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The blood-cerebrospinal fluid barrier physiologically protects
the meningeal spaces from blood-borne bacterial pathogens,
due to the existence of specialized junctional interendothelial
complexes. Few bacterial pathogens are able to reach the sub-
arachnoidal space and among those, Neisseria meningitidis is
the one that achieves this task the most constantly when
present in the bloodstream. Meningeal invasion is a con-
sequence of a tight interaction of meningococci with brain
endothelial cells. This interaction, mediated by the type IV pili,
is responsible for the formation of microcolonies on the apical
surface of the cells. This interaction is followed by the
activation of signaling pathways in the host cells leading to
the formation of endothelial docking structures resembling
those elicited by the interaction of leukocytes with endothelial
cells during extravasation. The consequence of these bacterial-
induced signaling events is the recruitment of intercellular
junction components in the docking structure and the
subsequent opening of the intercellular junctions.

Introduction

Bacterial meningitis is the leading cause of central nervous system
(CNS) infection. Although bacterial meningitis can be due to
the dissemination of contiguous infections such as sinusitis or
mastoiditis to the meningeal membranes, most cases are caused by
blood-borne pathogens. The blood-brain barrier (BBB) protects
the CNS from most bacteria that may have reached the blood-
stream, thus restricting the etiology of bacterial meningitis to a
few and predominantly extracellular pathogens: Escherichia coli
K1 and Streptococcus agalactiae (Group B Streptococcus) in the
newborn, Neisseria meningitidis, Haemophilus influenzae type b
and Streptococcus pneumoniae in children and adults.1-3

Paradoxically, these bacteria are commensal of the nasopharynx
(N. meningitidis, S. pneumoniae and H. influenzae) or of the
digestive tract (E. coli and S. agalactiae).4

The pathophysiology of bacterial meningitis is a multistep
process that reflects the ability of bacterial pathogens to cross the

oropharyngeal or digestive mucosal barrier, survive and replicate
in the bloodstream, and to eventually cross the BBB.4-6 It has been
demonstrated that these extracellular pathogens express various
virulence factors allowing them to survive in the extracellular
compartments and to interact directly with the components of
the blood-brain barrier. The main virulence factor expressed by
all extracellular pathogens is a capsule that prevents bacterial
phagocytosis or complement-mediated lysis.4,7-12 Once inside the
cerebrospinal fluid (CSF), bacterial multiplication is thought to
be uncontrolled, due to the local deficiency in complement
and immunoglobulins, despite the influx of polymorphonuclear
leukocytes induced by the local inflammatory response. However
data obtained in primates showed that bacterial presence in the
CSF can be transient if bacteremia is not sustained, reflecting
the fact that bacterial entry into the CSF may not always lead to
meningitis.13

The small number of bacterial species capable of invading the
meninges suggests that specific virulence factors are required for
bacteria to enter the subarachnoidal space. Among the above-
mentioned extracellular bacteria, Neisseria meningitidis, the agent
of cerebrospinal meningitis, is the pathogen that once in the
bloodstream is able to invade the meninges the most constantly. It
has been estimated that 63% of bacteremia due to N. meningitidis
are associated with meningitis.14 In this review,Neisseria meningitidis
will be used as a model to address the mechanisms by which a
bacterial pathogen can cross the BBB and invade the meninges.

The Cerebrospinal Meningitis

Neisseria meningitidis is a frequent asymptomatic colonizer of
the human nasopharynx, and only a very small proportion of
infections proceed to a sustained bacteremia. Once in the
bloodstream N. meningitidis can either be responsible for a deadly
septic shock leading to purpura fulminans and/or cross the BBB
to invade the meninges. The reasons why disease occurs in some
individuals and not in others remains unclear, but human genetic
polymorphism is likely to be important in determining the
outcome of infection.15,16 In addition, all meningococci do not
have the same pathogenic potential. Indeed, analysis of results
from multilocus sequence typing (MLST) has demonstrated the
existence of distinct phylogenetic groups (clonal complexes), some
of which are more likely to be isolated from patients than others.17
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These are the so-called “hyper-virulent” or “hyperinvasive”
lineages. Recently, the presence of a prophage has been shown
to be responsible for a large proportion of invasiveness of strains
belonging to hyperinvasive lineages.18,19 This element inserted
into the bacterial chromosome can be induced to produce a
filamentous phage.

N. meningitidis interacts only with human cells and there is no
animal model of meningococcal sepsis. In some circumstances
mice and infant rats have been used to assess the ability of the
bacteria to survive in the extracellular fluids,20 but these models
are unable to assess the consequences of the interaction with
endothelial cells. Most of the hypotheses regarding the patho-
genesis of meningococcal infections have been obtained studying
postmortem samples and/or biopsies of skin lesions.11,21

N. meningitidis interacts with endothelial cells and form colonies
on the apical surface of endothelial cell capillaries. Bacteria are
also found inside cells and in intercellular spaces. In peripheral
purpuric lesions, retraction of endothelial cells with capillary
disruption can be observed, as well as hemorrhages, adhesion of
leukocytes and formation of small thrombi. In the brain, bacteria
are seen interacting with capillaries of the subarachnoidal space,
the brain parenchyma and the choroidal plexuses, and inside
brain vessels. When a low or moderate number of meningococci
is present in the bloodstream, the bacteria interacting with
peripheral capillaries cause only few localized purpuric lesions,
whereas the interaction with brain endothelial cells is sufficient
to lead to meningeal invasion. Adhesion of the bacteria to the
meninges and meningeal cells,22 is then probably critical for
N. meningitidis to disseminate through the meningeal spaces. In
contrast, in case of high bacteremia, many peripheral endothelial
cells are colonized by meningococci, leading to a significant
increase of vascular permeability possibly associated with extensive
thrombosis and purpura.

Where is the Blood-Brain Barrier Breached?

The blood-brain barrier is a highly specialized structural and
functional component of the central nervous system that separates
the circulating blood from the brain and spinal cord parenchyma.
Among the different cellular types that make up the BBB, endo-
thelial cells form the front defense line of the CNS parenchyma
against invading pathogens. Schematically, the capillaries of the
CNS parenchyma have two specific features that are not shared by
those of other peripheral organs: (1) the presence of specialized
junctional complexes and (2) a sparse pinocytotic vesicular
transport activity that is counterbalanced by highly specialized
transport systems that limit the entry of neuroactive blood-borne
molecules.23 Junctional complexes are composed of adherens
junctions and of multistranded belts of tight junctions that
result in apparent membrane fusion of adjacent endothelial
cells, forming a continuous blood vessel. Interendothelial tight
junctions exclude the paracellular passage of hydrophilic macro-
molecules between the blood and the brain and account for the
high endothelial electric resistance of brain capillaries.24-26

Recently the endothelial Wnt/β-catenin signaling pathway has
been shown to regulate the induction and maintenance of the

BBB during embryonic and postnatal development.27,28 In vitro,
the specialization of brain capillary tight junctions has been shown
to be under the control of paracrine factors produced by astrocytic
end-feet unsheathing brain capillaries. In addition to astrocytes,
other perivascular cells including pericytes, brain macrophages
and microglial cells form a perivascular immunological barrier of
the CNS. Some recent data have underlined the role of pericytes
in the regulation of the blood-brain barrier.29,30 On the arterial
side of the brain capillaries, the perivascular space localized
between endothelial cells and astrocytes is virtual and both basal
lamina produced by astrocytes and by endothelial cells are in very
close contact and can be fused. For this reason, the blood-brain
barrier at the capillary level is also called the “gliovascular” or
“neurovascular” unit. The gliovascular unit is a dynamic structure
whose main function is to actively regulate brain homeostasis and
protect the brain from circulating blood-borne insults.

Brain post-capillary venules, venules and veins are also part of
the blood-CNS interface. The structure and function of the brain
venous network strikingly differs from that of brain capillaries.
Electron microscopy studies showed that when venules turn into
veins and exit the brain parenchyma the interendothelial tight
junctions are leaky.31-33 A possible explanation for this is that
astrocytic end-feet require intimate interactions with endothelial
cells to induce a “full” BBB phenotype.34,35 Indeed, when
capillaries turn into venules, endothelial cells of the brain draining
system are progressively separated from astrocytic end-feet by the
Virchow-Robin perivascular spaces. The space between endothe-
lial cells and astrocytes, designated as the Virchow space, is even
more important when veins exit from the brain parenchyma into
the subpial space. The structure of brain post-capillary venules
and veins and their ability to express leukocyte adhesion
molecules36,37 likely reflect their role in mediating the entry of
leukocytes and plasmatic molecules in the perivascular space
during inflammatory processes.35,38 These findings highlight that,
probably due to different physiological functions, both the
anatomy and the structure of these brains vessels differ, and that
the venous system of the CNS can be considered as a relatively
vulnerable localization of the blood-brain barrier.

The precise site and mechanism of entry of N. meningitidis into
the CSF is still enigmatic. As shown from the postmortem
examination of patients who died of meningococcal infection,21

extracellular bacterial pathogens can interact directly with the
components of the blood-brain barrier and do not need a Trojan
horse, such as leukocytes, to cross the BBB. Initial work suggested
that bacteria may preferentially use the choroids plexus (CPs)
route to cross the blood-CSF barrier. However, in this case,
meningitis should theoretically be associated with ventriculitis,
which is not corroborated by clinical data. Because of their
proximity to the subarachnoidal space and their “leaky” inter-
endothelial structure, the brain postcapillary venules and veins of
the subpial and subarachnoid spaces may be the site of passage of
bacteria into the CSF. Indeed, once bacteria have crossed the
endothelial monolayer of these vessels, they could be easily
drained into the CSF using the Virchow-Robin perivascular
spaces. Interaction with the brain endothelial cells is therefore a
crucial step in CNS invasion by N. meningitidis.

SPECIAL FOCUS REVIEW: BLOOD-BRAIN BARRIER
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How is N. meningitidis Breaching
the Blood-Brain Barrier?

Following the interaction of the bacteria with the endothelial cells,
at least four strategies are possible for a microorganism to cross a
monolayer of brain endothelial cells: (1) transcellular transport by
passive or adhesion-induced transcytosis, (2) paracellular passage
through opened tight junctions, (3) disruption of the endothelial
barrier due to a direct cytotoxic effect and (4) leukocyte-facilitated
transport by infected phagocytes.

These routes are not exclusive, as shown for viruses that may
both directly interact with the blood-brain barrier or be
transported by infected leukocytes to penetrate into the CNS.39

However and as already mentioned, extracellular pathogens
probably do not use leukocytes as vehicles to cross the blood-
CSF barrier. A breakdown of the blood-CNS barrier due to
apoptosis or bacterial cytotoxity is unlikely, since tissue lesions
such as hemorrhages in the subarachnoidal space are uncommon
during bacterial meningitis. Therefore, the entry of blood-borne
pathogens most probably respects the architecture of the blood-
CNS barrier.12 Accordingly, adhesion of bacteria to endothelial
cells can induce an intracellular signaling pathway leading to
disruption of intercellular tight junctions or, alternatively, bacteria
may induce their own transcytosis through the cell monolayer. In
vitro, transcytosis of bacteria through human brain endothelial
cells has been demonstrated for S. pneumoniae,40 E. coli,41-43

S. agalactiae44 and through human umbilical vein endothelial cells
for H. influenzae.45,46 Although N. meningitidis can readily be
internalized in vitro within vacuoles in human brain micro-
vascular endothelial cells,47 recent data clearly demonstrate that
N. meningitidis can open gaps in a monolayer of brain endothelial
as a consequence of the delocalization of junctional components
whereas in the same cell line transcytosis was not observed. These
in vitro data suggest that N. meningitidis cross the BBB using the
paracellular route. The molecular events elicited by meningococ-
cal interaction leading to the opening of the paracellular route will
be discussed below.

Bacterial Attributes Required for Meningeal Invasion

The growth/survival in extracellular fluids. The level of
bacteremia is directly correlated with meningeal invasion by
N. meningitidis. The bacteremia is believed to favor meningeal
invasion by directly increasing the likelihood of the interaction of
the bacteria with the components of the blood-CSF barrier.
Therefore, the bacterial attributes involved in the growth and/or
the survival in the extracellular fluids are playing an essential role
in meningeal invasion by N. meningitidis.

Some of these virulence factors are commonly observed in most
extracellular pathogens. They participate in the prevention of
bacterial killing by the host effectors of the innate immune
systems such as polymorphonuclear neutrophils and complement.
These bacterial attributes are the polysaccharidic capsule, the
lipooligosaccharide (LOS), and iron chelation systems. A new
virulence factor, the factor-H binding protein (fHBP), was
recently identified.48 It is a 28 kDa surface-exposed lipoprotein

that binds factor H, a key inhibitor of the alternative complement
pathway. This protein is expressed by all N. meningitidis strains
studied to date, although the level of expression varies between
strains (high, intermediate or low expressers). Antibodies directed
against fHBP are bactericidal and this protein is currently one of
the best vaccine candidates.49 More recently, it has been shown
that a mechanism by which N. meningitidis escape the killing
by polymorphonuclear neutrophil leucocytes (PMNs) to survive
in the bloodstream is due to its ability to uptake available
L-glutamate and to convert it to glutathione: this key molecule by
maintaining intracellular redox potential protects the bacterium
from reactive oxygen species, such as hydrogen peroxide, that are
produced by the oxidative burst of neutrophils.50

The interaction with brain endothelial cells. As mentioned
above, interaction with endothelial cells is essential in meningo-
coccal pathogenesis. In vivo, blood flow generates mechanical
forces that vary depending on the vessels and that could prevent
bacterial interaction with the endothelial cells. The ability of
N. meningitidis to bind to endothelial cells in the presence of shear
stress mimicking the bloodstream was recently investigated.51

These data revealed that, after initial attachment, bacteria have the
ability to resist high blood velocities, to multiply and to form
microcolonies onto the apical surface of the endothelial cells.
This resistance to shear stress and the ability to grow at the
luminal surface of endothelial cells in the presence of blood flow
highlight the efficacy of the interaction between N. meningitidis
and the host cells, for which N. meningitidis has evolved efficient
attributes.

Various bacterial surface components have been described
allowing the interaction of N. meningitidis with human cells.
These are type IV pili (Tfp) and other attributes such as Opa or
Opc proteins (for review, see Carbonnelle et al.52,53).

However, in capsulated bacteria, type IV pili are the main
bacterial attributes capable of promoting adhesion since non-
piliated capsulated bacteria are unable to adhere to any cell type.
Early work performed with piliated capsulated meningococci has
shown that meningococcal interaction with human cells can be
divided in two steps. The first one allows the adhesion of single
diplococci in a rather inefficient manner. The second step
corresponds to the bacterial division onto the apical surface of the
cells. Therefore the high number of bacteria that interact
with cells is a consequence of bacterial division of the few
meningococci that have initially succeeded to adhere. Type IV pili
are required for both steps. They promote the initial interaction of
diplococci with the endothelial cells, and then generate bacteria-
bacteria interactions that lead to the spreading of the bacteria on
the apical surface of the cells.

Pilus biogenesis. Type IV pili are polymeric filaments found on
many Gram-negative bacteria.54 These structures correspond to
the multimeric assembly of a pilin subunit. Functional Tfp are
dynamic structures. Pilin subunits are constantly assembled into
fibers from a platform in the inner-membrane. The fiber is then
extruded through the outer membrane via the secretin PilQ.54 A
remarkable property of Tfp is their ability to retract into the
bacterium from which they originate, via the action of the force-
generating ATPase PilT.55,56 Retraction is a consequence of
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the disassembly of pilin subunits that are then stored in the
cytoplasmic membrane.57 Tfp retraction is essential for bacterial
motility (twitching motility), competence for DNA trans-
formation and pilus-associated signaling to host cells.58

The major neisserial pilus subunit, the pilin, is encoded by
the pilE gene that is subject to antigenic variation following
recombination with silent loci (pilS). Pilin is synthesized as a
preprotein. A short leader sequence (5–6 residues) is cleaved by
the prepilin peptidase PilD.59 PilD also methylates the N-terminal
phenylalanine of the mature protein product. Pilins are packed
through internal hydrophobic interactions between conserved
N-terminal a helices, leaving hypervariable C-terminal globular
regions exposed.60 PilE undergoes several post translational
modifications of serine residues including glycosylation at position
63, whereas at position 68, the residue has been reported to be
modified by phosphate, phosphoethanolamine or phosphorylcho-
line addition.61,62 Concerning the glycosylation, the structure of
the sugar is different depending on the strain.63,64

In addition to PilE, pili also contain the low abundance
proteins PilX, PilV and ComP. These are called minor pilins65,66

as they structurally resemble PilE and are likely to be assembled
within the filaments in a similar way.67 Importantly, each minor
pilin modulates Tfp-linked properties.65 PilX is crucial for the
formation of bacterial aggregates and indirectly controls adhesion
to human cells by promoting bacteria-bacteria interactions,66,68

ComP is essential for competence for DNA transformation,65,69,70

while PilV affects several pilus-linked properties such as signaling
to endothelial cells (see below65).

The PilC proteins play a crucial but still enigmatic role.54,71-74

Two alleles were originally discovered.71 Expression of both
variants is subject to phase variation as a result of frameshift in
homopolymeric “G” tracts located in the open reading frames.71

PilC-null strains show impaired pilus expression and lack the
ability for transformation competence. In N. meningitidis, only
PilC1 is required for adhesion. PilC2, which is expressed
independently of PilC1, fails to promote adhesion despite
identical functions in pilus expression and transformation
competence.72,75 Abolition of pilT in a PilC-null background
restores piliation, confirming the hypothesis that PilC acts as an
antagonist of PilT by preventing PilT-mediated retraction.57,76

Mechanism of pilus-mediated interaction with host cells. The
molecular mechanism responsible for the first step of the adhesive
process, i.e., the initial attachment of individual diplococci to the
cells, is still not fully understood. One report suggested that the
PilC1 protein could carry a cell binding domain,74 this hypothesis
was based on inhibition of adhesion using purified PilC mole-
cules. However, non-adhesive non-piliated isolates of a serogroup B
strain with high PilC expression and piliated adhesive isolates with
barely detectable PilC expression have been described.77 In addition,
another PilC+/PilE- strain, in which PilC location has been
demonstrated in the outer membrane, is unable to interact with
eukaryotic cells (Nassif X, unpublished observations), thus raising
doubts on the role of PilC as an adhesin. It is therefore likely that the
cell binding domain on the type IV pili remain to be identified.

As mentioned above, the minor pilin PilX is essential to
promote inter-bacterial interactions and pilX mutants, which are

unable to form aggregates, are unable to multiply at the cell
surface. The inter-bacterial interactions generated by the Tfp are
therefore required for bacteria to form microcolonies at the cell
surface. Bacterial spreading onto the host cells relies also on the
ability of bacteria to retract their pili. Indeed, following the
interactions between bacteria and target cells, in some systems, pili
have been shown to retract and eventually adherent meningococci
appear non-piliated.55,78 Measurements using optical tweezers
showed that retraction of a single Tfp generates forces up to
110 pN, in a transient manner for each fiber. Bundles of Tfp,
which result from the association of 8 to 10 pili, act as
coordinated retractable units. Bundles can generate retraction
forces in the nanonewton range.79 The successive extension,
binding and retraction of Tfp enable bacteria to move by
twitching motility and spread on the apical surface of the host
cells. Furthermore, it has been recently shown that the addition of
a phosphoglycerol on pilin, which is increased during bacterial cell
interaction, enhances the ability of the bacteria to detach from the
adherent aggregates and to disseminate.80

Consequences of the Type IV Pilus-Mediated
Interaction with Brain Endothelial Cells

As mentioned above, bacterial adhesion onto endothelial cells is
mediated by the type IV pili that are responsible for the bacterial-
cell and bacteria-bacteria interactions leading to the formation of
the microcolonies. Following bacterial adhesion on the apical
surface of the host cells, N. meningitidis induces elongation of
microvilli toward the bacteria.81,82 Interestingly, the formation of
such protrusions was also observed in vivo onto brain endothelial
cells by transmission electron microscopy analysis of brain sec-
tions from a child who died from fulminant meningitis.82 These
cellular projections are likely to be required to allow the micro-
colonies to stand up to the shear stress of the bloodstream.51

These observations strongly suggest that such morphological
modifications of the host cell membrane are essential in
meningococcal pathogenesis.

N. meningitidis induces the clustering of cellular receptors.
Following Tfp-mediated adhesion, N. meningitidis induces at the
site of bacterial cell interaction the formation of a specific
membrane domain enriched in structural proteins and membrane
receptors designated the “cortical plaque.”83 This structure
dramatically modifies the molecular equilibrium of the host cell,
and leads to the opening of the blood-brain barrier (Fig. 1).84,85

The formation of such structure is a two steps process: (1) the
initial recruitment of one or several receptors following pilus-
mediated adhesion and (2) the activation of one or several of
these receptors responsible for the recruitment of other trans-
membrane components and for the modification of the host cell
cytoskeleton. This latter step is also mediated by the type IV pili
(Fig. 1).83,85

The CD46 receptor was first proposed as being the adhesion
receptor for both N. gonorrheae and N. meningitidis. However,
this finding was not confirmed by subsequent studies.86,87 The
Laminin receptor was also described as a potential receptor for
N. meningitidis. Two bacterial ligands for this receptor have been
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considering that PilQ is expressed in PilE non-piliated mutant
and that non-piliated non-capsulated strain are unable to interact
with endothelial cells in flow conditions, its role remain to be
précised. It should be pointed out that the I-domain-containing
integrins were described to be essential for Neisseria gonorrhea
adhesion to epithelial cells.89 However, similar data have not been
reported for N. meningitidis and endothelial cells.

The initial cellular component of brain endothelial cell that
interacts with the type IV pili remains unknown. On the
other hand, among one of the receptors recruited following
meningococcal initial adhesion, the β2-adrenergic receptor was
recently described as an important signaling receptor for
N. meningitidis. The β2-adrenergic receptor is a G protein
coupled receptor (GPCR) that interacts with β-arrestins and the
heterotrimeric Gas protein. This receptor is also known for its
implication in vascular homeostasis and disease. The expression of
both the β2-adrenergic receptor and β-arrestins is sufficient to
promote a N. meningitidis induced cell response in an
incompetent cell line such as HEK293.85 It has been shown that
PilE and PilV, the major pilin subunit and a minor pilin subunit,
respectively, directly interact with the extracellular N-terminal
domain of the β2-adrenergic receptor to transmit the signal.85

This interaction is believed to modify the conformation of the
receptor, resulting in the activation of the β-arrestins pathway
without activating the heterotrimeric Gas protein and its
downstream adenyl cyclase/cAMP pathway, a property referred
to as biased activation.85 β-arrestins are scaffolding proteins
involved in many cellular processes such as receptor internaliza-
tion and actin polymerization.90 Following the activation of the

β2-adrenergic receptor by N. meningitidis and the accumulation of
β-arrestins, the signal leads to the formation of a “raft-like”
membrane domain enriched in cholesterol and PIP2 in which
several transmembrane receptors and structural proteins are
sequestered, thus leading to the subsequent formation of the
cortical plaque.91,92 It is likely that accumulated β-arrestins
underneath bacteria plays a major role in the sequestration of
these signaling molecules.

The interaction domain between the bacterial colony and
the host cell can be compared with a synapse since (1) it is
composed of adhesion receptors and signaling receptors (that
are mostly immunoglobulin domain containing receptors and
G protein coupled receptors, respectively) and (2) it transmits
signals. One particularity of this “bacterial synapse” is that
adhesion receptor and signaling receptor are not internalized
but sequestrated underneath the meningococcus (Doulet et al.91

and personal observation). This “bacterial synapse” is maintained
by a cortical network highly enriched in members of the ezrin-
radixin-moesin (ERM) proteins family that are anchored to the
plasma membrane by their PIP2 binding domain and control
the organization of the cortical actin cytoskeleton through their
C-terminal F-actin binding sites.93,94 ERM proteins also bind the
cytoplasmic domain of several ERM binding transmembrane
receptors such as CD44 and ICAM-1 through their C-terminal
domain and act as linkers between the actin cytoskeleton and
the plasma membrane.83,93,95 As a consequence of the recruit-
ment of ERM proteins, many receptors known to be involved
in leukocytes adhesion are sequestered underneath bacterial
colonies.91 During leukocytes adhesion, these components that
form the “endothelial docking structures” or “transmigratory

Figure 1. Formation of the cortical plaque and transmigration of Neisseria meningitidis. Neisseria meningitidis adheres to brain microvascular endothelial
cells by the interaction of Type IV pili with an unknown adhesion receptor.72 Following initial bacterial adhesion, type IV pili mediate the recruitment
and the activation of the b2-adrenoceptor thus leading to the organization of specific cytoplasmic molecular complexes, referred to as cortical
plaques.83,85 The formation of cortical plaques results (1) from the local production of PI4,5P294 that mediates the accumulation of ezrin and ezrin binding
receptor such as ICAM-1 and CD4491 and (2) from the accumulation of b-arrestins and b-arrestin-binding molecules such as Src, p120-catenin and
VE-cadherin.84,85,104 The formation of the cortical plaque induces the formation of microvilli like protrusions that protect bacterial colonies from the blood
flow shear stress and dramatically modifies the molecular equilibrium of the host cell.92 One consequence is the opening of the cell-cell junctions
that allows the transmigration of bacteria through the endothelium.84
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cups” are essential to promote firm adhesion and extravasation of
leukocytes through the endothelium. Transmigratory cups result
from the dynamic redistribution of ICAM-1, VCAM-1, E-selectin
and CD44 at the endothelial-leukocyte contact area, accompanied
by the recruitment of activated ERM proteins, and leads to
cortical actin polymerization.96-98 Since the same set of endothelial
proteins is present within the membrane protrusions induced by
N. meningitidis and within the docking structures promoted by
leukocyte adhesion, it was suggested that N. meningitidis hijacks
the leukocyte adhesion pathway.91

In summary, following the initial adhesion of the bacteria to a
yet unknown receptor, the β2-adrenergic receptor is recruited and
activated by components of the type IV pili, thus inducing the
formation of the cortical plaque.

Consequences of N. meningitidis induced signaling. The
formation of the cortical plaque is accompanied by a robust actin
polymerization leading to the elongation of membrane protru-
sions around bacteria that, as mentioned above, are likely to play a
role in the resistance of the colony to flow shear stresses.92 Actin
polymerization relies on the activation of the small GTPases of the
Rho family.93,94 In addition, it has been demonstrated that proper
actin polymerization in these membrane protrusions relies on
cortactin phosphorylation. Cortactin or cortical actin binding

protein is a perinuclear cytoplasmic protein that is involved in the
reorganization of the cell cortical actin cytoskeleton. It appears
that cortactin recruitment and phosphorylation is finely tuned by
N. meningitidis (Fig. 2):

(1) The recruitment of cortactin at the site of N. meningitidis
adhesion is controlled by the Cdc42-Par6/PKCf pathway.84 This
pathway is involved in the proper tethering of microtubules at
the leading edge of migrating cells.99,100 In the case of the
meningococcal infection, the Cdc42-Par6/PKCf pathway may
tether microtubules to the site of bacterial adhesion, thus allow-
ing p120-catenin dependent traffic of the cortactin along the
microtubules network.84,101,102

(2) The activation of cortactin through phosphorylation is
controlled by the tyrosine kinase Src that is itself sequestered and
activated in the cortical plaque by direct interaction with the β-
arrestins.85,103

(3) Finally, the ErbB2 tyrosine kinase receptor regulates Src
activity and the subsequent cortactin phosphorylation.104 The
ErbB2 tyrosine kinase receptor belongs to the family of epidermal
growth factor (EGF) receptors. The interaction of N. meningitidis
with human endothelial cells leads to its activation most likely via
formation of ErbB2 homodimers in the cortical plaque. This is an
example of a secondary signaling activated by the accumulation of

Figure 2. Neisseria meningitidis regulates the polymerization of actin through phosphorylation of cortactin. Adhesion of N. meningitidis to endothelial
cells leads to the formation of membrane protrusions that result from active actin polymerization. Type IV pili mediate the accumulation and activation
of the b2-adrenoceptor/b-arrestins85 complex that allows (1) the activation of the Cdc42-Par6/PKCf and the proper localization of p120-catenin
and of the Cortactin/Arp 2/3 complex underneath the colony84; (2), the recruitment of the tyrosine kinase Src that phosphorylates and activates
the cortactin/Arp 2/3 complex84,85,104; (3) the accumulation of Ezrin, that plays a key role in actin organization, and that of membrane receptor such as
the ErbB2 receptor that serves as docking site for Src.91,94,104
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a cellular receptor at site of bacterial adhesion that contributes to
the formation of the cortical plaque.

Another consequence of the formation of the cortical plaque is
the opening of the interendothelial junctions allowing the
transmigration of bacteria by a paracellular route. Indeed, it has
been shown that N. meningitidis recruits junctional proteins
underneath the colony into the cortical plaque. This recruitment
is due to the activation of the Cdc42-Par3/Par6/PKCf pathway
that is usually involved in the formation of adherens and tight
junctions at cell-cell contact. Here, the ectopic activation of the
polarity complex Par3/Par6/PKCf leads to abnormal recruitment
of junctional proteins that are sequestrated underneath bacterial
colonies through their interaction with β-arrestins. As a con-
sequence, these molecules are depleted at the intercellular junc-
tions causing endothelium leakage. Adhesion of N. meningitidis
lately promotes the cleavage of occludin (a component of the tight

junction) by the metalloproteinase MMP-8,105 further altering the
intercellular junctions.

Conclusion

Recent exciting findings have considerably expanded our
understanding of the cellular events involved in meningococcal
interaction with brain endothelial cells, thus leading to the
opening of the paracellular route and meningeal invasion.
However, in spite of recent advances in our understanding of
these molecular mechanisms, much remains to be discovered
about the complex molecular networks involved. Among major
issues is the identification of the receptor for meningococcal
adhesion, which would constitute a significant breakthrough in
the field and the identification of animal models that would allow
us to confirm these in vitro observations.
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