCR. The interaction
network of these selected genes and proteins was built
in the STRING database, which revealed the crucial role
of the receptor for activated C kinase 1 (RACK1) as the
core protein of the entire structural network in OSCC.

Materials and methods

Patient samples collection

All experiments were preceded according to hospital
regulations and medical ethics standards of School and
Hospital of Stomatology, Guangzhou Medical University,
Guangzhou, China. Two excisions of OSCC and peripheral
normal tissues (2 cm above) were collected by surgery in
Stomatological Hospital of Guangdong Province in 2013.
None of the patients received chemotherapy or radio-
therapy before surgery. Informed consents were

obtained and the study was approved by School and
Hospital of Stomatology, Guangzhou Medical University
ethical committee, Guangzhou, China (Guangzhou
medical university: no.2016-067).

DNA microarray and bioinformatics analysis

The total RNA of tumor and surrounding normal tissues
were collected using Trizol. One microgram of total RNA
was transcribed into cDNA using RevertAid™ H Minus
First Strand cDNA Synthesis Kit. 1 μg cDNAwas incubated
with Random 9-mer labeled by Cy3. 3 μL resulting cDNA
labeled with Cy3 was incubated with 8.7 μL Master Mix
at 42°C for 5 min, then another 6 μL above mixture was
added into the hybridization kit with the gene chip at
42°C for 16 h. The NimbleGen Human Gene Expression
Microarrays (Microarrays version: Roche NimbleGen
Homo sapiens 12 × 135 k) were used for the differential
gene expression between tumor and normal tissues.
The gene chip was scanned by Axon GenePix 4000B
microarray scanner, with NimbleScan (version 2.5) soft-
ware for the image analysis that converts the image
signal to digital signal. Gene expression microarray data
was analyzed by Agilent GeneSpring GX v12.0.

Quantitative real-time PCR

32 excisions ofOSCCandneighboring tissues (2 cmabove)
of equal quantity were gathered by surgery from patients
without chemo- or radiotherapy in Stomatological Hospi-
tal of Guangdong Province in 2013, with their awareness
and consent alongside the approval of local ethical com-
mittee. The total RNA of these samples were obtained
using Trizol, in which 1 µg of them was transcribed into
cDNA using RevertAid™ H Minus First Strand cDNA Syn-
thesis Kit. To assess mRNA levels, qRT-PCR was performed
using FastStart Universal Probe Master with forward and
reverse primers listed below. mRNA levels were normal-
ized against the housekeeping gene GAPDH using
forward 5′-ATCAAGAAGGTGGTGAAGCAGGCA-3′ and
reverse 5′-TGGAAGAGTGGGAGTTGCTGTTGA-3′ primers.
PCR parameters are as follows: 60 s of Taq activation at
95°C, followed by 40 cycles of PCR at 95°C × 20 s, and 1
cycle of 95°C × 15 s, 57°C × 60 s and 95°C × 15 s. The
gene primers detected are listed in Table 1.

GO analysis and KEGG pathway analysis

The Gene Ontology (http://www.geneontology.org) was
performed to clarify the functional distribution of the dif-
ferentially expressed genes in OSCC, which mainly covers
in three particular parts: Biological Process, Cellular Com-
ponent, and Molecular Function. We applied Fisher’s
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exact test to calculate the p-value with a 0.05 cutoff.
Pathway analysis is performed by mapping genes to
KEGG pathways database. Fisher’’s exact test to calculate
the p-value with a 0.05 cutoff.

Construction of relationship among differential
genes

Among numerous protein interaction databases, STRING
database 9 was employed to guide the search for epista-
sis. STRING is among the largest databases of known and
predicted protein–protein interaction which integrates
reported interactions from dedicated interaction data-
bases and multipurpose ones centered on specific
model organisms. The interactions inside STRING
consist of direct (physical) and indirect (functional)
ones that derived from genomic context, high through-
put, co-expression along with previous knowledge.
While no distinction has been made among different
types of interactions, the confidence of these inter-
actions has been well differentiated – each protein–
protein interaction in STRING has a confidence score.
We only focused on the high-scored genes (i.e. inter-
actions with a score over 0.7) in autosomal chromosomes
and finally screened out 15 genes. Thereafter, these 15
genes were input into STRING (http://string.embl.de) to
analyze and construct the relationship network by

means of bioinformatics as well as to find the potential
relationship among protein subunits.

Results

DNA microarray of patient-derived OSCC and the
tumor side tissue

Gene expressions of OSCC and adjacent non-tumor
samples nearby from two patients were detected by
microarray chips. The fluorescence signal shown in
Figure 1 demonstrated a high signal intensity and
uniform chip hybridization, clear and balanced gene
point, indicating the fairly ideal outcome.

Further analysis of the gene microarray data was
assessed and exhibited by Box-Plot (Figure 2(A)), Scatter
Plot (Figure 2(B)) and the Hierarchical Clustering (Figure
2(C)). Figure 2(A) showed that the log2 rates of all
samples are similar without significant difference, which
is suitable for further data analysis. The Scatter Plot was
employed to evaluate the difference of the gene
expression between two microarrays. The X/Y axes rep-
resent the standard signal values of control and test
group (log2); the green lines are folding change lines. As
displayed in Figure 2(B), most genes are located
between the upper and lower green folding lines, which
suggest that the majority of the detected genes remain
almost unchanged during OSCC development. However,
there are still some dots positioned far away from the
lines, showing the presence of the potential tumor-
related genes between OSCC and the adjacent tissue.
We further applied hierarchical clustering and got similar
results to Figure 2(B). The red regions indicate relatively
highly expressed genes while the green means lowly
expressed ones, like in Figure 2(C), the conspicuous differ-
ence is shown between the two samples. According to the
screening criteria of the differential genes, a total number
of 7872 out of 32,448 tested genes are differential

Table 1. RT-PCR primers of 15 selected genes.
Accession
number Gene

Forward /
Reverse Primers

NM_006098 RACK1 Forward CTCTGGGATCTCACAACGGG
Reverse TGCACACACCCAGGGTATTC

NM_002964 S100A8 Forward AGCCCTGCATGTCTCTTGTC
Reverse ACGTCTGCACCCTTTTTCCT

NM_002965 S100A9 Forward CCCACGAGAAGATGCACGAG
Reverse CCTCCTGATTAGTGGCTGTGG

BC034687 S100A7 Forward GATTGACAAGCCAAGCCTGC
Reverse GGCTATGTCTCCCAGCAAGG

BC009200 GDI-beta Forward ATGAATGCATCCTCCCCCTTT
Reverse ACTCATTGGGCCAGCAACAA

NM_000700 ANXA1 Forward CGAAACAATGCACAGCGTCA
Reverse TCCTCAGATCGGTCACCCTT

BC001388 ANXAA2 Forward GGACGCGAGATAAGGTCCTG
Reverse GCTTTCTGGTAGTCGCCCTT

NM_001154 ANXA5 Forward AGGGTACTACCAGCGGATGT
Reverse AGTCTCGCGGTCAATGGTTT

NM_000100 CST B Forward ATTCAAGAGCCAGGTGGTCG
Reverse AAGTGCACGCTCTGGTAGAC

NM_001885 CRYAB Forward CCGGCAAAGAGCAGGTATCA
Reverse GACTCCAACAGGTGCTCTCC

NM_005563 STMN1 Forward TTGGTGCTCAGAGTGTGGTC
Reverse GGGGAAAGGGGGAATTCTGG

NM_002307 LGALS7 Forward GAGAATTCGCGGCTTGGTTC
Reverse CCAGCCGGGGGTTGAAAT

AY129319 EIF5A Forward ACCCCTTTAGATGGGGACC
Reverse TTAACAAATGTGTCGGGGAGA

NM_003186 TAGLN Forward GAAGCCTTCTTTCCCCAGACA
Reverse ATCACGCCATTCTTCAGCCA

NM_006919 SERPINB3 Forward GCTGAAGATCGCCAACAAGC
Reverse CCAATGTGGTATTGCTGCCA

Figure 1. The scanning results of gene microarray. A, adjacent
normal tissue; B, OSCC tumor primary tissue.
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expression genes of OSCC, which accounts for 24% of the
total. Among them, 3800 genes are up-regulated genes,
and 4072 are down-regulated ones.

Characterization of differential gene profile in
OSCC

GO analysis was carried out to find out the functional dis-
tribution of the differential genes. Notably, we found these
genes are involved with some critical processes during

cancer initiation and progression. Functions of these
genes distribute on three major components: biological
process, cellular component, and molecular function. The
715 down-regulated genes responsible were enriched
with some cell death signaling and wound healing,
death (9.12), cell death (8.98), response to wounding
(8.24), and wound healing (7.90) (Figure 3(A)). Coordi-
nately, the 532 up-regulated genes in charge of biological
process (Figure 3(B)) were discovered by functional

Figure 2. The gene expression pattern of OSCC tumor and non-tumor. A, Box-plot to show the distribution of detected mRNAs between
OSCC non-tumor and tumor; B, scatter plot to exhibit the expression variance between OSCC non-tumor and tumor; X and Y values
represent the the averaged normalized microarray signals (log2). The green lines represent ± 2 fold-changes; C, Heatmap of differen-
tial expressed genes between OSCC non-tumor and tumor. The colors show the relative gene expression levels with downregulation
represented by shades of green and upregulation by shades represented by red.
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Figure 3. The GO analysis of the deregulated repressed and induced gene profile. A, down-regulated genes ruling biological process; B,
up-regulated genes in charge of biological process; C, down-regulated genes controlling cellular components; D, up-regulated genes
responsible for cellular components; E, down-regulated genes dominating the molecular functions; F, up-regulated genes directing
molecular functions.
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enrichment analysis. These genes are mainly concentrated
in immune-regulation, such as immune system process
(6.06), regulation of immune system process (5.49),
immune response (5.39), lymphocyte costimulation
(4.77), T cell co-stimulation (4.77). In regarding to the cellu-
lar component distribution, the 149 subhorizon down-
regulated genes were chiefly enriched in cytoplasm parts
18.17 cytoplasm and 11.18 cytoplasmic parts (Figure 3
(C)), while the 41 up-regulated genes mainly related with
extracellular regions, including extracellular region part
(12.14), extracellular regions (12.14) and extracellular
space (10.91) (Figure 3(D)). With molecular function GO
analysis, 132 down-regulated genes were figured out to
be associated with different protein–protein binding inter-
actions, such as protein binding (17.68), enzyme binding
(8.97), cytoskeletal protein binding (8.00), (Figure 3(E)).
But the 97 up-regulated genes were uncovered to be
involved with signal transducer activities (6.74) and mol-
ecular transducer activities (6.74) (Figure 3(F)).

To further explore the gene profile, we applied KEGG
pathway database to examine the pathway distribution

of these aberrantly expressed genes (Figure 4).
Repressed genes were found in 55 biological pathways,
which are concentrated in pathways of metabolic
(sugar metabolism (6.19)), immune-related (NOD-like
receptor signaling pathway (4.88)),oncogenic (Pathways
in cancer (4.52))and adhesive (Adherens junction
(human)(3.93)) pathways (Figure 4(A)). The biological
pathways of the up-regulated genes were found in 26
pathways, which are mainly enriched in tumor prolifer-
ation and immune related pathways, such as DNA repli-
cation(3.80),intestinal immune network(3.28),and
cytokine-cytokine receptor interaction(2.72) (Figure 4
(B)). We found these differentially expressed genes con-
tribute to a complicated network of many signal path-
ways involving in OSCC carcinogenesis.

qRT-PCR verification of differential expression
genes in OSCC and tissues nearby

By integrating our gene expression data and previous
protein expression screening result, we have finally

Figure 4. The enriched signaling pathways of differentially expressed genes of OSCC. A, down-regulated genes related signaling path-
ways; B, up-regulated genes related signaling pathways. Those aberrantly expressed genes were enriched into various signaling path-
ways based on KEGG database. The X axis represents enrichment score and Y axis represents the specific pathways.
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screened out 15 most differentially expressed gene.
These genes expression was further confirmed by qRT-
PCR among 32 paired OSCC tissues. In consistence, all
the differential genes verified among 32 tissues have
statistical differences (P < 0.001), reconfirming the
reliability of gene expression microarrays.As shown in

Table 2, among these 15 differential genes, RACK1,
ARHGDIB, STMN1, LGALS7, EIF5A, and TAGLN were sig-
nificantly overexpressed in OSCC tumor compared with
non-tumor. On the other hand, 9 of them are significantly
down-regulated, including S100A7, S100A8, S100A9,
ANXA1, ANXA2, ANXA5, CSTB, CRYAB, and SERPINB3.

Construction of relationship among the
differential genes

As a scaffolding protein, RACK1/GNB2L1 contains two
functional domains, namely WD40 repeated protein
and β G protein subunit (Figure 5(A)). Through
NetPhos2.0 based amino acid phosphorylation predic-
tion, we have mapped the phosphorylation sites of
RACK1 in Figure 5(B), consisting 24 possible phosphoryl-
ation sites, in which 15 sites are located in serine, 8 sites
are located in threonine and 1 site is located in Tyrosine,
indicating the cross-interaction with other proteins. The
gene-gene interaction network returned by STRING is
shown in Figure 5(C), in which RACK1 was overexpressed

Table 2. RT-PCR analysis of OSCC and neighboring tissue.
Gene Regulation Log2 (fold changes) p

RACK1 Up 1.35 <0.001
S100A8 Down −1.35 <0.001
S100A9 Down −1.41 <0.001
S100A7 Down −1.33 <0.001
ARHGDIB Up 0.95 <0.001
ANXA1 Down −1.55 <0.001
ANXA2 Down −1.80 <0.001
ANXA5 Down −1.50 <0.001
CSTB Down −1.31 <0.001
CRYAB Down −1.87 <0.001
STMN1 Up 1.53 <0.001
LGALS7 Up 1.43 <0.001
EIF5A Up 2.03 <0.001
TAGLN Up 1.61 <0.001
SERPINB3 Down −1.84 <0.001

Figure 5. RACK1 as a key center in the gene-gene interaction network among differential expressed proteins of OSCC. A, 3D structure of
RACK1; B, phosphorylation sites prediction of RACK1; C, gene-gene interaction network of 15 degregulated genes in OSCC. COG4826
(SERPINB3), COG2319(RACK1), KOG1997(STMN1), KOG2392(SERPINB3), KOG3587(LGALS7), KOG2046(TAGLN), KOG3205(ARHGDIB),
KOG3591(CRYAB), KOG0819(ANXA1, 2, 5), NOG26977(ANXA2), NOG26977(ANXA2), COG5199(TAGLN), KOG1997(STMN1), KOG2392
(SERPINB3), KOG3587(LGALS7), KOG3591(CRYAB), KOG0819(ANXA1, 2, 5), KOG3205(ARHGDIB).
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in OSCC and its two domains (RACK1: COG2319 and
KOG0279) serve as key nodes to connect with other
deregulated proteins via WD40 repeated protein
(number COG2319) and β G protein subunit. WD 40
repeated protein (number COG2319) interacts with 8
differential proteins directly via 15 pathways and β G
protein subunit (number KOG0279) directly interacts
with 8 differential proteins in 11 interacting pathways.
In detail, KOG0279 subunit interacts with EIF5A
(KOG2924, KOG0567 and KOG3271), S100A7
(KOG0401), MTPN (KOG0363), S100A8 (KOG1947),
UBE2N (KOG0417, COG5078), LGALS7 (KOG3587),
SERPINB3 (KOG2392), CSTB (NOG29074) separately.
Meanwhile, COG2319 subunit interacts with PRIM2
(COG2219), MTPN (COG0508, COG0666 and COG0459),
EIF5A (COG1413, COG1899, COG0231, COG1601 and
COG0364), STMN1 (COG2518, NOG75290), UBE2N
(COG5078), ANXA1 (p-AKT) (COG5021), SERPINB3(p-
AKT, p-mTOR,) (COG4826), TAGLN(AKT pathways)
(COG5199) respectively, shaping another network.
Notably, we also noticed that most of the RACK1 inter-
acted proteins, such as EIF5A (Ding et al. 2011), CSTB
(Zhang, Shi, et al. 2016) and TAGLN (Zhou et al. 2016),
are involved with tumor malignancy through PI3 K/
pAKT pathways. The above results strongly suggested
the crucial role of RACK1 during the progression of
OSCC tumorigenesis, which is consistent with other
reports (Wang et al. 2009a; Zhang, Liu, et al. 2016).

Discussion

To the best of our knowledge, this study is one of the few
cases which try to decode the expression pattern of
OSCC and construct new tumor classifications. Therefore,
we have performed the microarray of two pairs of clinical
samples of OSCC tumor and adjacent normal tissue to
explore the aberrant expression of OSCC related genes
and try to depict the gene-gene interaction network.
Based on our analysis, we have figured out a number
of significantly deregulated genes between OSCC
tumor and non-tumor which is potential to link tumor
initiation and malignancy. In detail, 3800 genes are up-
regulated genes, and 4072 are down-regulated ones.
15 most differential regulated genes between OSCC
tumor and non-tumor were further confirmed by both
protein expression array and qRT-PCR. RACK1 is among
the most overexpressed genes. Gene ontology (GO)
analysis has revealed that these aberrant transcripts par-
ticipate in a series of tumor-related distribution, includ-
ing metabolic process, cytokine transduction, and cell
death regulation. KEGG signaling pathway enrichment
suggested a number of pathways (metabolic process

and immune response) which are frequently enrolled
during cancer progression.

A network graph is constructed based on the inter-
action of these 15 differential genes by integrated
expression signature analysis, including gene expression
pattern, GO analysis, KEGG signaling pathway and
STRING protein–protein interaction network (Harris
et al. 2008), depicting the direct interaction of two sub-
units of RACK1 with 14 differential proteins in 26 inter-
action pathways. Thus, it indicates that RACK1 is the
core protein of the entire network as well as the key
node protein in OSCC, which is consistent with other pre-
vious reports that RACK1 is always overexpressed in
OSCC and could serve a potential diagnosis marker for
patient poor survival (Wang et al. 2009a; Zhang, Liu,
et al. 2016). However, few systematic studies have
focused on the role of RACK1 in the gene interaction
network. Hence we try to explore the underlying mech-
anism RACK1 in promoting OSCC progression in the
context of whole transcription pattern by microarray.

RACK1 is located in the 5q35.3, proximal to the
chromosome telomeres. As a scaffolding molecule,
RACK1 attracts substantial academic concern by its func-
tion as protein kinase receptor, which can serve as the
molecular network center by attracting numerous
kinases and receptors along with mediate various intra-
cellular signaling pathways (Chang et al. 1998; Liliental
and Chang 1998; Yarwood et al. 1999; Hermanto et al.
2002; McCahill et al. 2002; Nilsson et al. 2004; Liu et al.
2007). Scholars have formed a common belief that that
RACK1 plays a major role in regulating some important
biology process such as cell multiplication, neural
system development, metabolism, tumor metastasis,
and invasion. Relations among RACK1, neoplasm and
metastasis is a hotspot in recent tumor research, like
recently reported by Li et al., RACK1 is a key regulator
of the cell migration, invasion and adhesion in OSCC (Li
et al. 2012). Additionally, expression of RACK1 is an excel-
lent predictor of poor clinical outcome in OSCC as well as
other common cancers (Wang et al. 2009b; Cao et al.
2010).

Here DNA expression microarray is exploited to get
the overall expression profile of OSCC, together with
identifying potential gene candidates related to the inci-
dence and development of OSCC. We found a large pro-
portion of genes were correlated with cancer-related
gene ontology and pathways. Moreover, gene inter-
action network construction further supported the key
node of RACK1 in contributing to OSCC carcinogenesis
by interaction with other coding genes. Altogether, this
systematic analysis of gene expression profile will
benefit the optimization of treatment management
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and provide insights in genome-mining based clinical
trials for the serious OSCC patients.
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