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Abstract: Non-coding RNAs (ncRNAs) comprise a diverse class of non-protein coding transcripts
that regulate critical cellular processes associated with cancer. Advances in RNA-sequencing (RNA-
Seq) have led to the characterization of non-coding RNA expression across different types of human
cancers. Through comprehensive RNA-Seq profiling, a growing number of studies demonstrate
that ncRNAs, including long non-coding RNA (lncRNAs) and microRNAs (miRNA), play central
roles in progenitor B-cell acute lymphoblastic leukemia (B-ALL) pathogenesis. Furthermore, due to
their central roles in cellular homeostasis and their potential as biomarkers, the study of ncRNAs
continues to provide new insight into the molecular mechanisms of B-ALL. This article reviews
the ncRNA signatures reported for all B-ALL subtypes, focusing on technological developments in
transcriptome profiling and recently discovered examples of ncRNAs with biologic and therapeutic
relevance in B-ALL.
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1. Introduction

Leukemia is a cancer of developing blood cells that can occur at any age, and is the
most common cancer in children, accounting for nearly one-third of all pediatric cancers [1].
The most common type of pediatric leukemia is acute lymphoblastic leukemia (ALL). ALL
is characterized by the rapid growth of abnormally developing lymphoid cells within
the bone marrow, which restricts the production of normal blood cells. As a result of
improvements in the treatment of ALL, including the development of targeted therapies,
the five-year survival rate for children with standard risk ALL is 93% [2–4]. However,
relapsed ALL remains a major cause of cancer-related death and the prognosis for ALL
declines drastically with age, where the five-year survival rates in adults 40 years and older
remains just over 30% [5].

Acute lymphoblastic leukemia is classified by cell lineage. The two main forms of
ALL are B lymphoblastic and T lymphoblastic ALL [6]. B lymphoblastic ALL (B-ALL) is
the most common form of pediatric cancer, accounting for nearly 80% of pediatric ALL [7].
B-ALL can be further classified according to recurrent driver genomic lesions including
chromosomal aneuploidy, rearrangements that result in fusions that deregulate proto-
oncogenes or transcription factors, and point mutations [4]. Accordingly, cytogenetic and
molecular analysis is important for the clinical management of B-ALL, providing a basis
for risk stratification, and in some cases treatment with targeted therapies [8]. For example,
among the aneuploidy groups, one subset is termed high hyperdiploidy (HdH; containing
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51–65 chromosomes) and is found in one-third of children with ALL [9]. Similarly, the
reciprocal translocation t(12;21)(p13;q22) generating the fusion gene ETV6/RUNX1 (also
known as TEL/AML1) is also common, accounting for nearly 25% of pediatric B-ALL
cases [8]. Clinically, the prognosis is favorable for both HdH and ETV6/RUNX1 subtypes
with five-year overall survival rates near 80% [9,10]. In contrast, in high-risk subtypes such
as BCR-ABL1-positive (also known as Philadelphia chromosome-positive, Ph+) B-ALL
the incidence increases with age and is associated with poorer prognosis [8]. Specifically,
patients with Ph+ makes up approximately 5% of B-ALL cases in children and account for
40–50% of B-ALL cases in adults [5]. Outcomes for Ph+ B-ALL have improved with the
administration of imatinib, a tyrosine kinase inhibitor (TKI), however resistance to these
treatments can occur [11,12]. Despite the utility of prognostic biomarkers, unanswered
questions remain regarding the relationship of genomic alterations to leukemogenesis,
chemotherapy resistance, and clinical outcome. As new molecular signatures of B-ALL
emerge, the possibility of improved prognostication and treatment stratification may reduce
treatment failure and relapse associated with B-ALL.

Global gene expression profiling has provided considerable new insight into the molec-
ular basis of B-ALL, including the identification of distinct high-risk subgroups [13,14].
Moreover, transcriptome-wide profiling by RNA-Seq has identified non-coding RNAs
(ncRNAs) as central players in cancer progression [15]. Diverse classes of ncRNAs in-
cluding small and long non-coding RNAs (lncRNAs) have been defined as key regulatory
factors that may have significant roles in determining cancer phenotypes [16]. A growing
number of studies indicate that these two major types of ncRNAs may play critical roles in
the pathogenesis and progression of B-ALL and may serve as prognostic biomarkers or
provide opportunities as new therapeutic targets. This review describes ncRNAs and their
functions, focusing on technological developments in transcriptome profiling and recently
discovered examples of ncRNAs in B-ALL with biologic and therapeutic relevance.

2. A Compendium of Human Non-Coding RNA Genes

A remarkable number of genes in the human genome are transcribed into protein-
coding and various non-coding RNA species (Figure 1). Comprehensive and current gene
annotations provided by the GENCODE [17] and RefSeq projects [18] are indispensable
resources for the investigation of the coding and non-coding RNA landscape of the human
genome [19], where non-coding genes represent nearly half of all annotated genes.

Figure 1. Diagram showing the major classes of genes contained within the human genome based on
GENCODE annotation version 36 (https://www.gencodegenes.org/human/ (accessed on 6 March
2021)). The small RNA genes are composed of a variety of different biotype annotations. Shown in
the stacked barplot are the small non-coding gene types, along with numbers of genes per category
from the HGNC project (https://www.genenames.org/download/statistics-and-files/ (accessed on
6 March 2021)). (Abbreviations: rRNA, ribosomal RNA; tRNA, transfer RNA; scaRNA, Small Cajal
body-specific RNA; snoRNA, small nucleolar RNA; miRNA, microRNA; snRNA, small nuclear RNA;
misc_RNA, miscellaneous RNA).

https://www.gencodegenes.org/human/
https://www.genenames.org/download/statistics-and-files/
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The non-coding genes can be grouped into two broad categories according to the
nucleotide (nt) length of the RNA transcripts: long non-coding RNA (lncRNA; >200 nt)
and small non-coding RNA (<200 nt). The number of non-coding RNA genes annotated
in the current GENCODE annotation (version 36) includes 17,958 lncRNA genes and
over 7569 small RNA genes, comprising approximately 30% and 13% of all the annotated
human genes in this reference. Due to the continual emergence of new data, as well as the
improvements and increased application of long-read sequencing technologies, these gene
annotation resources are continually updated, providing a more complete annotation of
ncRNA genes [20]. Additionally, many resources exist to curate and systematically classify
ncRNAs including the HUGO, NONCODE and LNCipedia databases [21–23].

2.1. miRNAs Are Regulatory Small Non-Coding RNAs

In general, ncRNAs have been shown to function in numerous physiological and
developmental processes. The small RNA genes are comprised of several different biotypes
including microRNA, snRNA, snoRNA, rRNA, tRNA, vaultRNA and Y-RNA. Many of
these small ncRNAs with abundant and ubiquitous expression across cells participate in
general housekeeping functions, including mRNA splicing and translation (i.e., rRNAs,
tRNAs, snoRNAs, etc.). Additionally, some small RNAs (i.e., miRNAs, Y-RNAs, etc.)
can be released from the cell and are detectable in biofluids such as plasma, serum, and
bronchoalveolar lavage fluid [24].

Studies have found that many small ncRNAs are considered dynamic regulatory
RNA molecules with functional roles in post-transcriptional gene regulation. In par-
ticular, microRNAs (miRNAs) are well known to play central regulatory roles through
post-transcriptional gene regulation via direct binding to mRNAs (reviewed in [25]). It is
predicted that the majority (> 60%) of mRNAs can be bound by miRNAs [26] and accord-
ingly, miRNAs have been widely connected to diverse human diseases, including cancer
and B-ALL, as reviewed below [27]. MiRNA genes are transcribed as long primary tran-
scripts (pri-miRNAs) and are sequentially processed into precursor miRNAs (pre-miRNAs)
and then into mature miRNAs, approximately 22 nucleotides in length. As ribonucleo-
protein complexes mature, miRNAs bind specific mRNAs that are complementary to the
miRNA sequence, which results in target mRNA degradation or translational repression
(for a review, see [28]). The miRNA:mRNA interaction is subject to various regulatory
steps, including the subcellular location of miRNAs, the expression levels of miRNAs
and various target mRNAs, as well as the expression of other RNA transcripts that alter
miRNA function.

2.2. Regulatory Long Non-Coding RNA (lncRNA)

Similar to protein-coding mRNAs, many lncRNA genes are transcribed by RNA poly-
merase II, then capped, spliced and polyadenylated [29]. As a group, lncRNA genes are
generally poorly conserved across mammals and exhibit low expression levels and/or cell
or tissue-specific expression patterns [30]. In an effort to classify lncRNAs, lncRNA genes
are grouped based on their position relative to protein-coding genes, including: (i) inter-
genic lncRNA, (ii) antisense lncRNA, (iii) divergent lncRNA (bidirectional promoter), (iv)
intronic lncRNA, and (v) overlapping lncRNA [31]. In comparison to miRNAs, whose func-
tions have been extensively characterized, much less is understood about lncRNA genes as
functional studies have only been performed for a limited number of lncRNAs [21].

Despite there being only a small fraction of lncRNA genes described in the literature,
current evidence indicates that lncRNAs play diverse biological roles. Depending on
their specific interactions with DNA, RNA and proteins, lncRNAs have been reported
to modulate chromatin structure, control the assembly and function of various nuclear
complexes, regulate the translation of mRNAs, and restrict various cellular signaling path-
ways (reviewed in [32]). The different modes of lncRNA action can be grouped into five
broad categories, as follows. First, lncRNAs contribute in the cis-regulation of neighboring
genes. This can occur through chromatin modulation whereby lncRNAs interact with
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DNA to form RNA-DNA hybrids such as R-loops that recruit transcription factors [33] or
chromatin modifiers [34–36] to modulate gene transcription or to directly induce transcrip-
tion [37]. Second, lncRNAs participate in the trans-regulation of a gene locus (or many loci)
distal from the lncRNA gene through similar mechanisms involving chromatin modifi-
cation [38,39]. Third, lncRNAs act as structural modules that mediate protein and RNA
complexes (ribonucleoproteins or RNPs). LncRNA-containing RNP complexes have been
implicated in a wide variety of cellular processes ranging from transcription, pre-mRNA
processing, chromatin modification, and cellular signaling (reviewed in [40]). Fourth, lncR-
NAs can function as molecular “decoys” or “mimics” to sequester proteins or small RNAs
from their targets. For example, an abundant lncRNA called NORAD (for “noncoding
RNA activated by DNA damage”) binds to the RNA binding proteins PUM1 and PUM2
to insulate them from the mRNAs to which they bind, which include genes involved in
chromosome segregation during cell division [41,42]. Finally, numerous lncRNAs have
been described as “sponges” that sequester miRNAs from their target mRNAs. The lncR-
NAs which function in this manner are commonly referred to as competing endogenous
RNAs (ceRNAs). These sponges or ceRNAs harbor a range of miRNA response elements
(MREs) that are complimentary to miRNAs. These lncRNA-miRNA interactions have been
described (e.g., [43–45]).

3. Profiling Non-Coding RNAs

RNA-Seq is a powerful tool for the analysis of ncRNAs and is the process by which
the RNA in a sample is first converted to a cDNA library for DNA sequencing via Next
Generation Sequencing (NGS). There are many advantages to RNA-Seq over other profiling
assays such as microarrays. Namely, microarrays require predefined transcript sequences
for probe hybridization, whereas RNA-Seq facilitates the single base-level unbiased analysis
of transcriptomes permitting the discovery of novel ncRNA sequences. Despite being the
overall preferred method for ncRNA profiling, RNA-Seq approaches also have certain
disadvantages, including the cost per sequencing run and the processing steps required to
convert an RNA sample into a cDNA library for sequencing. In addition, small RNAs (~20
to 50 nucleotides in size) are not efficiently captured in cDNA libraries, thus a separate
library protocol is required to generate libraries for small RNA profiling. For this reason, to
most comprehensively capture a complete ncRNA transcriptome for a given sample, both
small RNA-Seq and RNA-Seq library protocols should be performed on a given sample
(Figure 2).

Small RNA-sequencing (smRNA-Seq) is a sensitive technique used to detect the
expression of miRNAs and other small RNA species with large dynamic range. Typically,
the smRNA library preparation process involves the ligation of adapters to RNA prior
to reverse transcription and PCR amplification. A primary technical challenge for this
method is that different small RNAs may be either over- or underrepresented in the
cDNA sequencing library [46,47]. Underrepresented small RNAs that are lowly expressed
transcripts may not be detected. Furthermore, the 3′ terminal nucleotide of various small
RNAs may carry a 2′-O-methyl (2′ OMe) modification which can strongly reduce the
efficiency of 3′ adapter ligation, thus making library preparation particularly challenging
for small RNAs containing such modifications [48]. Moreover, the RNA ligases used in the
adapter ligation reactions exhibit both sequence and structural preferences for different
RNAs contributing to variation in the composition of different small RNAs in the cDNA
library [48]. To overcome adapter ligation issues, improved protocols are available [49].

Most lncRNAs are routinely analyzed via standard RNA-Seq libraries (versus the
smRNA-seq protocol; Figure 2). However, it is necessary to enrich informative RNA
(lncRNA, mRNA, etc.) and deplete abundant RNA including ribosomal RNA (rRNA).
Typically, rRNA and other abundant transcripts such as globin found in blood samples
are depleted from total RNA prior to library construction. The depletion process relies
on single-strand oligonucleotide probes that are complimentary to the target RNAs to be
depleted (i.e., rRNA or globin) to form RNA:DNA hybrids that can be degraded with
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RNAse H, and then DNAse to remove the probes [50,51]. Alternatively, polyadenylated
(poly-A+) transcripts may be enriched by using oligo-dT probes coupled to magnetic
beads during RNA-Seq library preparation; this is a standard method in many commercial
RNA-seq kits/services. However, of the greater than 15,500 human lncRNAs transcripts
catalogued, only 39% contain at least one of the six most common poly(A) motifs [52].
Therefore, an oligo-dT enrichment method may not capture as many lncRNAs as rRNA-
depletion methods and should be considered when profiling lncRNA expression [53].

Figure 2. Profiling non-coding RNAs with transcriptome sequencing in B-ALL. In the study of
B-ALL, input sample types will vary and can include biological specimens such as the bone marrow,
peripheral blood, cord blood, or plasma. RNA is harvested from cells and then assessed for quality.
Extracted total RNA from one sample can then be split and used for downstream library construction
to profile both small- and long- ncRNAs. Small RNA-sequencing library protocols incorporate
additional steps that are required to sequence small RNA species, typically <30 nucleotides. Long
non-coding RNAs, as well as mRNAs, are detected with the conventional RNA-Sequencing library
preparation protocol. Created with BioRender.com.

It is also common to find genomic loci where both strands encode distinct genes,
called anti-sense genes. In the human genome, there are an estimated 11,000 overlapping
genes that can be transcribed from the opposite strands (about 17% of all genes) [54]. For
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lncRNAs specifically, it has been reported that about one-third of human lncRNA loci are
anti-sense [52]. As lncRNAs can be transcribed from either strand of the genome, it is
important to perform a stranded RNA-Seq protocol that retains the strand information [54].
Strand-specific RNA-Seq library protocols facilitate the alignment and quantification of
transcripts derived from the opposite strands at the same position of the genome. Of
note, newer library preparation methods are being developed that simultaneously capture
and evaluate both small- and long- ncRNAs. Giraldez et al. proposed an alteration
to the smRNA-Seq protocol termed “phospho-RNA-seq” [55]. In this adaptation, a T4
polynucleotide kinase step is added to phosphorylate 5′ and dephosphorylate 3′ ends
of RNA, thus permitting adapter ligation and extracellular RNA fragment detection by
small RNA-Seq.

4. Long Non-Coding RNAs in Progenitor B-Cell Acute Lymphoblastic Leukemia

Several large-scale transcriptomic studies have described global gene expression pat-
terns of normal and malignant human hematopoietic cells (e.g., reviewed in [56,57]). The
RNA landscape of the normal human hematopoietic hierarchy generated by RNA-Seq
and smRNA-Seq profiling methods from purified HSCs and their various differentiated
progenies is now available [58]. Resources such as BloodSpot, Haemosphere, and other
publicly available databases contain valuable datasets for exploring the transcriptional
networks that underlie specific blood lineages and their associated hematological malig-
nancies [59–61]. For example, hundreds of lncRNAs exhibit cell-type/stage-specific expres-
sion patterns across B-cell development and maturation in humans and mice, whereby
distinctive subsets of progenitor B-cells can be distinguished by lncRNA expression pat-
terns [62–66]. By mapping patient samples onto this landscape and other normal expression
profiles, signatures of upregulated lncRNAs in patient samples as well as subtype-specific
lncRNAs in B-ALL are emerging. Although the number of profiling studies is limited,
they clearly indicate that lncRNA expression patterns are deregulated in B-ALL [67–69].
An assembled list of lncRNAs reported in B-ALL is provided in Table 1. The candidate
lncRNAs identified in these studies provide a strong basis for further studies aiming to
identify their function or assess their potential clinical value.

Table 1. Examples of lncRNAs with significance in B-cell acute lymphoblastic leukemia.

LncRNA Neighboring Genes B-ALL Subtype
Expression

Clinical or Functional
Implications References

BALR-1 C14orf132

upregulated in
ETV6-RUNX1 and
High hyperdiploid

subtypes

Unknown [68,70]

BALR-2/CDK6-AS1 CDK6

ETV6-RUNX1,
TCF3-PBX1 and
MLL-rearranged

subtypes

High expression correlated
with poor overall survival and

reduced response to
prednisone treatment

[68,70]

BALR-6 SATB1, TBC1D5
highest expression in

MLL-rearranged
subtypes

Promotes cell survival in vitro [68,71]

LINC00958 TEAD1, RASSF10 upregulated in
ETV6-RUNX1 miRNA sponge [68,70,72–74]

TCL6 TCL1B ETV6-RUNX1 Low expression associated
with poor disease-free survival [75]

AL133346.1 CCN2 unknown
High AL133346.1/CCN2

expression associated with
greater disease-free survival

[69]
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Table 1. Cont.

LncRNA Neighboring Genes B-ALL Subtype
Expression

Clinical or Functional
Implications References

LINC00152/CYTOR
intergenic; resides in a
cluster of lncRNAs on

2p11.2
unknown High expression associated

with risk of early relapse [76]

LINC01013
intergenic; resides in a
cluster of lncRNAs on

6q23.2
unknown Low expression associated

with risk of early relapse [76]

LAMP5-AS1 LAMP5 MLL-rearranged
High expression associated
with reduced disease-free

survival
[67,77]

CASC15/LINC00340 SOX4 ETV6-RUNX1 Regulates expression of SOX4 [68,78]

DBH-AS1 DBH unknown Promotes cell survival through
activation of MAPK signaling [79]

lnc-NKX2-3-1 NKX2-3 upregulated in
ETV6-RUNX1 Unknown [79]

lnc-TIMM21-5 NETO1 upregulated in
ETV6-RUNX1 Unknown [79]

lnc-ASTN1-1 ASTN1 upregulated in
ETV6-RUNX1 Unknown [79]

lnc-RTN4R-1 RTN4R, CCDC188 upregulated in
ETV6-RUNX1 Unknown [79]

RP11-137H2.4/lnc-
DYDC1-1 TSPAN14, SH2D4B

upregulated in B-ALL
compared to control
pre-B cells isolated

from human cord blood

Associated with cell survival
and glucocorticoid resistance

in vitro
[70,80]

GAS5 High hyperdiploid and
TCF3-PBX1

Associated with glucocorticoid
treatment sensitivity [81,82]

While B-ALL transcriptome studies can be limited by the inclusion of a restricted num-
ber of subtypes, small biological sample sizes, or the use of microarrays that prevent the
identification of novel transcripts, they continue to provide a valuable overview of B-ALL
specific lncRNAs. Among the first studies to perform lncRNA expression profiling on dif-
ferent B-ALL subtypes, Dinesh Rao and colleagues found that lncRNA expression patterns
predict the cytogenetic profile of B-ALL for three common B-ALL subtypes (ETV6-RUNX1
t(12;21)(p13;q22), TCF3-PBX1 t(1;19) and MLL-AF4 t(4;11)) [68]. Termed “B-ALL–associated
long RNAs” or BALR, this study identified the differentially expressed lncRNAs BALR-1,
BALR-2, BALR-6, and LINC00958. In particular, the lncRNA BALR-2 correlated with a poor
patient response to prednisone and a worse overall survival. In support of a functional role
of this lncRNA in B-ALL, this same study showed that depletion of BALR-2 resulted in an
increase in apoptosis of B-ALL cell lines alone, and in combination with glucocorticoids.
Conversely, overexpression of BALR-2 resulted in increased cell proliferation and glucocor-
ticoid resistance. Overall, this study suggests that BALR-2 may function to promote B-ALL
cell survival and may be a determinant of glucocorticoid response.

A more recent study by Lajoie et al. performed RNA-Seq analysis in 56 patient
samples to identify the expression of lncRNAs across several subtypes of B-ALL [70].
When compared to CD10+CD19+ pre-B-cells isolated from human cord blood, BALR-1
and LINC00958 were also found to have increased expression in ETV6-RUNX1 subtypes.
Interestingly, BALR-2 expression was found to be elevated in MLL-rearranged patients and
in patients harboring either t(4;11) or the t(9;11) translocations. To investigate a functional
role for these newly identified B-ALL lncRNAs, Ouimet et al. used siRNA to deplete 5
candidate lncRNAs identified in the aforementioned study [70,80]. In particular, depletion
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of the lncRNA RP11-137H2.4 in human NALM-6 leukemia cells inhibited cell proliferation
and migration, in addition to, restored glucocorticoid sensitivity in resistant cells. Further
to this study, Gioia et al. functionally characterized three lncRNAs downregulated in
B-ALL (RP-11-624C23.1, RP11-203E8, and RP11-446E9), by restoring their expression in
REH cells and in the non-leukemic cell line GM12878 for comparison [83]. The examined
lncRNAs exhibited tumor suppressor properties, promoted apoptosis in response to DNA
damaging agents, and upon restoration in leukemic cells exhibited reduced proliferation
and migration when compared to non-leukemic cells. The lncRNA LINC00958 identified
by Lajoie et al. [70] as previously reported to function as a ceRNA in pancreatic cancer cells,
where it interacts with miR-330-5p to regulate PAX8 levels [72]. Further analysis needs to
be performed to determine if LINC00958 and other lncRNAs deregulated B-ALL function
as ceRNAs.

The expression of lncRNAs may also be directly influenced by proteins arising from
translocation events occurring in B-ALL. A study by Ghazavi et al. used microarrays to
profile specimens from 64 B-ALL samples that consisted of ETV6-RUNX1, TCF3-PBX1,
high hyperdiploid, and normal karyotype genetic subtypes [79]. After integrating pa-
tient lncRNA expression data with RNA-Seq results generated from a panel of human
B-ALL leukemic cell lines, this study reported the unique lncRNA expression profile of
16 lncRNAs exclusively associated with the presence of the ETV6-RUNX1 fusion pro-
tein. Of these, lncRNA SARDH-1 (also known as lncRNA DBH-AS1) was found to be
downregulated in ETV6-RUNX1-positive cells. LncRNA SARDH-1/DBH-AS1 has been
previously studied and found to promote cell proliferation and cell survival in multiple
different cancer models [84–88]. This study also compared the altered transcriptional
responses after silencing the ETV6-RUNX1 fusion transcript in the REH cell-line. They
found 134 lncRNAs to be deregulated (41 up- and 93 down-regulated). Of these, four
lncRNAs (lnc-NKX2-3-1, lnc-TIMM21-5, lnc-ASTN1-1 and lnc-RTN4R-1) overlapped with
the previously determined lncRNA signature found in primary ETV6-RUNX1 samples.
Furthermore, functional analysis using the lncRNA and mRNA expression profiles re-
vealed mRNA processing and vincristine resistance to be among the top correlated gene
sets for all four lncRNAs mentioned above. In a separate study performed by Cuadros et al.,
the transcriptional responses in ETV6-RUNX1-positive patient samples were compared to
ETV6-RUNX-negative samples [75]. This study found 117 differentially expressed lncRNAs
between the two sample types. Of these, the highest expressed lncRNA was TCL6 and was
predicted to coregulate the mRNA TCL1B in ETV6-RUNX1-positive B-ALL. Importantly,
this study indicated that low TCL6 levels may also be associated with poor disease-free
survival, even within ETV6-RUNX1 B-ALL, a favorable sub-group of pediatric B-ALL.
Overall, these studies suggest that lncRNA expression analysis could complement current
cytogenetic and molecular analyses applied in the routine diagnosis of B-ALL to further
refine current standards of risk stratification.

The expression of lncRNAs as indicators of treatment response or relapse have gained
significant attention in cancer research (reviewed in [89,90]). Understanding if lncRNA
expression could serve as useful indicators of disease prognosis in B-ALL has also been
investigated. Indeed, transcriptome analysis performed on bone marrow samples collected
from DUX4, Ph-like, or near-haploid and high hyperdiploid (NH-HeH) B-ALL patients
collected at initial diagnosis (ID) and relapse (REL) revealed 1235 subtype-specific lncR-
NAs [91]. After performing differential analysis between samples taken at ID to REL, 947
total lncRNAs were deregulated in the three subtypes, with the majority being downreg-
ulated at relapse [91]. When comparing ID to REL samples within each subtype studied,
570, 113, and 248 lncRNAs were differential in DUX4, Ph-like, and in NH-HeH samples
respectively. Other studies have shown that LINC00152 and LINC01013 were among the
most differentially expressed genes in patients with early relapse of disease compared
to healthy controls [76]. Specifically, higher expression of LINC00152 in children with
B-ALL was associated with a higher risk of early relapse; conversely, lower expression
of LINC01013 was associated with early relapse. The lncRNA LINC00152 is also known
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as CYTOR (long non-coding RNA cytoskeleton regulator RNA) and has been previously
described as an oncogenic lncRNA in many different types of cancer (e.g., [92–97]) and
may serve as a potential biomarker for cancer detection in both solid tumor tissue and
plasma [98,99]. Overall, these reports indicate that lncRNA expression can serve as useful
biomarkers in B-ALL.

Notable Case: LncRNA GAS5 and Its Connection to Glucocorticoid Resistance

Drug resistance, whether intrinsic or acquired, is also a major problem in the man-
agement of ALL (reviewed in [89]). Glucocorticoids like dexamethasone and prednisone
are critical in the treatment of B-ALL where they exhibit cytotoxic activity against hemato-
logical cells through the activation of apoptosis [100]. When given in combination with
chemotherapy during induction therapy, 85% of ALL patients from age 16 to 80 years
achieved complete remission [101]. However, a failed response to initial glucocorticoid
therapy is associated with unfavorable prognosis and poor outcome [102,103]. Addition-
ally, prolonged use can lead to the emergence of glucocorticoid resistance. Studies have
found that lncRNA expression may be functionally associated with drug resistance in
acute leukemias [68,80,89,104]. For example, the lncRNA growth arrest-specific transcript
5 (GAS5) is downregulated in many cancers and may be used as a potential marker of
treatment response in remission induction therapy for children with ALL [81,82,105].

The GAS5 gene contains 12 exons and multiple spliced and polyadenylated isoforms
have been reported [106]. The primary transcripts are ~600 nucleotides in length. The
accumulation of GAS5 transcripts is impacted by various cellular stressors, including
serum or nutrient deprivation as well as various drug treatments [107]. In cases such as
these, where there is an inhibition of translation of GAS5 transcripts, cell proliferation and
survival are negatively regulated (Figure 3A). There is also early evidence suggesting that
modulation of GAS5 expression could restore glucocorticoid sensitivity in healthy blood
mononuclear cells [81,108].

The primary effects of glucocorticoids occur via activation of the glucocorticoid recep-
tor (GR) (encoded by the NR3C1 gene), a ligand-activated transcription factor belonging to
the superfamily of nuclear receptors. The GR-binding site was mapped to the 3′ terminus
of GAS5 (bases 546–566), a region that forms a putative stem-loop structure (Figure 3B).
This region forms an explicit RNA–protein interaction domain that binds directly to the
helix 1 of the GR DNA binding domain to block DNA-dependent glucocorticoid signal-
ing [109,110]. Thus, in steroid-sensitive cancer cells, such as leukemia cells, the GR binding
motif is responsible for GAS5 effects on cell growth [109]. However, this may not be true in
other cell types where proliferation is not necessarily dependent on GR signaling. Indeed,
Frank et al., has used structure-function analysis to examine the other regions of GAS5
lncRNA that regulate cell survival [107]. Namely, functional studies performed by this
group in Jurkat and CEM-C7 T-ALL cell lines show that GAS5 also possesses a 5′ region
that confers the ability of GAS5 to reduce cell survival, as well as a core region that is
required for mediating the effects of mTOR inhibition. Thus, GAS5 possesses independent
structural modules that function to regulate growth in various cellular conditions through
distinctive mechanisms.

Functionally, the GAS5 lncRNA interacts with the DNA binding domain of ligand-
activated GR and negatively regulates GR transcriptional activity by inhibiting binding
of GRs to glucocorticoid response elements (GREs) (Figure 3C) [110]. GAS5 may also
function in leukemia cell drug responsiveness through other additional mechanisms not
dependent on GR. For example, GAS5 has been shown to regulate mTOR/AKT pathways
in cancers [111–113]. Alterations in the mTOR pathway have been implicated in leuke-
mogenesis [114]. Furthermore, GAS5 may mediate regulatory interactions of miRNAs
and target mRNAs involved in drug responses (reviewed in [115]), including miR-222 in
leukemia cells [116]. Together these studies highlight GAS5 as an important lncRNA whose
structure influences glucocorticoid drug responsiveness and essential pathways important
for cell survival and growth.
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Figure 3. GAS5 lncRNA regulates cellular stress responses through multiple mechanisms. (A)
Various cellular stressors, including serum or nutrient deprivation as well as various drug treatments,
result in the inhibition of translation and the accumulation of GAS5 transcripts, whereby GAS5
negatively regulates cell proliferation and survival. (B) The GAS5 RNA molecule comprises three
separate regions that mediate the effect of GAS5 on cell growth through distinctive mechanisms.
These regions are divided into 3 modules: a 5′ unstructured region, a highly structured core region,
and a 3′ terminal glucocorticoid receptor (GR) binding region. Functional analysis indicates that the 5′

module mediates the effect of GAS5 on basal cell survival and reducing the rate of cell cycle, whereas
the core module is required for mediating the effects of mTOR inhibitors. (C) The mechanisms by
which GAS5 regulate cell proliferation in GR-dependent (left) and GR-independent means (right) are
shown. For the GR-dependent process, GAS5 functions as a glucocorticoid response element (GRE)
decoy effectively sequestering GR from GRE elements in DNA and suppressing GR-dependent gene
expression and cellular proliferation. For the GR-independent growth control, GAS5 can function
as a miRNA sponge to regulate signaling pathways. Additionally, inhibition of the mTOR pathway
downstream of PI3K/AKT signaling depends on GAS5.

5. MicroRNA and Progenitor B-Cell Acute Lymphoblastic Leukemia

MiRNAs play key biological roles during B-cell development and their expression
patterns are carefully regulated across distinct developmental stages [117,118]. As we
continue to discover and study miRNAs, those previously found to have important roles
in lymphopoiesis may also contribute to B-cell malignancies. There are currently 1917
miRNAs registered in the Homo sapiens miRNA registry (miRBase version 22) [119]. Of
these, the LeukmiR database predicts 861 miRNAs are associated with ALL [120]. One
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example is miR-150, which is a critical regulator of B-cell development and is primarily
expressed in the lymph nodes and spleen [121]. In B-cells, miR-150 expression progressively
increases during development where it is expressed at low levels in progenitor cells
and then becomes abundantly expressed in immature and mature B-cell subsets [121].
Interestingly, ectopic expression of miR-150 has been shown to inhibit the pro-B to pre-B
transition and can modulate B-cell receptor signaling [122,123]. In B-ALL, microarray
analysis has shown that miR-150 is lowly expressed in pediatric patients compared to
healthy controls [124]. Further, this study found that miR-150 expression changed among
prednisone response groups and was down-regulated in relapsed patients compared
to controls. In an effort to understand the role of miRNAs in B-ALL, several groups
have performed gene-expression studies in leukemic samples with the goal of identifying
miRNAs that could be used as diagnostic and prognostic markers, as well as markers of
resistance to existing therapies [125,126]. An assembled list of miRNAs reported in B-ALL
is provided and discussed below (Table 2).

Many types of leukemias exist and it has been shown that miRNA expression can
distinguish between the major leukemic types and subtypes. For example, miRNA profiling
performed in 72 patient samples identified 27 miRNAs that were differentially expressed
between ALL and acute myeloid leukemia (AML) samples [127]. Among these, 4 miRNAs
(miR-128a, miR-128b, let-7b and miR-223) were found to be sufficient to discriminate
between the two leukemic types. A later study performed by Zhang et al. also confirmed
that miR-128a and miR128b in addition to five others (miR-213, miR-210, miR-130b, miR-
146a, and miR-34a) were characteristic of ALL and differentially expressed when compared
to healthy controls [124]. Further, this study identified two prognostic miRNA expression
signatures that could be used to differentiate between good or poor prednisone response or
discriminate between relapsed and control cases in ALL. Similarly, other studies have found
that T-cell lineage ALL has a distinct pattern of miRNA expression when compared to
B-cell lineage ALL. Almeida et al. performed miRNA transcriptome sequencing on samples
collected from 4 T-ALL and 4 B-ALL patients. They reported 16 deregulated miRNAs (6 up-
and 10 down-regulated) which could be used to distinguish between the two groups [128].
Gene expression studies performed by other laboratories confirmed that miR-425-5p and
miR-126 were indeed downregulated in T-ALL compared to B-ALL [129,130]. Interestingly,
miR-126 has been recently found to be highly expressed in hematopoietic stem cells;
additionally, overexpression of miR-126 in B-cell progenitors resulted in leukemic initiation
in a murine model [131].

MiR-125b has been found to be deregulated in many different cancer types [132]. In
B-ALL, miR-125b was found to be highly expressed in patients harboring the translocation
t(11;14)(q24;q32), which involves the immunoglobulin heavy chain locus, and in patients
with ETV6-RUNX1 fusions [130,133]. Studies performed in mice found that when miR-125b
is co-expressed with the BCR-ABL fusion gene, this resulted in an accelerated development
of leukemia [134]. Furthermore in B-ALL patients, high expression of miR-125b along with
miR-99a and miR-100 were shown to serve as markers of resistance to vincristine [130,135].
Overall, these results suggest that miR-125b may play a role in ALL initiation and can be
used a marker of drug resistance.

MiRNA signatures can also be predictive of disease outcome and relapse. Upon
performing miRNA profiling with paired diagnosis-relapse samples, Han et al. identi-
fied miR-708, miR-223, and miR-27a as differentially expressed in relapsed childhood
ALL [136]. Similarly, another group identified miR151-5p, miR-451, and miR-1290 as
relapse markers when correlating miRNA profiles of patient samples at diagnosis with clin-
ical outcome [137]. Together, these studies indicate that miRNA gene expression correlates
with leukemic type and can potentially be used in a clinical setting to assess responsiveness
to chemotherapeutic drugs as well as risk of relapse.
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Table 2. Examples of microRNAs with significance in B-cell acute lymphoblastic leukemia.

miRNA B-ALL Expression Cohort Description Clinical or Functional
Implications References

miR-125b

Upregulated in
TEL-AML1-positive

compared to
non-TEL-AML1
precursor B-ALL

Mononuclear cells were
isolated from BM and

PB from 81 ALL
patients, of which 70

were of the B-ALL
subtype and 11 were

T-ALL. 17 control
samples were also

includeda

Highly expressed
(along with

miR-100and miR-99a)
in patients resistant

to vincristinea,d

[130]a, [135]b, [133]c,
[134]d

Upregulated in patients
with t(11;14)(q24;q32)
compared to B-ALL

patients without
t(11;14)

Total RNA was
extracted from samples
taken from 2 patients
with t(11;14)(q24;q32)
translocations and 28

B-ALL patients without
t(11;14) for qPCRb

Mononuclear cells were
isolated from BM and

PB from patients
diagnosed with

ETV6-RUNX1, TCF3
(E2A)-rearrangement,

MLL-rearrangement or
BCR-ABL1. Validation

experiments was
performed on Reh

cellsd

When co-expressed
with BCR-ABL, was

shown to accelerate the
development of

leukemia in micec

miR-425-5p
Upregulated in B-ALL

compared to T-ALL
patients

See abovea

BM or PB was obtained
from 8 patients with

ALL. Of these, 4
patients had T-ALL and

4 had B-ALLe

BM or PB was obtained
from 20 patients with
ALL and analyzed by

miRNA array. Of these,
4 had T-ALL and 16
had B-ALL. In the
B-ALL cohort, 4

patients had a BCR/ABL
rearrangement, 3 had

an E2A/PBX1, 3 had an
MLL/AF4

rearrangement, and 6
patients had no

molecular
abnormalitiesf

Unknown [130]a, [128]e [129]f
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Table 2. Cont.

miRNA B-ALL Expression Cohort Description Clinical or Functional
Implications References

miR-126

Upregulated in
TEL-AML1-positive

compared to
non-TEL-AML1
precursor B-ALL

See abovea,f

Higher expression
correlated with
chemotherapy

resistancea

[130]a, [129]f [131]g,
[124]h

Higher expression in
BCR/ABLcohort

compared to T-ALL
patients

BM aspirates were
collected from 17

B-ALL samples; 16
samples were further

studied. 11 were of the
Ph+ B-ALL subtype

and 5 were of the
B-ALL ‘other’ subtypeg

In xenotransplant
murine model,

knockdown induced
apoptosis of B-ALL

blast cellsg

Upregulated in B-ALL
compared to healthy

controls

BM samples from 43
patients were analyzed
by microarray. These
included 18 ALL, 18
AML, and 7 normal
samples. Among the

ALL samples, 17 were
of the B-cell lineageh

miR-34a
Upregulated in B-ALL

compared
to healthy controls

See aboveh Unknown [124]h

miR-130b
Upregulated in B-ALL

compared
to healthy controls

See aboveh Unknown [124]h

miR-146a
Upregulated in B-ALL

compared
to healthy controls

See aboveh Unknown [124]h

miR-213
Upregulated in B-ALL

compared
to healthy controls

See aboveh

Highly expressed in
high-risk and

intermediate risk
groups; not abnormally

expressed in
standard-risk group.

[124]h

miR-210
Upregulated in B-ALL

compared
to healthy controls

See aboveh

Highly expressed in
high-risk and

intermediate risk
groups; not abnormally

expressed in
standard-risk group.

[124]h
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Table 2. Cont.

miRNA B-ALL Expression Cohort Description Clinical or Functional
Implications References

miR-128a

Upregulated in B-ALL
compared

to AML samples and
when compared to
healthy controls.

See aboveh

BM samples were
collected from 58

patients for miRNA
expression analysis. Of
these, 11 were B-ALL
and 47 were AML. All

B-ALL samples had
MLL-rearrangements.
14 cell lines were also
included (7 ALL and 7
AML). In addition, 3

BM samples were
collected from healthy

controlsi

Highly expressed in
ALL; can be used

in miRNA expression
signature to

discriminate ALL from
AML

[124]h, [127]i

miR-128b

Upregulated in B-ALL
compared

to AML samples and
when compared to
healthy controls.

See aboveh,i

Highly expressed in
ALL; can be used

in miRNA expression
signature to

discriminate ALL from
AML

[124]h, [127]i

miR-708

Upregulated at relapse
compared to complete

remission in
matched-paired ALL

samples

Matched-paired
samples were collected
from 18 ALL patients at

diagnosis and at
relapse or complete

remission for
microarray studies. Of
these, 11 patients had

B-ALL. 5 healthy
control samples were

also includedj

Higher expression
correlated with

higher relapse free
survival in newly
diagnosed ALL

patients

[136]j

miR-1290

Upregulated in ALL
patients with adverse

clinical parameters
compared to those with

good clinical
parameters

BM samples from 48
patients were analyzed
by microarray of which

35 were of the B-cell
lineage and 13 were of
the T-cell lineage. 32 of

the B-ALL samples
from the initial cohort,

in addition to, 106
added B-ALL samples
(n=132) were used for
confirmation studiesk

High expression was
associated with
increased risk of

relapse

[137]k

miR-151-5p

Downregulated in ALL
patients

with adverse clinical
parameters

compared to those with
good clinical
parameters

See abovek

Low expression was
associated with
increased risk of

relapse

[137]k
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Table 2. Cont.

miRNA B-ALL Expression Cohort Description Clinical or Functional
Implications References

miR-451

Downregulated in ALL
patients

with adverse clinical
parameters

compared to those with
good clinical
parameters

See abovek

Low expression was
associated with
increased risk of

relapse

[137]k

miR-150

Downregulated in
relapsed B-ALL

patients compared to
complete remission

See aboveh

Low expression was
associated with poorer
response to prednisone

and is a part of a
miRNA signature used

to
discriminate between
relapse and complete

remission

[124]h

Let-7b

Downregulated in
MLL-rearranged

compared to compared
to MLL-negative

patients

See abovea,i

Target analysis
identified c-MYC and
RAS as downstream

targets of the let-7
family. mRNA levels of
c-MYC and RAS were

upregulated in
MLL-rearranged ALL

compared to non-MLL
B-ALL patientsa

[130]a, [127]i

Downregulated in
B-ALL compared to

AML samples

Lowly expressed in
ALL; can be used in
miRNA expression

signature to
discriminate ALL from

AMLi

miR-223

Downregulated in
B-ALL compared to

AML samples See above i, j

Lowly expressed in
ALL; can be used in
miRNA expression

signature to
discriminate ALL from

AMLi

[127]i, [136]j

Downregulated at
relapse compared to

complete remission in
matched-paired ALL

samples

Higher expression
correlated with higher
relapse free survival in

newly
diagnosed ALL

patients

miR-27a

Downregulated at
relapse compared to

complete remission in
matched-paired ALL

samples

See above j

Higher expression
correlated with higher
relapse free survival in
newly diagnosed ALL

patients

[136]j

Abbreviations: AML: acute myeloid leukemia, ALL: acute lymphoblastic leukemia, BM: bone marrow, PB: peripheral blood, B-ALL:
B lymphoblastic ALL, T-ALL: T lymphoblastic ALL. a–k Correspond to references listed: a doi:10.3324/haematol.2010.026138,
b doi:10.1016/j.leukres.2013.06.027, c doi:10.1038/leu.2010.93, d doi:10.1073/pnas.1016611107, e doi:10.1002/hon.2567, f
doi:10.1002/gcc.20709, g doi:10.1016/j.ccell.2016.05.007, h doi:10.1371/journal.pone.0007826, i doi:10.1073/pnas.0709313104, j
doi:10.1093/hmg/ddr428, k doi:10.1002/gcc.22334.



Int. J. Mol. Sci. 2021, 22, 2683 16 of 25

6. Other Classes of Non-Coding RNAs and Their Role in Progenitor B-Cell Acute
Lymphoblastic Leukemia

Thus far, this review has focused on describing miRNAs and lncRNAs identified as
having significance in B-ALL. However, other classes of ncRNAs are emerging as biologi-
cally significant factors in cancer. In particular, dysregulation of circular RNAs (termed
circRNAs) may contribute to the development and progression of cancer [reviewed in [138].
CircRNAs are a large family of ncRNA molecules that have been recently established
to function in a variety of central biological processes including transcription, transla-
tion, mRNA splicing and RNA decay [139,140]. CircRNAs are single-stranded, covalently
closed RNA molecules that are derived from pre-mRNAs through a process called back-
splicing [141]. Relative to their linear counterparts, circRNAs are stable and can be detected
in exosomes, saliva, and plasma [142–144], suggesting that circRNAs are potential clinical
biomarkers for disease progression and prognosis [reviewed in [145]. CircRNA expression
can be detected with RNA-Seq, and their expression patterns have been found to be unique
to various human tissues and blood cells [139]. For example, in the hematopoietic system
the majority (~80%) of circRNAs detected in monocytes and B, T-cells isolated from healthy
donors were found in all three cell types, while 10% of circRNAs expressed were specific to
the lymphocyte population [146].

CircRNA expression was found to be deregulated in B-ALL cells. After comparing
circRNA expression in normal B-cells to patient derived xenograft B-ALL cells, seven
circRNAs were identified as being significantly different in B-ALL [146]. Importantly, the
expression of certain circRNAs, such as circAFF2, appeared subtype-specific and follow-up
studies should be performed to understand if circAFF2 could be used as a biomarker for
the TCF3-PBX1 subtype of B-ALL. In other studies, performed by Huang et al., the circRNA
circAF4 was identified as having an oncogenic role in MLL-rearranged leukemias [147].
More on the role of circRNAs in hematopoiesis and in hematological malignancies can be
found [reviewed in [148–150].

Although not extensively studied in B-ALL, expression profiling performed in other
hematological diseases such as multiple myeloma [151], chronic lymphocytic leukemia [152],
and in AML [153], has revealed that small nucleolar RNAs (snoRNAs) could also serve
as useful biomarkers in hematological malignancies. SnoRNAs are a class of small non-
coding RNAs that are generally less than 300 nucleotides in length and have been shown
to regulate mRNA splicing, serve as endogenous sponges, and function as guide RNAs
during post-transcriptional modification of target RNAs [154,155]. Microarray studies
performed by Valleron et al. using AML and ALL samples found that many snoRNAs
were downregulated compared to normal myeloid or lymphocyte cells respectively [156].
Additional follow-up studies would contribute to the understanding if unique snoRNA
signatures exists for B-ALL.

7. Emerging Perspectives

Traditionally, risk stratification has been based on clinical factors such as age, white
blood cell count, and response to chemotherapy. The identification of recurrent genetic
abnormalities has helped refine risk stratification and guide treatment decisions. In the
past decade, major advancements have been made to comprehensively profile samples
from cohorts of patients with leukemia. In particular, a resource available to researchers
granting access to genomic sequencing data collected from thousands of leukemic patients
is the National Cancer Institute’s Therapeutically Applicable Research to Generate Effective
Treatments (TARGET). The TARGET project has facilitated a multi-omic analysis of patients
with ALL and provides an exceptional resource for the exploration of gene expression data
in cancer research. This shared resource provides multiple genomic datasets including
RNA-Seq and small RNA-Seq files collected from patient cohorts with diverse leukemic
subtypes. Moreover, integrative genomic analysis has led to the identification of 23 unique
subtypes of B-ALL after analyzing whole-transcriptome profile and cytogenetic analysis
from 1988 patients [157]. Further, subtypes that had not been previously described were
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further characterized with whole-genome sequencing (WGS), whole-exome sequencing
(WES), and single-nucleotide polymorphism (SNP) array analysis [157]. Importantly, some
patients that had been formally categorized in the “B-other ALL” group were newly
classified into a defined subtype based on mutational status and distinct gene expression
signature [157].

Data sharing is the future of science and the utilization of these large patient datasets
could potentially identify new determinants of drug resistance, biomarkers, and refine-
ments in patient risk stratification with the incorporation of altered non-coding transcripts.
Aberrant ncRNA expression has been shown to serve as prognostic indicators to predict
treatment response or disease relapse for various malignancies [158–161]. Additionally, due
to high cell-type specific expression patterns, ncRNA signatures may act as non-invasive
biomarkers for diagnosis and prediction of treatment outcomes [16]. For example, 95% of
pancreatic patients overexpress the lncRNA PCA3 (Prostate Cancer gene 3), also known as
DD3, which has restricted expression to the prostate tissue [162]. Due to its high expression
in cancer cells, PCA3 is detectable in the urine and upon quantification can be used to
generate a PCA3 score to predict biopsy outcome [163–165]. In 2012, PCA3 was FDA-
approved as the only urinary biomarker for prostate cancer [166–168]. Other lncRNAs such
as HOTAIR, MALAT1, and GAS5 also show promise as cancer biomarkers [169–171]. In
leukemia, higher GAS5 expression was shown to correlate with poor overall survival [172].
Functional studies should be performed to understand the role of GAS5 in B-ALL. As the
non-coding genome is not completely annotated, the biological functions of many miRNAs
and lncRNAs are unknown and more experimental work is required to clarify clinical
relevance. In the future, we can envision comprehensive studies, integrating coding and
non-coding transcriptomic data from large patient cohorts to identify new determinants of
drug resistance and therapeutic targets.
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2′OMe 2′-O-methyl
ALL acute lymphoblastic leukemia
AML acute myeloid leukemia
B-ALL B-cell acute lymphoblastic leukemia
BM bone marrow
ceRNA competing endogenous RNA
circRNA circular RNA
GAS5 growth arrest-specific transcript 5
GR glucocorticoid receptor
GRE glucocorticoid response element
HdH high hyperdiploidy
ID initial diagnosis
lncRNA long non-coding RNA
miRNA microRNA
miscRNA miscellaneous RNA
MRE miRNA response element
ncRNA non-coding RNA
NGS Next Generation Sequencing
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NH-HeH near-haploid and high hyperdiploid
nt nucleotide
PB peripheral blood
PCA3 Prostate Cancer gene 3
Ph+ Philadelphia chromosome-positive
pri-miRNA primary miRNA
pre-miRNA precursor miRNA
REL relapse
RNA-Seq RNA-sequencing
RNP ribonucleoprotein
rRNA ribosomal RNA
scaRNA Small Cajal body-specific RNA
smRNA-Seq small RNA-sequencing
SNP single-nucleotide polymorphism
snoRNA small nucleolar RNA
snRNA small nuclear RNA
T-ALL T-cell acute lymphoblastic leukemia
TARGET Therapeutically Applicable Research to Generate Effective Treatments
TKI tyrosine kinase inhibitor
tRNA transfer RNA
WGS whole-genome sequencing
WES whole-exome sequencing
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