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Abstract: Human activity recognition (HAR) based on the wearable device has attracted more atten-
tion from researchers with sensor technology development in recent years. However, personalized
HAR requires high accuracy of recognition, while maintaining the model’s generalization capability
is a major challenge in this field. This paper designed a compact wireless wearable sensor node,
which combines an air pressure sensor and inertial measurement unit (IMU) to provide multi-modal
information for HAR model training. To solve personalized recognition of user activities, we pro-
pose a new transfer learning algorithm, which is a joint probability domain adaptive method with
improved pseudo-labels (IPL-JPDA). This method adds the improved pseudo-label strategy to the
JPDA algorithm to avoid cumulative errors due to inaccurate initial pseudo-labels. In order to verify
our equipment and method, we use the newly designed sensor node to collect seven daily activities
of 7 subjects. Nine different HAR models are trained by traditional machine learning and transfer
learning methods. The experimental results show that the multi-modal data improve the accuracy of
the HAR system. The IPL-JPDA algorithm proposed in this paper has the best performance among
five HAR models, and the average recognition accuracy of different subjects is 93.2%.

Keywords: human activity recognition (HAR); wearable device; air pressure sensor; inertial mea-
surement unit (IMU); transfer learning

1. Introduction

Human activity recognition (HAR) is an important research field in the world [1]. It has
a broad range of application scenarios in industrial automation [2], sports [3], medical [4],
security [5], smart city [6], and smart home [7]. At the same time, HAR system plays an
essential role in human-centered applications, such as health detection [8], driver behavior
monitoring [9], gait detection [10], fall detection [11], and other personalized services.
However, the HAR system trained through the generalized data set often does not reach
the desired accuracy, especially when applied to new users [12]. Therefore, how to improve
the accuracy of the HAR system in increasingly complex application scenarios that enabling
the model to adapt to specific users and enhancing the personalization of the model has
great significance. HAR system recognizes human activity in the real environment by
learning useful information from raw sensor data or images containing human activity [13],
which falls into two categories: Sensor-based HAR [14] and vision-based HAR [15,16].
Considering the users’ privacy problem and real-time performance of measurement, this
study focuses on the sensor-based HAR. Recently, with the development of wearable sensor
technology, the sensor’s size is getting smaller, and the sensor’s portability is getting higher.
Therefore, HAR system based on wearable sensors has attracted the attention of many
researchers [10].

Wearable sensors’ perception system usually includes the accelerometer module,
gyroscope module, and magnetic module [17]. Compared with the perception system
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of HAR based on vision systems such as RGB camera [18], depth camera [19], and laser
sensor [20], wearable sensor not only has the advantages of low cost, high efficiency, and
easy portability but also avoids the invasion of users’ privacy and the limitation of the
vision system in space. Electromyogram (EMG) is increasingly used in wearable devices for
activity recognition in recent years [21,22]. As the most commonly used method to detect
muscle activity, EMG signals are usually collected by needle electrodes and patch electrodes,
both of which are perception devices close to the skin [23]. However, these two acquisition
methods are affected not only by the interference of electrical noise but also by sweat.
It is noteworthy that the change in muscle strength is usually accompanied by muscle
deformation. Therefore, using an external airbag and air pressure sensor to detect muscle
deformation can obtain muscle movement information for posture recognition [24,25].
Moreover, the system based on air pressure has the characteristics of safety and flexibility,
which is widely used in human interaction systems [26,27]. Yang et al. [28] has proved
that the HAR system’s accuracy will be improved when muscle motion data is added to
motion information such as attitude angle and acceleration. In our study, we developed a
compact wearable system that incorporates an inertial measurement unit (IMU) module
and air pressure module. This system is more comfortable to wear and is insensitive to
the wearing position due to the integrated design. It provides more dimensional data
without increasing sensor node and provides a good database for the transfer learning in
the HAR system.

HAR is performed through conventional machine learning methods or deep learning
methods after the sensor collects the original data [29,30]. The conventional machine
learning method recognizes activity relying on a shallow learning algorithm containing
one or two nonlinear mapping layers. The HAR system based on machine learning algo-
rithms usually requires data preprocessing, including segmentation, feature extraction,
and selection. Preprocessed data is used to train the classifier based on the conventional
machine learning algorithm [31]. The accuracy of classification largely depends on the
effect of feature extraction and selection [32]. In the study of [33], He et al. proposed
a high-precision HAR system based on discrete cosine transform (DCT), principal com-
ponent analysis (PCA), and support vector machine (SVM). Cheng et al. [34] used SVM
model, hidden Markov model (HMM), and artificial neural network (ANN) to train the
classifier and proved that these three methods had achieved acceptable performance. Gao
et al. [35] proposed the Naive Bayes (NB) classifier based on multi-sensor fusion for activ-
ity recognition. Tao et al. [36] used rank-preserving discriminant analysis to reduce the
acceleration data’s dimensionality and used the K-Nearest Neighbor (KNN) model for
action classification. In the study of [37], the SVM model trained multi-sensor fusion is
proposed for HAR by Liu et al. However, all the methods mentioned above are based on
the assumption that training and test data follows same distribution. Whereas, due to the
difference between people, this assumption is hardly guaranteed in real HAR applications.
If the training data (source domain) and the test data (target domain) come from different
feature distributions (different people), the above-mentioned conventional methods cannot
satisfy HAR accuracy.

With the rapid development of deep learning, more and more researchers try to use
deep learning methods and reinforcement learning to solve sensor-based HAR problems
and achieved good performance [38,39]. Compared with conventional machine learning
methods, deep learning is an end-to-end learning method based on a multi-layered network,
automatically starting from the original raw data without feature extraction to activity
recognition [40]. Deep learning can also find complex structures and is adept at processing
high-dimensional data [41]. Although deep learning has advantages over conventional
HAR methods, the performance is still not satisfactory when it uses a small amount of data
to solve HAR problems.

Conventional machine learning and deep learning obey the same distribution on
the training data and test data, and they need enough labeled data to train the model.
Different users will significantly affect sensor data distribution due to differences between
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individuals and sensors’ wear locations. For example, when different people perform
the same activity, their action-angle and speed will be different due to physical differ-
ences [42]. If a user-specific HAR model trains for every user, a large amount of user’s
labeled data needs to be collected. Obtaining these labeled data and training exclusive
models is time-consuming and expensive. The ideal HAR system is that the classification
capabilities learned in the generalized data set are used to identify new user’s activities.
The conventional machine learning and deep learning method are difficult to achieve the
ideal HAR system, which has strong generalization ability even the newly coming samples
have different distributions with the training data. At the same time, it should be noted
that this kind of HAR system could be realized by transfer learning. Therefore, in order to
solve the problems mentioned above, which uses a small amount of user data to obtain
a high-precision recognition model, this paper applies transfer learning to establish an
accurate and generalized HAR model.

Transfer learning may effectively avoid the abovementioned disadvantages of con-
ventional machine learning and deep learning. In transfer learning, training data, and test
data may obey different distributions, and the model can be obtained without sufficient
data annotation. This provides a basis for establishing a model with good generalization
capabilities. Transfer learning is widely used in image classification [42], emotion recogni-
tion [43], brain–computer interface [44,45]. In HAR, we define the generalized data set as
the source domain and the new users’ data sets as the target domain. In this situation, the
distribution of the source domain and the target domain is different, but the two domains’
learning task is the same. This belongs to domain adaptation that is the subcategory of
transfer learning.

In domain adaptation, researchers use various methods to align the data distribution of
two different domains. The discrimination between the distribution of the source domain
and the target domain reaches the minimum in the feature space [46,47]. Finally, the
classifier trained from the source domain based on a large number of labeled data adapts to
the limited or unlabeled target domain, thereby classifying the target domain. According
to Yang’s study, domain adaptation is mainly divided into three categories, which are
feature-based domain adaptation, sample-based domain adaptation, and model-based
domain adaptation [46]. The most popular method among them is feature-based domain
adaptation. The feature-based method minimizes the difference of distribution between
the source and target domains, which align the two domains’ distribution to learn shared
features. Maximum mean discrepancy (MMD) is a commonly used measurement method
for distribution difference [45], which performs distribution matching by minimizing the
MMD distance between the source domain and the target domain. In the study of [48],
Long et al. extended MMD to multi-kernel MMD, aligning multiple fields’ joint distribution.
Sun et al. [49] proposed the CORAL method to align the source and target domains’ mean
and covariance. Zhang et al. [50] proposed a discriminative joint probability adaptive
algorithm based on the discriminative joint probability MMD method, which improved
the migration and discrimination in the process of feature transformation.

It is time-consuming to obtain new users’ labeled data, and the ideal HAR system
does not require new users to provide labeled data. Therefore, domain adaptation can
also be divided into supervised domain adaptation and unsupervised domain adaptation
according to whether the target domain has labeled data [46]. In the unsupervised domain
adaptation, pseudo-labels are usually used to overcome the impact of missing labeled
samples in the target domain. However, inaccurate pseudo-labels can accumulate errors in
transfer learning and even lead to negative transfer [51]. Therefore, this paper proposes
a joint probability domain adaptive method with improved pseudo-labels (IPL-JPDA).
This method can avoid the accuracy decreasing caused by inaccurate pseudo-labels by
combining improved pseudo-labeling strategy and discriminative joint probability MMD
method [50].

In this study, unsupervised domain adaptation is applied to the HAR system based
on wearable sensors. This system does not require new users’ labeled data and directly
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transfers the HAR model trained on the generalized data set. The main contributions of
this study are described as follows:

1. In this paper, a compact wireless wearable sensor node is designed, which combines
an IMU module and an air pressure module.

2. This study proposes a brand-new domain adaption method called IPL-JPDA, which
combining improved pseudo-labeling strategy and discriminative joint probability
MMD method. This model can avoid reducing accuracy due to inaccurate initial
pseudo-labels.

3. This study uses a newly designed sensor node to collect activity data for seven users.
These data are used to train the HAR system based on transfer learning and the HAR
system based on machine learning. At last, the performance of different HAR systems
is compared.

The rest of this paper is organized as follows: Section 2 introduces the structure of
wearable sensors. Section 3 introduces the IPL-JPDA algorithm. Section 4 Experiment setup,
and collects the sensor’s data. In Section 5, the results of the experiment are presented and
analyzed. Finally, the conclusions are drawn in Section 6.

2. The Wearable Device
2.1. Hardware of Sensor Node

Based on the previous work [52,53], we designed a wireless wearable system that
incorporates the IMU module and air pressure module. The system includes the sensor
node, central node, and a host computer. The sensor node adopts an integrated design
containing the IMU module and air pressure module, and the compact sensor node’s
sampling frequency is 20 Hz. When the sensor node collects data, it continuously sends
the data to the central node through the Radio Frequency Network (RFN). After the central
node receives and stores the data, it sends all the data through the serial port to the host
computer that is responsible for storing all the original data. The wireless wearable sensor
system has the advantage of small size, lightweight, low cost, and easy to wear. Figure 1
shows the data transmission of the wireless wearable system.
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Figure 1. The structure of the wireless wearable system.

The compact sensor node contains control module, sensor module and power supply
module. Figure 2 shows the 3D model of the compact sensor node. The control module
controls the working process, data acquisition, and data transmission. The control module’s
core in the compact sensor node is the nRF24LE1 chip made by Nordic Semiconductor
Company, Norway. It has the advantages of low cost, low power consumption, and high
performance. The chip is embedded with a 2.4 GHz low-power wireless transceiver core,
and the highest air data rate is 2 Mbps via RFN. The control module communicates with
the IMU module through the serial port to obtain the Euler angle or nine-axis data, and
data transmission rate is 50 Hz. The control module collects the voltage values of the air
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pressure sensors through the AD converter. Finally, the collected data is sent to the central
node through the RFN.
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module (nRF24LE1 chip), 6: Air pressure module (XGZP6847), 7: PVC shell.

The sensor module is responsible for sensing and measuring data, including the IMU
module and the air pressure module. The IMU module uses the Attitude and Heading
Reference System (AHRS) GY-953. It can measure nine-axis inertial data, including three-
axis gyroscopes, three-axis accelerometers, and three-axis magnetometer, and the full-scale
ranges are ±2000 dps, ±2 g, and ±4915 µT respectively. The built-in chip in the IMU
module can fuse the original nine-axis inertial data to obtain Euler angle data with a
measurement accuracy of 2◦. The air pressure module adopts the XGZP6847 air pressure
sensor produced by CFsensor Co., Ltd., China. The air pressure sensor’s measurement
range is from 0 kPa to 40 kPa, and the voltage output range is from 0.5 V to 4.5 V. The
relationship between air pressure and voltage is a = (b− 0.5) × 10, where a is the air
pressure in kPa, and b is the voltage in V. The rubber tube is used to connect the air pressure
sensor with the polyvinyl chloride (PVC) airbag. The air pressure sensor can convert the
air pressure into the corresponding voltage and calculate the airbag’s pressure through the
corresponding electrical signal. The power module is composed of a rechargeable 600 mAh
lithium battery weighted 8 g and a low dropout regulator (LDO) TPS7333Q. It provides a
stable voltage of 3.3 V considering that the working voltage of the nRF24LE1 chip, IMU
module, and air pressure module is 3.3 V.

Figure 3 shows the physical map of the compact sensor node. The size of this node
is 50 mm × 50 mm, and the airbag size is 25 mm × 40 mm × 10 mm. The sensor node’s
height has reached 27 mm without airbag height because the battery’s position and the air
pressure sensor’s position has not been optimized in this prototype. The sensor node is
connected to a non-elastic band through the Velcro stuck on the PVC shell. When using
this node, it is necessary to fix the node to the left thigh by a non-elastic band to ensure
that the airbag is close to the rectus femoris muscle. Figure 4 shows the different scenarios
of wearing a compact sensor node. When the brain commands limb movement, muscles
contract to produce muscle strength, and muscle contraction increases cross-sectional area.
When the muscles squeeze the airbag, the airbag volume becomes smaller while its internal
pressure increases [24]. The air pressure change can be converted into the voltage change
through the air pressure module. Therefore, the muscle movement data is collected by the
air pressure sensor. This device does not require directly attached to the skin, such as EMG,
which increases this wearable device’s convenience and practicality. Meanwhile, the device
uses a low-cost control module and sensor module.
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2.2. Characterization of Sensor Node

The compact sensor node combines the GY-953 IMU and XGZP6847 air pressure
sensor. The characteristics of the IMU and air pressure sensor have been respectively
illustrated above. Through the following load experiment results of the air pressure device,
the device’s characteristics are explained.

To explore the characteristics of the air pressure sensing device, this experiment input
different loads to obtain the air pressure device’s characteristics. As shown in Figure 5, the
load experiment platform comprises a base, a carrier, a load plate, and guide rails. The
compact sensor node is placed on the carrier, and the load plate’s weight changes the load
experiment input.
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The load experiment explores the device’s static characteristics by continuously in-
creasing the static load, which explores the relationship between the device’s input and
output when the input load is a constant signal and does not change with time. The
equipment’s dynamic characteristics are explored by suddenly add a constant load on the
device, which the relationship between the input and output of the device when the input
is a time-varying signal.

In the static experiment of the air pressure sensing device, the experiment starts
from without load and adds 100 g static load each time. The relationship between the
air pressure device’s input and output is recorded in Figure 6. The experimental results
show that the air pressure sensing device’s output increases linearly with the increase of
the static load, and the coefficient of determination of linear fitting is 0.998. The linearity
and sensitivity of the air pressure sensing device are 1.08% and 1.68%, respectively. The
experimental results prove that the air pressure sensing device has high-grade perfor-
mance on the static characteristics, and the measurement accuracy satisfied the following
research requirements.
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In the dynamic experiment of the air pressure sensing device, a constant load, step
signal, is suddenly added to the device at 1 s. The device’s response under different step
input signals are recorded, and the results are shown in Figure 7. The experimental results
show that the device’s measured value does not fluctuate greatly when the step input is
a small constant load, such as Load 300 and Load 600. The overshoot of the air pressure
device is 7.39% and 12.71%, respectively. When the step input is a large constant load,
such as Load 900, Load 1200, and Load 1500, the air pressure device’s overshoot is 19.17%,
16.83%, and 14.83%, respectively. The measured values of the device show the wave peak
and trough. The airbag’s elastic force will exert a reaction force on the constant load when
the load touches the airbag. When the airbag’s reaction force reaches the maximum, the
peak value is measured, and the direction of load movement changes from downward
to upward. The load is weightless when the load moves upward after the peak value.
Therefore, the measured value of the device will decrease sharply.

The measured value of the device reaches a stable state in 0.5 s in different step input
loads. In the small load case, the sensor’s measured value reaches a stable state in 0.25 s.
Considering the device is used to measure the pressure produced by the muscle squeezing
the airbag, there are few step input of small load case and no step input of large load case.
Therefore, the dynamic characteristics of the air pressure sensing device also meet the
following research requirements.
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3. The Method of IPL-JPDA

In the HAR system based on transfer learning, the activity recognition knowledge is
learned from the source domain dataset with the activity label. The learned knowledge is
transferred to the target domain dataset without the activity label so that the activity of the
target domain is recognized. Therefore, we assume that the feature space and label space
of source domain and target domain are the same. There are ns labeled samples in the
source domain Ds, recorded as {XS, YS} = {(xs,i, ys,i)}ns

i=1. There are nt unlabeled samples
in the target domain Dt, recorded as Xt =

{
xt,j

}nt
j=1. x ∈ Rd×1 is the feature vector, and

y ∈ {1, · · · , C} is its label in the C-class classification problem. The domain adaptation
(DA) method attempts to find a mapping h. The source domain and target domain are
mapped to the same subspace, so that the classifier trained on h(xs) can achieve good
classification effect on h(xt). For example, a linear map h(x) = ATx for the source and the
target domains, where A ∈ Rd×p, p < d. In this study, all the source domain and target
domain data are collected by the compact sensor node.

3.1. Improved Pseudo-Labels

The improved pseudo-labels method also belongs to unsupervised domain adaptation.
It uses supervised locality preserving projection (SLPP) [54] to learn the projection matrix
P. The source domain and target domain are mapped to the same subspace, so the same
class samples were projected to the subspace, which closed to each other regardless of that
they originally came from the source domain or the target domain.

In the generation of improved pseudo-labels, we use only the source domain to obtain
projection matrix P at the beginning and then assign pseudo labels to the target domain.
We update the projection matrix P with the labeled source domain and the pseudo-labeled
target domain, and the IPL is generated from the projection matrix P.

In the pseudo-labels, we use nearest class prototype (NCP) [55] and structured pre-
diction (SP) [56] to label target domain. In the following sections, we present and analyze
each component of the proposed method.

3.1.1. Dimensionality Reduction and Alignment

The dimension reduction method learns the transformed feature by minimizing the
reconstruction error of the input data. For simplicity and generality, we will choose princi-
pal component analysis (PCA) for data reconstruction [44]. X = {xs

1, . . . , xs
ns , xt

1, . . . , xt
nt} ∈

Rd×n represents the input data matrix, and X is after normalization, where n = ns + nt.X ∈
Rk×n and k ≤ d is the dimensionality of the feature space after applying PCA. In this study,
d = 226 and we set k = 128. PCA is to reduce the high dimensional data by linear feature
transformation. Each feature vector in X is xi.
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The lower-dimensional feature space χ learned by PCA. We use the SLPP to learn
a domain invariant yet discriminative subspace Z from χ. In order to promote the class
alignment of two domains, we use SLPP to achieve domain alignment [54]. The goal of
SLPP is to learn a projection matrix P by minimizing the following cost function.

min
p ∑

i,j

∣∣∣∣∣∣PTxi − PTxj

∣∣∣|22 Sij (1)

where P ∈ Rk×m and m ≤ k is the dimensionality of the learned space. Since we have used
PCA to reduce the dimension, in order to avoid further information loss, we set m = k.
xi is the i-th column of the labeled data matrix xi. Sij, which is the element of a similarity
matrix S ∈ Rn×n, is determined as follows:

Sij =

{
1, yi = yj
0, yi 6= yj

. (2)

The same class samples were projected to the subspace, which closed to each other
regardless of that they originally came from the source domain or the target domain.
Similarity matrix S is a simplification of MMD metrics [57,58]. When we improve the
invariance of domains, we retain the domain differentiation. The objective function can be
rewritten as [54,57]:

max
P

tr(PTXlDXlTP)

tr(PT(X lLXlT
+I)P)

(3)

where L = D− P is the laplacian matrix, D is a diagonal matrix with Dii = ∑j Sij. Xl

is a collection of ns labeled source data and nt pseudo-labeled target data. tr(PTP) is a
regularization term. The maximize problem (3) is equivalent to the following generalized
eigenvalue problem:

XlDXlT p= λ(XlLXlT
+I)p (4)

solving the problem gives the optimal solution P = [p1, . . . , pm] where p1, . . . , pm is the
eigenvector corresponding to the maximum m eigenvalue.

3.1.2. The Generation of Pseudo Label

Two methods are used to label the target domain in subspace. The one is the nearest
class prototypes (NCP) [55]. The one is structured prediction (SP) [56]. Unlabeled target
samples can be labeled in the learned subspace Z where the projections of source and target
samples are computed by:

zs = PTxs (5)

zt = PTxt. (6)

At the NCP method, the centroid of each class in the subspace is calculated, which is
called source class prototypes [55]. The class prototype for class y ∈ Y is defined as the
mean vector of the projected source samples with label y, which can be computed by:

zs
y =

∑ns
i=1 zs

i δ(y, ys
i )

∑ns
i=1 δ(y, ys

i )
(7)

where δ(y, ys
i ) = 1 if y = ys

i and 0 otherwise. Therefore, the probability that the target
domain sample xt belongs to category y is

p1(y|xt) =
exp(−

∣∣∣∣∣∣zt − zs
y

∣∣∣∣∣∣)
∑C

y=1 exp(−
∣∣∣∣∣∣zt − zs

y

∣∣∣∣∣∣) . (8)
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The second method is structured prediction (SP). The target domain samples are
clustered into class C by K-means [56]. The cluster centers are initialized as the source
domain prototype calculated by (7). The cluster center of category y is zt

y. In this method,
the probability that sample xt belongs to category y is as follows:

p2(y|xt) =
exp(−

∣∣∣∣∣∣zt − zt
y

∣∣∣∣∣∣)
∑
|Y|
y=1 exp(−

∣∣∣∣∣∣zt − zt
y

∣∣∣∣∣∣) . (9)

Thus, the pseudo label can be given by the following formula:

p(y|xt) = max
{

p1(y
∣∣xt), p2(y

∣∣xt)
}

(10)

ŷt = argmax
y∈Y

p(y|xt). (11)

3.2. Joint Probability Domain Adaptation

Due to the difference between the source domain and the target domain, it is generally
assumed that their probabilities distributions are not equal. The derivation of TCA, JDA
and BDA algorithms are based on the inequality of the marginal probabilities P(Xs) 6=
P(Xt) or the conditional probabilities P(Ys|Xs) 6= P(Yt|Xt) . However, the JPDA algorithm
derives from the inequality assumption of joint probabilities P(Xs, Ys) 6= P(Xt, Yt). Because
JPDA directly considers the difference of joint probability distribution, the performance
of JPDA is better than the traditional DA method, which JPDA can improve the between-
domain transferability and the between-class discrimination. The JPDA algorithm is briefly
introduced. For details, please refer to [50].

Let the source domain one-hot coding label matrix be Ys = [ys,1; · · · ; ys,ns ], and
the predicted target domain one-hot coding label matrix be Ŷt = [ŷt,1; · · · ; ŷt,nt ]. Where
ys,i ∈ R1×C and ŷt,i ∈ R1×C. Define

Fs = [Ys(:, 1) ∗ (C− 1), . . . , Ys(:, C) ∗ (C− 1)] (12)

F̂t = [Ŷt(:, 1 : C)ĉ 6=1, . . . , Ŷt(:, 1 : C)ĉ 6=C] (13)

where Ys(:, C) denotes the c-th column of Ys, Ys(:, C) ∗ (C− 1) repeats Ys(:, C). C−1 times
to form a matrix in Rns×(C−1), and Ŷt(:, 1 : C)ĉ 6=1 is formed by the 1st to the c-th (except the
1st) columns of Yt. Clearly, Fs ∈ Rns×(C(C−1)) and F̂t ∈ Rnt×(C(C−1)). Fs is fixed, and Ft is
constructed from the pseudo labels, which are updated iteratively.

Therefore, the objective function of JPDA can be written as follows:

min
A

∣∣∣∣∣∣∣∣ATXsNs − ATXtNt

∣∣∣∣|2F − µ

∣∣∣∣∣∣∣∣ATXs Ms − ATXt Mt

∣∣∣∣|2F + λ

∣∣∣∣∣∣∣∣A∣∣∣∣|2F
s.t.ATXHXT A = I

(14)

where µ > 0 is a trade-off parameter and λ is a regularization parameter. We simply set
µ = 0.1 and λ = 0.1 by cross-validation. Ns, Nt, Ms and Mt are defined as:

Ns =
Ys

ns
, Nt =

Ŷt

nt
(15)

Ms =
Fs

ns
, Mt =

F̂t

nt
(16)

where H = I − 1n is the centering matrix, in which n = ns + nt and 1n ∈ Rn×n is a matrix
with all elements being 1

n .
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Let X = [Xs, Xt], then we reach the Lagrange function of Equation (14)

J = tr
(

AT
(

X(Rmin − µRmax)XT + λI
)

A
)
+ tr

(
η
(

I − ATXHXT A
))

(17)

where

Rmin =

[
NsNs

T −NsNT
t

−NtNs
T NtNT

t

]
(18)

Rmax =

[
Ms Ms

T −Ms MT
t

−Mt Ms
T Mt MT

t

]
. (19)

Rmax has dimensionality n× n, which does not change with the number of classes. By
setting the derivative ∇AJ = 0, (17) becomes a generalized eigen-decomposition problem:

(X(Rmin − µRmax)XT + λI)A = ηXHXT A. (20)

A is then formed by the p trailing eigen-vectors. A classifier can then be trained on
ATXs and applied to ATXt.

3.3. The Proposed Method IPL-JPDA

In this part, we combine JPDA with improved pseudo-labels based on SP and NCP to
construct an improved algorithm IPL-JPDA. Before starting the JPDA loop, the selective
pseudo-labeling is used to provide the optimized pseudo-labels to avoid JPDA’s cumulative
error. The pseudocode of IPL-JPDA for classification is summarized in Algorithm 1.

Algorithm 1: Joint Probability Distribution Adaptation with improved pseudo-labels (IPL-JPDA)

Input:
XSand Xt, source and target domain feature matrices;
Ys, source domain one-hot coding label matrix;
p, subspace dimensionality in JPDA;
µ, trade-off parameter;
λ, regularization parameter;
T, number of iterations;
k, dimension of PCA;
m, dimension of SLPP subspace;

Output:
Ŷt, estimated target domain labels.

for n = 1, . . . , T do
if n == 1

Dimensionality reduction by PCA.
Learn the projection P0 using only source data Ds.
Assign pseudo labels Ŷ0 for all target data using (11).
Leaning P using Ds and D̂t, where D̂t = {Xt, Ŷ0}.
Assign and update pseudo labels Ŷ1 for all target data using (11).

else
Construct the joint probability matrix Rmin and Rmax by (18) and (19).
Solve the generalized eigen-decomposition problem in (20) and select. the p trailing

eigenvectors to construct the projection matrix A.
Train a classifier f on

(
ATXs, YS

)
and apply it to ATXt to obtain Ŷt.

end

4. Design of HAR Experiment

This study includes experiment A and experiment B. In experiment A, the HAR models
trained with and without air pressure sensors’ data are compared, verifying whether the
additional air pressure sensor can increase the HAR system’s accuracy. Experiment B
compares the HAR models based on transfer learning and conventional machine learning
and verifies whether the proposed transfer learning method performs better when applied
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to HAR systems. This section introduces four parts: Data collection, data preprocessing,
HAR model training, and evaluation.

4.1. Experimental Data Collection

There are seven subjects in this experiment, of which six are males and one female.
The subjects were between 20 and 28 years old, with a height between 160 cm and 180 cm
and weight between 55 kg and 75 kg. Table 1 shows the height, weight, and gender of the
seven participants. All subjects wore a compact sensor node and performed seven activities
in their way without external intervention. Table 2 shows these different activities and
labels. The compact sensor node’s sampling frequency is 20 Hz. The raw data includes one-
dimensional air pressure signal, three-dimensional acceleration signals, three-dimensional
gyroscope signals, and three-dimensional Euler angle signals. Seven different activities
were averagely collected in seven subjects. Figure 8 shows the number of sample segments
in each class for each subject. The total number of sample segments was about 1900, and
each segment contains 40 samples with 50% overlap rate, which the samples’ quantity
exceeds the Ref. [1].

Table 1. The height, weight, and gender of the seven participants.

Subjects Height (cm) Weight (kg) Gender

No.1 180 72 Male
No.2 172 75 Male
No.3 165 63 Male
No.4 177 66 Male
No.5 170 69 Male
No.6 160 55 Female
No.7 176 75 Male

Table 2. The different activities and labels.

Activity Label

Sit SIT
Stand STAND

Lie LIE
Walk WALK
Run RUN

Go upstairs UP
Go downstairs DOWN
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4.2. Data Preprocessing

In the HAR model based on machine learning, the sensor’s raw data needs to be
preprocessed, including segmentation, feature extraction, and selection before training the
classifier [31]. The accuracy of the HAR model largely depends on data preprocessing [32].
Sliding window technology is applied in sensor data segmentation. The sliding window
divides the collected data into several small segments. The overlap among the segments
divided by the sliding window is allowed. This study’s sliding window size is 2 s and
has a 50% overlap rate, in which the sliding window moves backward one second each
time and covers 40 sample points. Feature extraction is performed on the segmented data.
In this experiment, 19 features were extracted according to [59,60]. Table 3 lists the types
of features.

Table 3. The list of used features.

Type Features

Air Pressure Data
Mean, Median, Maximum, Minimum, Rang, Variance, Standard

deviation, Root mean square, Interquartile range, Number of
mean crossing, Kurtosis, Skewness, DC Component of FFT

IMU Data

Mean, Median, Maximum, Minimum, Rang, Variance, Standard
deviation, Root mean square, Interquartile range, Number of zero

crossing, Number of mean crossing, DC Component of FFT,
Entropy, Energy, Kurtosis, Skewness, Sum of wavelet coefficients,

Sum of squares of wavelet coefficients, Wavelet energy

4.3. Experimental Groups

The random validation test was conducted before the experimental grouping to ensure
the rationality of the experimental group. In the random validation test, seven subjects
were divided into two groups for this test. Two subjects’ data were selected as the test
target group, and the test source’s data are randomly composed of one to five subjects’
data in the test source group. In order to verify the personalized recognition performance
of transfer learning for new users, a small amount of unlabeled data is used for activity
recognition in the test target group in the HAR system. Therefore, only ten valid sample
segments are taken for each movement in the subject of the test target group, and there are
70 valid sample segments in total for each subject. The IPL-JPDA is used as the algorithm
of the HAR system in the random validation test. In the combination of source domains
with different numbers of people, five calculate samples from each kind of source domain
are randomly selected for calculation. The calculated samples’ mean value and standard
deviation of the accuracy are analyzed. Figure 9 shows the statistical results of the mean
value and standard deviation of the accuracy.

As shown in Figure 9, the mean values of the two subjects’ recognition accuracy are
more than 90% in the test source group randomly composed of four people. Subject T1
has the best performance with 91.8% mean recognition accuracy. In the test source group
randomly composed of three people, Subject T1 has 90.9% mean recognition accuracy, and
Subject T2 has 89.4% average recognition accuracy. Both of the two subjects’ standard
deviation of the recognition accuracy is decreased with the increase of people in the test
source group. It shows that with the increase of people that constitute the test source group,
the transfer learning algorithm’s recognition accuracy, based on IPL-JPDA, is more stable.

Therefore, the experiment grouping randomly selected three people as the source
group and four people as the target group after comprehensively considering the recogni-
tion accuracy and test subjects’ diversity. In the source group, the total number of sample
segments is about 5700. In the target group, only 70 valid sample segments in total for
each subject.
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4.4. Training HAR Model

The training HAR model is divided into training based on transfer learning and
conventional machine learning. In transfer learning, the source domain consists of all
the subject’s data in the source group, and the member’s data in the target group are
respectively used in the target domain of the model. Three domain adaptation methods,
JDA, BDA, and IPL-JPDA, are used for transfer learning. The KNN model is used to obtain
the pseudo-label of the target domain in domain adaptation.

In machine learning, there are two types of classifiers in this study, which the classi-
fier trained with other sources (Classifier-OS) and the classifier trained with self sources
(Classifier-SS). In this study, KNN, SVM, and Decision Tree (DT) are used as classifiers.
Taking the KNN model as an example, the KNN-OS uses all subjects’ data in the source
group to train the KNN classifier, and this classifier recognizes each member’s activities in
the target group. The KNN-SS uses the subject’s data in the target group to train the KNN
classifier and recognize corresponding participants’ activities. This study also adopted a
10-fold cross-validation method in classifier training. The model performance in Section 5
is the average values of 10 validation models.

In order to verify whether an air pressure sensor can improve the HAR model’s
accuracy in Experiment A, all the HAR model mentioned above are trained with and
without air pressure data.

4.5. Evaluation

The evaluation result of activity recognition is an essential part of the HAR sys-
tem. This article evaluates the above HAR model from accuracy, recall, precision, and
F-measure [1,61]. We assume that TF, FN, FP, and TN represent the true positive, false
negative, false positive, and true negative in binary classification. The four evaluation
indicators’ formula is as follows:

Acurracy =
TP + TN

TP + TN + FP + FN
(21)

Recall =
TP

TP + FN
(22)

Precision =
TP

TP + FP
(23)
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F−measure =
2 ∗ recall ∗ precision

recall + precision
. (24)

5. Experimental Results

This research includes air pressure verification experiment (Experiment A) and the
comparison of HAR models (Experiment B). This section analyzes the results of experiment
A and experiment B respectively.

5.1. Experiment A—Air Pressure Verification Experiment

The classifier in experiment A uses the features with and without air pressure data
to train the HAR model. The model whose training sample contains air pressure data
is named Model-CP, and the model whose training sample deducts air pressure data is
named Model-DP. In the target group, the four participants were called Subject A, Subject
B, Subject C, and Subject D, respectively. Table 4 shows the mean accuracy value of activity
recognition of four subjects in nine different HAR models.

Table 4. The mean accuracy value of activity recognition in different human activity recognition
(HAR) models.

HAR Model Accuracy-CP (%) Accuracy-DP (%)

KNN-OS 79.64 77.86
KNN-SS 89.64 87.14
SVM-OS 77.14 65.36
SVM-SS 87.50 83.93
DTO-S 87.50 85.36
DT-SS 91.79 88.57
JDA 86.79 81.43
BDA 91.43 86.07

IPL-JPDA 93.21 85.36

As shown in Table 4, the bold number represents the evaluation indicator’s maximum
value. We can clearly find that the performance of the HAR model trained with air pressure
data is better than the model trained without air pressure data on the mean accuracy
value. At the conventional machine learning classifier, the HAR model’s mean recognition
accuracy using air pressure data is at least 1.78% higher than the HAR model that is not
applicable to air pressure data. Meanwhile, the HAR model’s mean recognition accuracy
based on the transfer learning algorithm is at least 5.36% higher when the HAR model uses
air pressure data. Therefore, we can conclude that the air pressure data can improve the
HAR model’s recognition accuracy.

In the target group, the experiment result of four participants performed similarly in
experiment A. Hence, we take Subject A as a sample for result analysis. Figure 10 shows
the evaluation indicators of Subject A in different HAR models. The other subjects’ data
can be found in Appendix A (Figures A1–A3).

Figure 10 shows the classification results of 18 different HAR models. The value of
four evaluation indicators has been improved when the HAR model using air pressure data.
Meanwhile, the air pressure data greatly impacts the HAR model based on the transfer
learning algorithm. This kind of HAR model that does not use air pressure data has a 10%
performance loss on Subject A’s accuracy index. It also significantly decreases in the other
evaluation indicators. This is because that the air pressure data provides a broader data
dimension for the source domain and the target domain. The source domain and the target
domain can be better aligned, and this kind of HAR model can be better to identify the
target domain’s activities.
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On the other hand, the classifier based on conventional machine learning is not
sensitive to the lack of air pressure data. Taking KNN as an example, as a lazy learning
classifier, it mainly relies on the limited nearby samples around to determine its category.
Therefore, the lack of air pressure data in the training sample has a small impact on the
KNN model, but there is also a slight drop in recognition performance.

The F-measure indicator is the harmonic mean of precision and recall. The HAR
model based on transfer learning performs better than the HAR model based on machine
learning in the F-measure indicator. This shows that the former model has a higher quality
than the latter model. Besides, the precision value is greater than the recall value in Subject
A’s HAR model based on transfer learning. This indicated that this type of model is more
conservative, and the model only makes predictions for its very confident samples. Among
the remaining subjects’ evaluation indicators, the precision value of the HAR model based
on transfer learning is almost all greater than the recall value, while the HAR model based
on machine learning has no such feature.

5.2. Experiment B—The Comparison of HAR Models

Experiment A proves that the necessity and significance of air pressure data for HAR
model. Therefore, Experiment B only compares models trained with air pressure data.
Table 5 shows the mean value of recognition evaluation indicators of four subjects in nine
different HAR models.

Table 5. The mean value of recognition evaluation indicators in different HAR models.

HAR Model Accuracy (%) F-Measure (%) Precision (%) Recall (%)

KNN-OS 79.64 88.61 85.84 91.88
KNN-SS 89.64 94.52 94.41 94.76
SVM-OS 77.14 87.09 97.04 79.23
SVM-SS 87.50 93.27 94.39 92.61
DT-OS 87.50 93.14 94.61 92.16
DT-SS 91.79 95.71 95.19 96.26
JDA 86.79 92.89 92.71 93.07
BDA 91.43 95.51 95.90 95.18

IPL-JPDA 93.21 96.48 97.04 95.97

As shown in Table 5, the bold number represents the evaluation indicator’s maximum
value. The mean values of all the four subjects’ recognition evaluation indicators are more
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than 90% in the HAR model of DT-SS, BDA, and IPL-JPDA. The IPL-JPDA model has the
best performance in this evaluation indicator from the mean recognition accuracy, reaching
93.21%. The mean recognition accuracy of the IPL-JPDA algorithm is 1.42% higher than
DT-OS, which has the best performance in traditional classifiers in this study.

In traditional classifiers, KNN and SVM have similar performance in four average
evaluation indicators, and DT has the best performance. The DT can better deal with
the irrelevant feature data and understand the data’s inherent meaning compared with
the HAR model based on SVM and KNN. We can also notice that in the three traditional
classifiers, the performance of Classifier-SS is better than that of Classifier-OS, and the
average recognition accuracy of Classifier-SS is 10% higher than Classifier-OS. This is
because Classifier-SS is a classifier trained based on its data. However, Classifier-SS
has a fatal disadvantage, which belongs to supervised machine learning. Training the
HAR model of Classifier-SS needs labeled data but collecting these labeled data is time-
consuming and expensive. Meanwhile, due to the small amount of data in the target
group’s dataset, which the training samples of Classifier-SS are insufficient, the Classifier-
SS model’s average standard deviation is much higher than that of the Classifier-OS model.

The IPL-JPDA model has the best performance among the HAR models based on
transfer learning. The mean recognition accuracy of IPL-JPDA is 6.2% higher than JDA
and 1.78% higher than BDA. Because IPL-JPDA is based on the joint probability discrim-
inant MMD metric, this method improves the traditional MMD metric by minimizing
the difference in the joint probability distribution of the same category in different do-
mains and maximizing the difference between different categories. Both JDA and BDA
are based on marginal distribution and conditional distribution MMD. Not only that, IPL-
JPDA improves the initial pseudo-label and avoids the negative migration caused by the
accumulation of errors caused by the inaccurate initial pseudo-label.

In Appendix B, we also compare the convergence steps of the different transfer
learning algorithms.

Figure 11 presents four indicators of six unsupervised HAR models among the subjects
in target group. The HAR model based on IPL-JPDA and BDA exceeded 90% in all the four
subjects’ evaluation indicators, and almost all the indicators were better than KNN-OS and
SVM-OS. The performance of JDA is slightly worse than the above two transfer learning
algorithms but better than KNN-OS and SVM-OS in most cases. Simultaneously, the
recognition accuracy of the three transfer learning algorithms in different subjects is stable.
KNN-OS and SVM-OS model has poor recognition performance, and the recognition
accuracy of all subjects in the target group is less than 85%. DT-OS is the best traditional
classifier, and its performance on both Subject B and Subject C exceeds 90%. In Subject B,
DT-OS has the best recognition accuracy, which is 2.86% higher than IPL-JPDA. However,
the recognition accuracy of DT-OS in Subject D is only 74.29%, which is 17.14% less than
that of JDA. This shows that DT-OS has weak generalization ability.

Considering the stability and accuracy of recognition, we can conclude that the HAR
model’s performance based on transfer learning is better than that based on the traditional
classifier. HAR model based on transfer learning has a strong generalization capability,
and the recognition accuracy will not degrade on particular samples. However, under the
influence of negative transfer on the classical BDA and JDA algorithms, activity recognition
performance is worse than the DT-OS model in some subject samples.

Tables 6 and 7 are the confusion matrices of the subjects in the target group. In the
traditional classifiers, the performance of three unsupervised HAR models is similar. KNN-
OS has been used as a sample for comparative analysis with the IPL-JPDA algorithm.
In the static activity (SIT, STAND, LIE), the transfer learning algorithm of IPL-JPDA has
100% recognition accuracy. The generalization ability of KNN-OS is low. When the KNN
model trained by the source group is used to recognize the target group, some LIE is
wrongly recognized as STAND. These two models have strong recognition ability to RUN
in dynamic activities (WALK, RUN, UP, DOWN). However, the recognition ability of
WALK, RUN, and UP are weak. The results show that the JPDA model’s recognition
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accuracy is more than 75% in these three activities, and that of the KNN-OS model is
only more than 45%. Therefore, it can be concluded that the har algorithm based on
transfer learning can better identify the action, which is easy to be confused, and it has an
accurate recognition rate on the action, which is easy to distinguish compared with the
traditional classifier.
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Table 6. The confusion matrix for 4 subjects obtained with K-Nearest Neighbor (KNN)-OS.

Predicted Classes

True
Classes

SIT STAND LIE WALK RUN UP DOWN
SIT 100% 0 0 0 0 0 0

STAND 0 100% 0 0 0 0 0
LIE 20% 0 80% 0 0 0 0

WALK 0 0 0 65% 25% 7.5% 2.5%
RUN 0 0 0 0 100% 0 0
UP 0 0 0 17.5% 0 67.5% 15%

DOWN 0 2.5% 0 22.5% 0 30% 45%
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Table 7. The confusion matrix for 4 subjects obtained with the joint probability domain adaptive
method with improved pseudo-labels (IPL-JPDA).

Predicted Classes

True
Classes

SIT STAND LIE WALK RUN UP DOWN
SIT 100% 0 0 0 0 0 0

STAND 0 100% 0 0 0 0 0
LIE 0 0 100% 0 0 0 0

WALK 0 0 0 87.5% 2.5% 2.5% 7.5%
RUN 0 0 0 0 97.5% 0 2.5%
UP 0 0 0 12.5% 0 75% 12.5%

DOWN 0 0 0 0 0 7.5% 92.5%

6. Conclusions and Future Research

We propose a compact wireless wearable sensor node that combines an air pressure
sensor and an IMU sensor. We train the HAR model using features with and without air
pressure data. The results show that the HAR model trained with air pressure data is better
in recognition performance than the model trained without air pressure data. We also
found that the performance of the HAR model based on transfer learning is more sensitive
to the lack of air pressure data. In the comparison experiment of nine HAR models, the
IPL-JPDA algorithm proposed in this paper has the best recognition performance, and the
average recognition accuracy of different subjects is 93.2%. The traditional BDA and JDA
transfer learning algorithms have negative transfer in the process, affecting the recognition
accuracy. However, compared with the traditional classifier, the BDA and JDA models did
not show performance degradation due to the model‘s weak generalization.

There are many possible expansion studies based on existing work in the future.
Firstly, the structure of the sensor can be optimized. The integrated design, the battery,
air pressure sensor, and base of the sensor are integrated. The sensor node thickness is
reduced to less than 10 mm, which makes it more convenient to wear. Secondly, we have
completed the HAR of seven daily activities in this study. However, there are still many
meaningful activities to research and identification, such as fall detection [11] and motion
transformations [32]. Finally, several nodes can be used to identify more complex motion,
such as gait detection [10] and step distance measurement [62].
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There is no comparison between IPL-JPDA and JPDA in the above text because the
compact sensor node provides good original data. The recognition performance of IPL-
JPDA is similar to JPDA in the above experiment.

We statistic the convergence steps of the four transfer learning algorithms. Each
algorithm runs the abovementioned experiments, and there are eight groups of data in
total. The number of convergence steps is the average of eight experiments. Table A1
shows the statistics for the number of iterations. We find that IPL-JPDA has the least
number of convergence iterations, followed by JDA, BDA, and JPDA has the most. JDA
is the summation of marginal probability and conditional probability MMD, and BDA is
weighed marginal probability and conditional probability MMD. Consequently, BDA has
more convergence iterations than JDA because the complexity of BDA is higher than JDA.
JPDA is based on the joint probability discriminant MMD metric, which minimizing the
difference in the joint probability distribution of the same category in different domains
and maximizing the difference between different categories. Considering the complexity
of JPDA, it has more convergence iterations than BDA and JDA algorithms. As the most
complex algorithm in this study, the IPL-JPDA algorithm has the minimum number of
iterations for convergence because the IPL-JPDA algorithm provides a more accurate label
for the first cycle.

Table A1. The average convergence steps.

Algorithm Steps

IPL-JPDA 2.125
JPDA 4.50
BDA 3.00
JDA 2.625

References
1. Attal, F.; Mohammed, S.; Dedabrishvili, M.; Chamroukhi, F.; Oukhellou, L.; Amirat, Y. Physical human activity recognition using

wearable sensors. Sensors 2015, 15, 31314–31338. [CrossRef]

http://doi.org/10.3390/s151229858


Sensors 2021, 21, 885 22 of 24

2. Maurtua, I.; Kirisci, P.T.; Stiefmeier, T.; Sbodio, M.L.; Witt, H. A wearable computing prototype for supporting training activities
in automative production. In Proceedings of the 4th International Forum on Applied Wearable Computing, Tel Aviv, Israel, 12–13
March 2007; pp. 1–12.

3. Ladha, C.; Hammerla, N.Y.; Olivier, P. ClimbAX: Skill assessment for climbing enthusiasts. In Proceedings of the ACM
International Joint Conference on Pervasive and Ubiquitous Computing, Zurich, Switzerland, 8–12 September 2013; pp. 235–244.

4. Delmastro, F.; Di Martino, F.; Dolciotti, C. Cognitive Training and Stress Detection in MCI Frail Older People Through Wearable
Sensors and Machine Learning. IEEE Access 2020, 8, 65573–65590. [CrossRef]

5. Li, Y.; Zhai, Q.; Ding, S.; Yang, F.; Li, G.; Zheng, Y.F. Efficient health-related abnormal behavior detection with visual and inertial
sensor integration. Pattern Anal. Appl. 2019, 22, 601–614. [CrossRef]

6. Cardone, G.; Cirri, A.; Corradi, A.; Foschini, L.; Montanari, R. Activity recognition for smart city scenarios: Google play services
vs. MoST facilities. In Proceedings of the 2014 IEEE Symposium on Computers and Communications (ISCC), Funchal, Portugal,
23–26 June 2014; pp. 1–6.

7. Sanchez-Comas, A.; Synnes, K.; Hallberg, J. Hardware for recognition of human activities: A review of smart home and AAL
related technologies. Sensors 2020, 20, 4227. [CrossRef] [PubMed]

8. Scully, C.G.; Lee, J.; Meyer, J.; Gorbach, A.M.; Granquist-Fraser, D.; Mendelson, Y.; Chon, K.H. Physiological parameter monitoring
from optical recordings with a mobile phone. IEEE Trans. Biomed. Eng. 2011, 59, 303–306. [CrossRef] [PubMed]

9. Cui, Y.; Xu, Y.; Wu, D. EEG-based driver drowsiness estimation using feature weighted episodic training. IEEE Trans. Neural Syst.
Rehabil. Eng. 2019, 27, 2263–2273.

10. Tao, W.; Liu, T.; Zheng, R.; Feng, H. Gait analysis using wearable sensors. Sensors 2012, 12, 2255–2283. [CrossRef]
11. Mubashir, M.; Shao, L.; Seed, L. A survey on fall detection: Principles and approaches. Neurocomputing 2013, 100, 144–152.

[CrossRef]
12. Cook, D.; Feuz, K.D.; Krishnan, N.C. Transfer learning for activity recognition: A survey. Knowl. Inf. Syst. 2013, 36, 537–556.

[CrossRef]
13. Cook, D.J.; Krishnan, N.C.; Rashidi, P. Activity Discovery and Activity Recognition: A New Partnership. IEEE Trans. Syst. Man

Cybern. Part B Cybern. A Publ. IEEE Syst. Man Cybern. Soc. 2013, 43, 820–828.
14. Shoaib, M.; Bosch, S.; Incel, O.D.; Scholten, J.; Havinga, P.J.M. A survey of online activity recognition using mobile phones. Sensors

2015, 15, 2059–2085. [CrossRef] [PubMed]
15. Chaquet, J.M.; Carmona, E.J.; Fernández-Caballero, A. A survey of video datasets for human action and activity recognition.

Comput. Vis. Image Underst. 2013, 117, 633–659. [CrossRef]
16. Del Rose, M.S.; Wagner, C.C. Survey on classifying human actions through visual sensors. Artif. Intell. Rev. 2012, 37, 301–311.

[CrossRef]
17. Varkey, J.P.; Pompili, D.; Walls, T.A. Human motion recognition using a wireless sensor-based wearable system. Pers. Ubiquitous

Comput. 2012, 16, 897–910.
18. Aggarwal, J.K.; Xia, L. Human activity recognition from 3d data: A review. Pattern Recognit. Lett. 2014, 48, 70–80. [CrossRef]
19. Ben-Arie, J.; Wang, Z.; Pandit, P.; Rajaram, S. Human activity recognition using multidimensional indexing. IEEE Trans. Pattern

Anal. Mach. Intell. 2002, 24, 1091–1104.
20. Yan, Q.; Huang, J.; Xiong, C.; Yang, Z.; Yang, Z. Data-driven human-robot coordination based walking state monitoring with

cane-type robot. IEEE Access 2018, 6, 8896–8908. [CrossRef]
21. Ke, A.; Huang, J.; Chen, L.; Gao, Z.; He, J. An Ultra-Sensitive Modular Hybrid EMG–FMG Sensor with Floating Electrodes.

Sensors 2020, 20, 4775. [CrossRef]
22. Krausz, N.E.; Hu, B.H.; Hargrove, L.J. Subject-and Environment-Based Sensor Variability for Wearable Lower-Limb Assistive

Devices. Sensors 2019, 19, 4887. [CrossRef]
23. Ren, C.H.; Fu, T.D.; Zhou, M.L.; Hu, X.M. Low-cost 3-D Positioning System Based on SEMG and MIMU. IEEE Trans. Instrum.

Meas. 2018, 67, 876–884.
24. Jung, P.G.; Lim, G.; Kim, S.; Kong, K. A Wearable Gesture Recognition Device for Detecting Muscular Activities Based on

Air-Pressure Sensors. IEEE Trans. Ind. Inform. 2017, 11, 485–494. [CrossRef]
25. Kong, K.; Tomizuka, M. A Gait Monitoring System Based on Air Pressure Sensors Embedded in a Shoe. IEEE/ASME Trans.

Mechatron. 2009, 14, 358–370. [CrossRef]
26. Cao, Y.; Huang, J.; Ru, H.; Chen, W.; Xiong, C. A Visual Servo Based Predictive Control with Echo State Gaussian Process for Soft

Bending Actuator. IEEE/ASME Trans. Mechatron. 2020. [CrossRef]
27. Huang, J.; Cao, Y.; Wang, Y.W. Adaptive proxy-based sliding mode control for a class of second-order nonlinear systems and its

application to pneumatic muscle actuators. ISA Trans. 2020. [CrossRef]
28. Yang, D.; Huang, J.; Tu, X.; Ding, G.; Shen, T.; Xiao, X. A wearable activity recognition device using air-pressure and IMU sensors.

IEEE Access 2018, 7, 6611–6621. [CrossRef]
29. Lara, O.D.; Labrador, M.A. A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutor. 2012, 15,

1192–1209.
30. Wang, J.; Chen, Y.; Hao, S.; Peng, X.; Hu, L. Deep learning for sensor-based activity recognition: A survey. Pattern Recognit. Lett.

2019, 119, 3–11. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.2985301
http://doi.org/10.1007/s10044-017-0660-5
http://doi.org/10.3390/s20154227
http://www.ncbi.nlm.nih.gov/pubmed/32751345
http://doi.org/10.1109/TBME.2011.2163157
http://www.ncbi.nlm.nih.gov/pubmed/21803676
http://doi.org/10.3390/s120202255
http://doi.org/10.1016/j.neucom.2011.09.037
http://doi.org/10.1007/s10115-013-0665-3
http://doi.org/10.3390/s150102059
http://www.ncbi.nlm.nih.gov/pubmed/25608213
http://doi.org/10.1016/j.cviu.2013.01.013
http://doi.org/10.1007/s10462-011-9232-z
http://doi.org/10.1016/j.patrec.2014.04.011
http://doi.org/10.1109/ACCESS.2018.2806563
http://doi.org/10.3390/s20174775
http://doi.org/10.3390/s19224887
http://doi.org/10.1109/TII.2015.2405413
http://doi.org/10.1109/TMECH.2008.2008803
http://doi.org/10.1109/TMECH.2020.3042774
http://doi.org/10.1016/j.isatra.2020.09.009
http://doi.org/10.1109/ACCESS.2018.2890004
http://doi.org/10.1016/j.patrec.2018.02.010


Sensors 2021, 21, 885 23 of 24

31. Chen, Y.; Xue, Y. A deep learning approach to human activity recognition based on single accelerometer. In Proceedings of the
2015 IEEE International Conference on Systems, Man, and Cybernetics, Kowloon, China, 9–12 October 2015; pp. 1488–1492.

32. Chen, Y.; Shen, C. Performance analysis of smartphone-sensor behavior for human activity recognition. IEEE Access 2017, 5,
3095–3110. [CrossRef]

33. He, Z.; Jin, L. Activity recognition from acceleration data based on discrete consine transform and SVM. In Proceedings of the2009
IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009; pp. 5041–5044.

34. Cheng, L.; Guan, Y.; Zhu, K.; Li, Y. Recognition of human activities using machine learning methods with wearable sensors. In
Proceedings of the 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV,
USA, 9–11 June 2017; pp. 1–7.

35. Gao, L.; Bourke, A.K.; Nelson, J. A system for activity recognition using multi-sensor fusion. In Proceedings of the 2011 Annual
International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September
2011; pp. 7869–7872.

36. Tao, D.; Jin, L.; Wang, Y.; Li, X. Rank preserving discriminant analysis for human behavior recognition on wireless sensor
networks. IEEE Trans. Ind. Inform. 2013, 10, 813–823. [CrossRef]

37. Liu, S.; Gao, R.X.; John, D.; Staudenmayer, J.; Freedson, P.S. SVM-based multi-sensor fusion for free-living physical activity
assessment. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society,
Boston, MA, USA, 30 August–3 September 2011; pp. 3188–3191.

38. Singh, D.; Merdivan, E.; Psychoula, I.; Kropf, J.; Hanke, S.; Geist, M.; Holzinger, A. Human activity recognition using recurrent
neural networks. In International Cross-Domain Conference for Machine Learning and Knowledge Extraction; Springer: Cham,
Switzerland, 2017; pp. 267–274.

39. Bhat, G.; Deb, R.; Chaurasia, V.V.; Shill, H.; Ogras, U.Y. Online human activity recognition using low-power wearable devices. In
Proceedings of the 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Diego, CA, USA, 5–8
November 2018; pp. 1–8.

40. Zhang, M.; Sawchuk, A.A. A Feature Selection-Based Framework for Human Activity Recognition Using Wearable Multimodal Sensors;
BodyNets: Beijing, China, 2011; pp. 92–98.

41. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
42. Gopalan, R.; Li, R.; Chellappa, R. Domain adaptation for object recognition: An unsupervised approach. In Proceedings of the

2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 999–1006.
43. Ng, H.W.; Nguyen, V.D.; Vonikakis, V.; Winkler, S. Deep learning for emotion recognition on small datasets using transfer learning.

In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, New York, NY, USA, 9–13 November
2015; pp. 443–449.

44. Wu, D. Online and offline domain adaptation for reducing BCI calibration effort. IEEE Trans. Hum. Mach. Syst. 2016, 47, 550–563.
[CrossRef]

45. Wu, D.; Lawhern, V.J.; Hairston, W.D.; Lance, B.J. Switching EEG headsets made easy: Reducing offline calibration effort using
active weighted adaptation regularization. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 1125–1137. [CrossRef] [PubMed]

46. Pan S, J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [CrossRef]
47. Wang, M.; Deng, W. Deep visual domain adaptation: A survey. Neurocomputing 2018, 312, 135–153. [CrossRef]
48. Long, M.; Zhu, H.; Wang, J.; Jordan, M.I. Deep transfer learning with joint adaptation networks. In Proceedings of the International

Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 2208–2217.
49. Sun, B.; Feng, J.; Saenko, K. Return of Frustratingly Easy Domain Adaptation. In Proceedings of the Thirtieth AAAI Conference

on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; pp. 2058–2065.
50. Zhang, W.; Wu, D. Discriminative joint probability maximum mean discrepancy (DJP-MMD) for domain adaptation. In

Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8.
51. Long, M.; Wang, J.; Ding, G.; Sun, J.; Yu, P.S. Transfer joint matching for unsupervised domain adaptation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1410–1417.
52. Huang, J.; Xu, W.; Mohammed, S.; Shu, Z. Posture estimation and human support using wearable sensors and walking-aid robot.

Robot. Auton. Syst. 2015, 73, 24–43. [CrossRef]
53. Huang, J.; Yu, X.; Wang, Y.; Xiao, W. An integrated wireless wearable sensor system for posture recognition and indoor localization.

Sensors 2016, 16, 1825. [CrossRef]
54. He, X.; Niyogi, P. Locality preserving projections. Adv. Neural Inf. Process. Syst. 2003, 16, 153–160.
55. Wang, Q.; Bu, P.; Breckon, T.P. Unifying unsupervised domain adaptation and zero-shot visual recognition. In Proceedings of the

2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8.
56. Wang, Q.; Chen, K. Zero-shot visual recognition via bidirectional latent embedding. Int. J. Comput. Vis. 2017, 124, 356–383.

[CrossRef]
57. Long, M.; Wang, J.; Ding, G.; Sun, J.; Yu, P.S. Transfer feature learning with joint distribution adaptation. In Proceedings of the

IEEE International Conference on Computer Vision, Sydney, NSW, Australia, 1–8 December 2013; pp. 2200–2207.
58. Zhang, J.; Li, W.; Ogunbona, P. Joint geometrical and statistical alignment for visual domain adaptation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1859–1867.

http://doi.org/10.1109/ACCESS.2017.2676168
http://doi.org/10.1109/TII.2013.2255061
http://doi.org/10.1038/nature14539
http://doi.org/10.1109/THMS.2016.2608931
http://doi.org/10.1109/TNSRE.2016.2544108
http://www.ncbi.nlm.nih.gov/pubmed/27008670
http://doi.org/10.1109/TKDE.2009.191
http://doi.org/10.1016/j.neucom.2018.05.083
http://doi.org/10.1016/j.robot.2014.11.013
http://doi.org/10.3390/s16111825
http://doi.org/10.1007/s11263-017-1027-5


Sensors 2021, 21, 885 24 of 24

59. Chen, Z.; Zhang, L.; Cao, Z.; Guo, J. Distilling the knowledge from handcrafted features for human activity recognition. IEEE
Trans. Ind. Inform. 2018, 14, 4334–4342. [CrossRef]

60. Samuel, O.W.; Geng, Y.; Li, X.; Li, G. Towards efficient decoding of multiple classes of motor imagery limb movements based on
EEG spectral and time domain descriptors. J. Med. Syst. 2017, 41, 194. [CrossRef]

61. Wu, J.; Sun, L.; Jafari, R. A wearable system for recognizing American sign language in real-time using IMU and surface EMG
sensors. IEEE J. Biomed. Health Inform. 2016, 20, 1281–1290. [CrossRef] [PubMed]

62. Kang, I.; Kunapuli, P.; Hsu, H.; Young, A.J. Electromyography (EMG) signal contributions in speed and slope estimation using
robotic exoskeletons. In Proceedings of the 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto,
ON, Canada, 24–28 June 2019; pp. 548–553.

http://doi.org/10.1109/TII.2018.2789925
http://doi.org/10.1007/s10916-017-0843-z
http://doi.org/10.1109/JBHI.2016.2598302
http://www.ncbi.nlm.nih.gov/pubmed/27576269

	Introduction 
	The Wearable Device 
	Hardware of Sensor Node 
	Characterization of Sensor Node 

	The Method of IPL-JPDA 
	Improved Pseudo-Labels 
	Dimensionality Reduction and Alignment 
	The Generation of Pseudo Label 

	Joint Probability Domain Adaptation 
	The Proposed Method IPL-JPDA 

	Design of HAR Experiment 
	Experimental Data Collection 
	Data Preprocessing 
	Experimental Groups 
	Training HAR Model 
	Evaluation 

	Experimental Results 
	Experiment A—Air Pressure Verification Experiment 
	Experiment B—The Comparison of HAR Models 

	Conclusions and Future Research 
	The Evaluation Indicators of Subjects in Different HAR Models 
	The Comparison of Convergence Steps of Transfer Learning Algorithms 
	References

