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In the past, a diagnosis of organ failure would essentially be a death sentence for patients. With improved 
techniques for organ procurement and surgical procedures, transplantations to treat organ failure have 
become standard medical practice. However, while the demand for organs has skyrocketed, the donor pool 
has not kept pace leading to long recipient waiting lists. Organ preservation provides a means to increase 
the number of available transplantable organs. However, there are significant drawbacks associated 
with cold storage, the current gold standard. To address the short-comings due to diffusional limitations, 
engineers have developed cold perfusion systems. More recently, there has been a significant trend towards 
the development of near-normothermic systems to enhance the functional preservation of solid organs 
including livers, lungs, hearts, kidneys, and vascularized composite allotransplants. Here we review recent 
advances in the development of perfusion systems for the preservation of solid organs. We provide a brief 
history of organ transplantation, the limitations of existing systems, and describe research being done to 
develop commercially available perfusion systems to enhance organ preservation.
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A BRIEF HISTORY OF SOLID ORGAN 
TRANSPLANTATION

Current advanced technologies in organ transplanta-
tion are the fruits of more than a century of pioneering 
efforts in surgery. The desire to remove tissue from one 
anatomical site and use it as autografts or allografts for 
cosmetic, restorative, or therapeutic reasons has its root in 
ancient civilizations; however, only in the early twentieth 
century were successful transplantations of non-visceral 

tissues such as human skin and cornea achieved [1] due 
to surgical advances in vascular anastomosis [2]. That 
was followed by the first successful kidney transplant 
between identical twin brothers [3,4] and the initial liv-
er transplant trial performed a few years later. The liver 
transplants failed due to overwhelming technical and 
hemorrhagic complications aggravated by severe portal 
hypertension and coagulopathy. Increased surgical expe-
rience plus improvements in immunosuppression thera-
pies ultimately resulted in prolonged liver recipient sur-
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vivals [5]. In 1967, the first human heart transplant was 
performed, but its outcome and that of subsequent heart 
transplants were very poor, with few patients surviving to 
leave the hospital [6]. Several other organ transplantation 
“firsts” took place in this era: lung transplantation in 1963 
[7], pancreas transplantation in 1968 [8], and heart-lung 
transplantation in 1968 [9].

Since 1968, solid organ transplantation has become 
widely used in the medical field and in 2016, 33,600 
organ transplants [10] were performed in the U.S. with 
114,756 patients still on the waiting list [11]. The relative 
numbers of solid organ transplants for various organs in-
cluding vascularized composite allotransplants is given 
in Figure 1. As a result of previous and continued success 
in solid organs transplantation, the field of vascularized 
composite allotransplantation (VCA†) has grown expo-
nentially over the last decade; though its numbers are 
almost negligible compared to kidney, liver, and heart 
transplants. VCA offers functional and aesthetic advan-
tages over autologous tissue reconstruction and prosthe-
ses. To date, transplantations of the face [12], hands [13], 
lower extremity [14], vascularized knees [15], abdominal 
wall [16], and larynx [17], have been performed. Al-
though VCA has made great strides, the field is still in its 
infancy, and challenges persist.

The field of organ transplantation is undergoing sci-
entific and technological developments in harvesting and 
procurement techniques, immunosuppression regimens, 
tissue matching, anti-infection protocols and surgical 
methods, which are continually improving transplantation 
outcomes. However, the massive imbalance between the 
demand and supply of organs remains the major problem 
in the field. Consequently, organ preservation is a primary 
means to bolster the supply line for organ transplantation. 

The ability to deliver high quality donor organs capable 
of rapid resumption of their function in the recipient is a 
major factor in the success of organ transplantation. Effi-
cient preservation allows staff and facilities to organize, 
transport organs, and perform essential laboratory tests. 
Therefore, methods to extend the periods over which or-
gans can be preserved and their functionality maintained 
prior to transplantation is a growing research area.

ORGAN PRESERVATION

The fundamental challenge of organ preservation is 
the need to maintain the viability and function of the or-
gan in the absence of an adequate blood supply, metabolic 
waste removal, and physiologic stimulation. Apart from 
this, ischemia-reperfusion injury (or IRI) remains an im-
portant risk factor for both acute rejection and long-term 
graft outcomes [13]. Ischemia occurs as a consequence of 
the shortage of oxygen and glucose. In turn, cells switch 
to the less energy-efficient anaerobic respiration in re-
sponse to oxygen deficits, intracellular accumulation of 
metabolites such as lactic acid, and acidic changes in cel-
lular pH [18-20]. ATP becomes rapidly depleted within 
the cells resulting in a shift to adenosine monophosphate 
(AMP) as the predominant nucleotide. Elevated levels of 
reactive oxygen species (ROS) during ischemic time lead 
to the disruption of lipids, lipoproteins, and cellular mem-
branes as well as the accumulation of intracellular calci-
um. Consequently, additional ROS is generated through 
the hypoxia-induced factor-1α-mediated pathway. ROS 
generation and electrolyte imbalance damage mitochon-
dria and the proteins of the oxidative chain [21,22]. When 
blood flow is re-established to the ischemic tissue (i.e., 
ischemia-reperfusion), a multitude of physiological re-

Figure 1. Pie chart showing the breakdown of solid organ transplants by tissue type. Data obtained from United Net-
work for Organ Sharing (March 4, 2018) and covers the period January 1, 1988 - January 31, 2018 [11].
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actions occur. ROS are widely recognized as important 
mediators of post-reperfusion induced organ injury [23].

The strategies in organ preservation can be divided 
into two distinct categories: (i) Suppressing metabolism 
to conserve ATP and minimize waste production and (ii) 
Mimicking physiological conditions through normother-
mic perfusion. Metabolic suppression of metabolism has 
been the most established strategy in organ preservation 
and includes both hypothermic preservation (for hours) 
and cryopreservation (for days). Recently, major empha-
sis has been placed on the investigation of normothermic 
perfusion. Cryopreservation of cells and other tissue 
types such as bone and cartilage for extended durations is 
well established, but recent evidence on a cryopreserved 
ovary and its successful reimplantation makes this meth-
od a feasible option for long-term solid organ preserva-
tion [24].

Cold Storage and its Limitations
Static cold storage is the clinical gold standard for 

preservation of most solid organs. Organs are stored in 
chilled specialized preservation solutions that contain im-
permeants and colloids which prevent cellular swelling 
and minimize molecular changes within the cells. Each 
10 °C drop in temperature of the organ results in a 50 
percent decrease of its metabolic rate, until it reaches 10 
to 12 percent of normal physiological rates at 4 °C [25].

Cell swelling, acidosis, and ROS production are 
primary side effects of hypothermia. Severe acidosis ac-
tivates phospholipases and proteases causing lysosomal 
damage and eventually cell death [26]. Therefore, the 
preservation solution requires pH levels to be sufficiently 
controlled. The first cold storage solution was EuroCol-
lins which uses glucose as an osmotic agent and phos-
phate for pH buffering [27]. The University of Wisconsin 
(UW) solution incorporates scavengers (glutathione, 
allopurinol) and adenosine as an ATP precursor. The UW 
solution uses HES (Hydroxyethyl starch) as a colloid 
to increase the oncotic pressure and also incorporates 
metabolically inert and osmotic substrates such as lacto-
bionate and raffinose [28]. Another commonly used pres-
ervation solution, HTK, consists of histidine (H, a very 
potent buffer) and two amino acids, tryptophan (T) and 
ketoglutarate (K). Tryptophan serves as membrane stabi-
lizer while ketoglutarate acts as a substrate for anaerobic 
metabolism during preservation [25]. Celsior is another 
extracellular solution and has proven to be effective in 
preserving abdominal organs as well [21,22]. It combines 
the inert osmotic control provided by UW Solution with 
the strong buffering capacity of HTK. Clinically it has re-
sulted in satisfying outcomes in heart, lung, liver, pancre-
as, kidney, and small bowel preservation [29,30]. To date, 
numerous solutions exist with little consensus between 

transplant centers as to which is the ideal preservation 
solution [31].

Hypothermic Perfusion
In spite of its successes, cold storage does not pro-

vide extensive organ preservation times. The slow rates 
of diffusion of the preservation solutions through the 
organ lead to ATP depletion and necrosis within tissue 
[32,33]. Machine perfusion can overcome this limitation 
by providing enhanced nutrient and oxygen delivery. Per-
fusion requires reliable pumps, biocompatible elements 
of the perfusion circuit, and oxygenation and temperature 
control of the perfusate [34-36]. Belzer developed hypo-
thermic perfusion techniques for the preservation of kid-
neys and used whole blood as a perfusate [29]. Later, he 
used oxygenated micro-filtered cryoprecipitated plasma 
and patented the first hypothermic machine perfusion for 
kidneys. However, in spite of known benefits, it is techni-
cally challenging to correctly implement these machines 
and two large-scale studies comparing Belzer’s perfusion 
to cold storage failed to provide superior outcomes in 
terms of organ function post-transplantation [30,32].

NEAR-NORMOTHERMIC PERFUSION

Alternatively, over the last two decades several 
groups have examined the effects of increasing the tem-
perature of machine perfusion to near-normothermic tem-
peratures (20–33 °C). At these temperatures, the normal 
cellular and metabolic activities enable the assessment 
of graft viability and function prior to transplantation. 
Near-normothermic perfusion systems have been de-
veloped for the liver, heart, lung, and kidneys and there 
are ongoing clinical trials in Europe and North America 
[33-48]. Since these organs have distinct biophysical re-
quirements, the organ care systems need to be customized 
to (i) meet each organ’s specific biophysical needs, e.g., 
breathing for lung or electrical stimulation for heart and 
(ii) provide specific biomarkers to assess the viability 
of the organ and preservation of function. Near-normo-
thermic preservation is particularly applicable to organs 
from so-called “marginal” or non-heart-beating donors. 
In these cases, due to the prolonged warm ischemic times, 
the organ viability is negatively impacted by the subse-
quent cold preservation. Hence, normothermic perfusion 
may enhance preservation and transplantation outcomes 
and reduce the risk of non-functional organs. Machine 
perfusion systems are closely tied to transport systems 
and both are considered in the global market for machine 
perfusion organ preservation systems (Table 1). A list of 
perfusion (hypothermic and near-normothermic) systems 
being developed for clinical use is provided in Table 2.

In 1935, Carrel et al. created a system to perfuse var-
ious organs from cats and fowl [49]. The components of 
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sue injury, the other components such as the oxygenator, 
heat exchanger, and sensors will also need to function at 
decreased pressures and flow speeds [59]. For example, 
OrganOx’s metra normothermic liver perfusion device 
also has several of those components: a perfusion pump 
that maintains the hepatic artery pressure between 60 to 
75 mmHg, an oxygenator that keeps the respective partial 
pressures of oxygen and carbon dioxide at 12 kPa and 
5 kPa, a heat exchanger to maintain the perfusate pres-
sure at 37 °C, and continuously infuses bile salts, insulin, 
prostacyclin, heparin, and other nutrients into the perfu-
sate [60].

Non-Invasive Measurements
Non-invasive measurements would allow for contin-

uous and automated feedback regarding the organ’s func-
tional metrics and enable real-time control over the per-
fusion protocol. Some universally employed sensors are 
used to measure pressure, flow-rate, temperature, and pH, 
as well as oxygen, glucose, and lactate concentrations. 
With static cold storage, there is no way to monitor the 
status of the organ during storage up until the transplant 
surgery. However, with normothermic perfusion systems, 
special sensors can be included to monitor organ specific 
functions and thus the status and functional capacity of 
the organ itself. For example, Transmedics’ Organ Care 
System for the heart allows for the continuous monitor-
ing heart rate via an electrocardiogram, and thus to check 
for any fibrillations of the heart during preservation and 
transport [61]. The Transmedics’ system monitors the 
R-Wave of the ECG to adjust the pump speed and thus 
pump stroke volume as needed to keep a continuous flow 
of blood in the system [61]. Lung preservation systems 
include a method to adjust the gaseous contents of the 
perfusate in order to analyze the ability of the lungs to 
oxygenate blood [51]. Liver preservation systems allow 
for a method to collect and sample the bile produced by 
the liver during perfusion. The quantity and components 
of the bile produced can be analyzed to determine the 
health of the liver [62]. Even though the systems being 
developed for kidneys listed in Table 2 do not offer kid-
ney specific measurements for kidney viability, improve-

that system still define what is commonly used in current 
perfusion systems. Their set up contained: 1) A housing 
chamber to maintain a sterile environment for the organ; 
2) Perfusate as a medium to supply oxygen and nutrients 
to the organ; 3) Means to replenish the consumed oxygen 
in the perfusate; and 4) Phenol Red to non-invasively 
monitor the metabolic activity of the organ via changes 
in pH. Many perfusion systems of today use components 
from Carrel’s 1935 set up as the basis for their designs.

Housing Systems
Housing systems for organ preservation provide a 

closed, humidified, and sterile environment to protect 
the organ from any bacterial infections and allow for the 
other parts of the perfusion system loop to connect to the 
organ itself. Key examples of housing are provided in the 
previously mentioned systems such as Organ Transport 
Systems’ LifeCradle device for ex vivo heart perfusion 
and Transmedics’ Organ Care Systems that are able to be 
specialized for the heart, lung, or liver [50-54].

Perfusion Loops
Optimization of machine perfusion requires efficient 

implementation of key elements including the pump, 
oxygenator, perfusate, reservoir, heat exchanger, sen-
sors, stimulators, and the perfusion protocol to control 
how the perfusate is conditioned and transferred into 
the organ [53]. There is a growing body of research to 
study the impact of each element’s performance on the 
effectiveness of organ preservation. For example, it was 
initially considered advantageous to use roller pumps that 
produce pulsatile wave patterns of flow [55,56], however, 
subsequent studies found it is most beneficial to simply 
use the lowest effective flow rates (i.e., sufficient deliv-
ery of oxygen and nutrients) to minimize damage to the 
vascular endothelium [57]. More recently, atraumatic 
centrifugal pumps have been employed [58], though it is 
unclear whether they provide improved outcomes. Since 
many organ perfusion devices operate at a pressure and 
flow that is often lower than physiological levels (80 to 
120 mmHg for humans) to prevent pressure related tis-

Table 1. Projected Global Market for Preservation Solutions and Machine Perfusion/Organ 
Transport Systems through 2020. Data from 2014 are provided for historical purposes.

Type Amount ($Millions) CAGR% 
2014 2015 2020 2015-2020

Preservation solutions 261.0 316.0 510.0 10.0
Machine perfusion/organ transport 
systems

198.0 266.5 560.0 16.0

Total 459.0 582.5 1,070.0 12.9
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broblast growth factors, which are known to stimulate 
pathways leading to cell recovery after renal injury. Gene 
transfection of the kidneys with adenovirus expressing 
green fluorescent protein was performed during the 24-
hour perfusion. Positive expression of this exogenous 
protein was revealed by histologic assessment, confirm-
ing that ex vivo perfusion is sufficient to allow de novo 
protein synthesis; however, the chance of recovery was 
low after re-implantation [55]. To achieve practical gene 
therapy, normothermic systems must include targeted 
manipulation of cytokine expression, modulation of 
apoptotic and costimulatory pathways, and manipulation 
of leukocyte recruitment signaling pathways [56].

Livers
Early studies that compared the normothermic 

perfusion efficiency in liver preservation between heart 
beating donors and cold storage has led to many contro-
versies [36,70]. Due to the dual-vessel supply, normo-
thermic perfusion of the liver is more complicated than 
other organs such as kidneys. A later study by Schon et 
al. demonstrated that normothermic perfusion can be 
substantially effective for ex vivo resuscitation of warm, 
ischemic livers. Towards mimicking physiological condi-
tions, they designed a complex perfusion circuit in which 
the liver was placed in a water bath with oscillating pres-
sures to simulate intra-abdominal pressure changes and 
perfused with a mixture of whole blood and an electrolyte 
solution [71]. The perfusate was filtered with a dialysis 
system which regulated its pH and electrolyte concen-
trations [71]. Alternatively, a less complex system was 
implemented by reassembling standard cardiopulmo-
nary bypass components including a centrifugal pump, 
a membrane oxygenator, and a heat exchanger. It relied 
on the inherent ability of a healthy liver to regulate its 
own acid-base status. Friend et al. implemented the so 
called Oxford system and demonstrated its potential of 
improved preservation over 24 hours compared to cold 
storage [72-74]. The group successfully preserved a por-
cine liver extracorporeally for 72 hours with the system 
[72-74]. However, the system was not readily portable 
and utilized cold storage. Later studies revealed different 
injury patterns caused by cold and warm ischemia. Thus, 
normothermic perfusion systems need to be portable and 
not utilize cold storage to become a realistic option for 
liver perfusion [65].

High temperatures in normothermic perfusion re-
solves the issue of low oxygen absorption in tissues, 
which is important in highly metabolic organs such as 
the liver. However, if the extended preservation time is 
the goal, using blood and its oxygen carrying capacity is 
not feasible. Laing et al. reported the first acellular hemo-
globin-based oxygen carrier, Hemopure, in a discarded 
human liver using the Liver Assist Device which perfuses 

ments can be made such as collecting the urine produced 
by the kidneys for biomarker analysis of viability. Vari-
ous components in urine and the perfusate such as lactate 
and Glutathione S-Transferases have been connected to 
predicting the outcome of kidney transplants [63].

Biomimetic Stimulation
Studies have shown that neuromuscular electrical 

stimulation can have an effect on helping patients recover 
from musculoskeletal injuries and that electrical stimu-
lation can even have an effect on cardiac tissue culture 
[64,65]. Even though electrical stimulation can have an 
effect on promoting tissue growth and recovery in cardiac 
and skeletal muscle, and the Transmedics’ heart Organ 
Care System includes an electrode for providing electri-
cal stimulation to the heart [61], there remains a need for 
greater emphasis on integrating electrical stimulation into 
organ preservation.

RECENT RESEARCH ADVANCEMENTS

Apart from systems described above and in Table 2, 
there are a number of advanced research-grade systems 
being developed. These are described in more detail be-
low:

Kidneys
Brasile et al. investigated an acellular perfusate 

based on cell culture media that includes emulsified per-
fluorocarbons as the oxygen carrier for kidney perfusion 
at 32 °C and showed superior outcomes compared to 
hypothermic perfusion and cold storage. Another theo-
retical advantage of perfusion under sub-normothermic 
conditions is that increased solubility of oxygen at lower 
temperatures (compared to 37 °C) would decrease the 
amount of oxygenation needed [66,67]. The Nicholson 
group, who were also pioneers in the field, used fully nor-
mothermic autologous blood perfusion for 16 hours after 
2 hours of cold storage. They observed a significantly 
enhanced ability to concentrate creatinine and conserve 
sodium in the preserved kidneys [68]. Later studies com-
paring normothermic perfusion of whole blood versus 
leukocyte-depleted blood demonstrated lower initial re-
nal vascular resistance, improved base excess, creatinine 
clearance, renal blood flow, and increased oxygen con-
sumption with leukocyte-depleted blood as the perfusate 
[69]. This has led to other groups using leukocyte-deplet-
ed blood as their perfusates in blood-based organ perfu-
sions.

The concept of “organ culturing” in kidneys during 
preservation involves repairing ischemia tissue ex vivo. 
Brasile et al., after 2 hours of warm ischemia, perfused 
kidneys for 24 hours in the presence or absence of fi-
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hours) followed by 36-hour of cross-circulation. During 
cross-circulation, the epithelium layer is replaced by adi-
pose-derived mesenchymal stem cells following decellu-
larization of targeted bronchopulmonary segments using 
micro-catheter delivery. The lungs possessed critical 
structural and biochemical factors for the proper attach-
ment and function of newly delivered cells. Further as-
sessment showed epithelial cells delivered by hydrogels 
had circulated across the airway surface and attached to 
the basement membrane while alveolar progenitors were 
found throughout the alveoli. Overall, they showed that 
their normothermic extracorporeal organ support systems 
which combines EVLP with cross-circulation was able to 
maintain both the extracorporeal and recipient lungs at a 
viable and stable state for 36 hours.

Vascularized Composite Allotranplantation
VCA grafts are composed of multiple tissue types 

(such as skin, fat, and muscle). These types of transplants 
are often performed after traumatic amputations have oc-
curred and static cold storage is still used as the current 
gold standard for preservation. Even though cold storage 
lowers the metabolic requirements of these transplants, 
the transplantation surgery still needs to be performed 
within 4 to 6 hours of amputation. This time-frame is 
incredibly restrictive. At the moment, there are not any 
commercialized perfusion systems that are designed for 
VCA transplants but there is a trend towards researching 
and developing methods for extracorporeal VCA perfu-
sion and preservation. Two groups have made notable 
advancements in the field of VCA preservation.

In 2016, Kueckelhaus et al. developed a mobile 
system to perfuse porcine limbs. Their system used a 
peristaltic pump to deliver cool, oxygenated Perfadex 
solution into a porcine forelimb for 12 hours while taking 
measurements such as pressure, temperature, and blood 
gas analysis for oxygen concentrations. Even though 
their perfused limbs had a significant amount of weight 
gain compared to limbs stored in static cold storage, they 
were able to electrically stimulate their perfused limbs 
for longer periods of time. Histological analysis of the 
perfused limbs did not show hypoxic damage to the cells 
in contrast to cold storage limbs [70]. More recently, they 
compared their perfusion system to static cold storage by 
replanting the limb onto the donor pig after 12 hours of 
perfusion or 4 hours of cold storage. After replantation, 
they monitored the pigs for 7 days. They found that the 
control animals (limbs preserved with cold storage) had 
higher levels of potassium and myoglobin in their blood, 
which suggests muscular tissue damage. They also found 
that the expression of hypoxia-inducible factor-1 alpha 
and beta (HIF-1α and HIF-1β) in the perfused limbs were 
comparable to fresh muscle tissue, which suggests the 
limbs were adequately oxygenated. One of the four pigs 

both the hepatic arterial and portal venous systems [66]. 
The group eliminated red blood cell constituents, bacte-
rial endotoxins and viruses to obtain bovine hemoglobin 
product and mixed it with other perfusion fluid constit-
uents such as heparin, dextrose, and human albumin. 
The perfusate was delivered at controlled pressure and 
37 °C for 6 hours and the results compared to a control 
(red blood cells). The perfusion parameters remained 
similar in both the experimental and control groups and 
histologically demonstrated viability to the same extent. 
The oxygen consumption was increased because of the 
physiological and rheological properties of Hemopure. 
However, at the same time, because of its right shifted 
oxygen dissociation curve, Hemopure gives up more 
oxygen. Thus, within an environment free from recipient 
immune mediated injury, organs replenish their energy 
stores and attenuate IRI. The optimum temperature and 
so the optimum perfusate for liver perfusion still remains 
the main focus of research in the field [66].

Lungs
Viability and functional assessment, which are criti-

cal tools provided only by normothermic perfusion have 
been the focus of the lung perfusion systems. Steen et al. 
used normothermic ex vivo perfusion combined with cold 
storage to assess lungs before transplantation. Donated 
lungs that failed conventional criteria for transplantation 
were first cooled for 3 hours and then transferred to an 
ex vivo perfusion unit where their viability and function 
were tested [67,75]. The lungs were then stored in cold 
storage for 8 hours [67,75]. The preservation and assess-
ment of lungs from non-heart-beating donors for 6 hours 
has also been achieved. Extended preservation times and 
the possibility of functional assessments have motivated 
researchers to investigate organ treatment during pres-
ervation in order to expand the organ pool. Keshavjee 
and colleagues were able to suppress inflammation for 
superior post-transplant lung function in porcine lungs 
with adenoviral vector gene delivery and normothermic 
perfusion [76].

Lung preservation times need to be sufficiently 
long for the organ treatment to be effective. Since the 
common lung normothermic perfusion times are still 
too short for organ treatment methods to take effect, dif-
ferent approaches are being investigated to extend lung 
perfusion times even further. O’Neill et al. developed a 
normothermic perfusion platform by combining ex vivo 
lung perfusion (EVLP) with cross circulation in a clini-
cally relevant swine model [77]. Cross circulation, where 
a healthy individual supports and augments the organ 
function of a critically ill patient, has already been de-
veloped for some reversible illness in humans. These in-
vestigators examined two different groups of swine lungs 
preserved by, either cold storage (18 hours) or EVLP (4 
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organs as well as improving techniques for non-invasive 
viability measurements which correlate with post-trans-
plantation survival. In a few examples, current research 
suggests preservation times of 24 hours and longer might 
be clinically feasible. Realizing that potential would 
radically transform the transplantation field by not only 
increasing the number of available organs, but by also 
enabling clinicians time to “treat” the transplants to re-
duce rejection.
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