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Abstract

Immunoglobulin (Ig) A is the most abundant antibody isotype present at

mucosal surfaces and the second most abundant in human serum. In addition

to preventing pathogen entry at mucosal surfaces, IgA can control and

eradicate bacterial and viral infections through a variety of antibody-mediated

innate effector cell mechanisms. The role of mucosal IgA in infection (e.g.

neutralization) and in inflammatory homeostasis (e.g. allergy and

autoimmunity) has been extensively investigated; by contrast, serum IgA is

comparatively understudied. IgA binding to fragment crystallizable alpha

receptor plays a dual role in the activation and inhibition of innate effector cell

functions. Mounting evidence suggests that serum IgA induces potent effector

functions against various bacterial and some viral infections including Neisseria

meningitidis and rotavirus. Furthermore, in the era of immunotherapy, serum

IgA provides an interesting alternative to classical IgG monoclonal antibodies

to treat cancer and infectious pathogens. Here we discuss the role of serum IgA

in infectious diseases with reference to bacterial and viral infections and the

potential for IgA as a monoclonal antibody therapy.

INTRODUCTION

Immunoglobulins are involved in the control and

clearance of infectious diseases including viral (e.g. HIV),

bacterial (e.g. Mycobacterium tuberculosis, N. meningitidis)

and parasitic pathogens (e.g. Plasmodium spp.,

Leishmania spp.) via various different mechanisms such

as neutralization, and fragment crystallizable (Fc) effector

functions including antibody-dependent cellular

cytotoxicity (ADCC), phagocytosis and complement

activation.1 Immunoglobulin (Ig) G has been extensively

studied and this is highlighted by the dozens of IgG

monoclonal antibodies (mAbs) approved for therapeutic

use by the US Food and Drug Administration.2 Recently,

there has been a growing appreciation for other antibody

isotypes including IgA as mAb therapeutics for cancer

treatment and some viral and bacterial pathogens.3–5 IgA

can neutralize invading pathogens and induce a range of

Fc effector functions to control and clear various bacterial

(e.g. N. meningitidis and Streptococcus pneumoniae) and

viral infections (e.g. rotavirus and HIV).4,6–10

Furthermore, IgA maintains homeostasis of inflammation

at mucosal surfaces and in the blood and tissues.11

Mucosal IgA is important for first-line defense from

invading pathogens at mucosal surfaces. However, the

role of serum IgA and associated Fc functions in

infectious disease is incomplete and understudied. Here

we will discuss serum IgA Fc effector functions in the

context of control and elimination of invasive pathogens.

IgA STRUCTURE

The five human antibody isotypes (IgG, IgA, IgE, IgD

and IgM) mediate an array of functional activities. IgA is

the most abundant antibody at mucosal surfaces, and the

second most abundant in serum (~15%; 2–3 mg mL�1)
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behind IgG (80%; ~10–20 mg mL�1).12 More IgA is

synthesized per day than all other antibody isotypes

combined (66 mg�1 mL�1 day�1);12 however, rapid

catabolism of serum IgA results in a relatively short half-

life (4–6 days).13 IgA consists of the typical monomeric

antibody structure (see the “Future Directions and

Conclusions” section) with differences in N-linked

glycans and disulfide bridge arrangements that distinguish

it from other antibody isotypes. The fragment antigen-

binding region (Fab) is critical for antigen binding,

neutralization and opsonization; the Fc portion is

essential for initiating innate immune effector functions.

Two heavy and light chains make up IgA, each folded

into various globular domains including four heavy-chain

domains (VH, Ca1, Ca2 and Ca3) and two light-chain

domains (VL and CL; Figure 1).

Two IgA subclasses, IgA1 and IgA2, have been isolated

from humans, gibbons, gorillas and chimpanzees and are

distinguished by the length of the hinge region, numerous

sequence differences in heavy-chain constant regions and

glycosylation patterns (Figure 1).14 However, most other

nonhuman primates and mammals including mice possess

one IgA subclass (IgA2 like), with the exception of

orangutans which only possess IgA1.14 IgA1 adopts a T-

shaped formation because of an elongated hinge region

including a 16-amino acid insertion (Figure 1). IgA2 lacks

this insertion and adopts a protease-resistant closed hinge

formation resulting in its characteristic Y shape (Figure 1).

Currently, only one IgA1 allotype has been identified in

humans and two IgA2 allotypes, namely, IgA2m(1) and

IgA2m(2), which are distinguished by the presence or

absence of disulfide bridges between the heavy and light

chains and different glycosylation patterns,12 with a third

possible allotype also described IgA2n.15 The functional

differences of IgA allotypes are yet to be characterized;

however, it is reasonable to predict that variation in

structure of the IgA2m(1) and IgA2m(2) allotypes would

influence functional characteristics similar to IgG

allotypes.16,17 Glycosylation of IgA1 differs from that of

IgA2 in that three to five O-linked oligosaccharides are

present in the extended hinge region,18 affecting the hinge

structure (Figure 1).18 Furthermore, both IgA subclasses

carry N-linked oligosaccharides making up 6–7%
molecular mass of IgA1 and 8–10% of IgA219 (Figure 1).

Glycosylation patterns of secretory IgA (sIgA) can mediate

antiviral activity.20 Sialic acid on the C-terminal tail

(position 459) of sIgA interacts with hemagglutinin of

influenza A to disrupt cell surface attachment; however, the

impact of serum IgA glycosylation for other Fc functions is

poorly understood.20 It is interesting to speculate why

evolutionarily humans have maintained both IgA1 and

IgA2 subclasses, whereas most other mammals only possess

an IgA2-like subclass. We hypothesize that humans may

have undergone divergent evolution from other mammals

and adapted to the selection pressure on IgA1 by bacterial

pathogens through evolution of IgA2. IgA2 is functionally

important in mucosa, whereas IgA1 may be important for

serum IgA functions (e.g. homeostasis or viral control), as

reflected by differential distribution of IgA1 and IgA2.

However, functional differences between IgA1 and IgA2 are

yet to be fully characterized.

Heterogenous IgA molecular forms occur in humans

consisting of monomeric (mIgA), dimeric (dIgA),

polymeric (pIgA) and sIgA (Figure 1). These molecular

forms, in addition to IgA subclasses, are differentially

distributed throughout bodily compartments.21 In serum,

IgA is primarily mIgA1 (90%) synthesized in the bone

marrow and transported into the blood.21 Conversely, in

most mucosal secretions there is a proportional increase

in IgA2 because of the protease-resistant hinge region. In

addition, mucosal IgA is locally produced as dIgA in

organized gut-associated lymphoid tissues with site-

specific homing of IgA2 plasmablasts.22 dIgA undergoes

transcytosis through epithelial cells via polymeric

immunoglobulin receptor into the mucosal lumen.21

Throughout this process polymeric immunoglobulin

receptor is cleaved, resulting in a complex consisting of

dIgA and secretory component which is released as sIgA

(Figure 1).21 Interestingly, the heterogenous forms of IgA

have various roles in homeostasis and in infection.

Historically, IgA has been considered a

noninflammatory antibody because of the involvement of

sIgA in the downregulation of proinflammatory responses

to pathogens and food antigens by preventing binding to

other Fc receptors, rather than by activating anti-

inflammatory pathways such as described in a later

section. The role of sIgA as a noninflammatory antibody

is highlighted in sIgA-deficient patients in whom an

increased risk of autoimmunity and allergy is observed.23

Extensive research of mucosal secretions supports the role

of sIgA in passive and potentially active immune

protection of newborns within colostrum and breast milk

IgA.24 Furthermore, adult sIgA maintains homeostasis of

microbiota diversity and growth and contributes to

passive immunity from invading pathogens.11 In

comparison, the role of serum IgA (mIgA, dIgA or pIgA)

is relatively understudied.

SERUM IgA AND FaaRI

Recent technological developments have fostered the

study of the serum IgA system in greater detail. It is clear

that IgA is a poor activator of complement as it lacks a

C1q-binding site in the Fc region, although activation via

the alternative and lectin pathway may be possible.25,26

Research over the past two decades shows a dichotomous
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role of serum IgA in inflammation.27,28 On the one hand,

serum IgA can aid in homeostasis and anti-inflammatory

responses and, on the other hand, serum IgA can induce

inflammation.27 Binding of IgA Fc region has been

described for two IgA receptors: Fca/lR (IgA and IgM)

and Fc alpha receptor I (FcaRI).28 Additional IgA

receptors have also been described; however, their

functions are yet to be characterized.28

Human FcaRI (CD89) is constitutively expressed on

cells of myeloid lineage including monocytes, eosinophils,

some macrophages, intestinal dendritic cells, Kupffer cells

and neutrophils, which are the most abundant cells in

blood expressing FcaRI.29 FcaRI has a ligand-binding a
chain mapping to chromosome 19 with the genes for

natural killer cell receptors (KIR) and leukocyte

immunoglobulin-like receptors, unlike IgG (FccR) and IgE

(FceR) Fc receptors which map to chromosome 1.30 FcaRI
shares closer homology with KIR and leukocyte

immunoglobulin-like receptors than other Fc receptors

(e.g. FccR).30 FcaRI orthologs have been identified in

Figure 1. Schematic diagram of immunoglobulin A (IgA) subclasses IgA1 and IgA2, glycosylation patterns and their respective heterogenous

molecular forms. In blood and tissue compartments (a) monomeric IgA (mIgA) and to a lesser extent (b) dimeric IgA (dIgA) [two IgA monomer Fc

portions connected via a joining (J) chain] are present. dIgA is secreted through epithelial cells via the polymeric immunoglobulin receptor (pIgR)

into the mucosal lumen with secretory component (SC) to form (c) secretory IgA (sIgA).
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various other mammals including rats, chimpanzees, cattle,

horses, macaques and swine; however, no known ortholog

has been identified for mice.31–34 Furthermore, in humans

there are no reported cases of low or no FcaRI expression
on myeloid cells, unlike defects reported in FccRI which

correlate with susceptibility to autoimmunity, chronic

inflammation and infection,35 highlighting the potential

importance of FcaRI in homeostasis and inflammation in

humans. However, it is important to note that IgA

deficiencies have been reported in humans, which have

been associated with increased susceptibility to infectious

diseases and autoimmunity.36

The FcaRI a chain has two immunoglobulins-like

extracellular domains, transmembrane region and a short

cytoplasmic tail without any recognized signaling

motifs.37 For signaling to occur FcaRI must associate

with immunoreceptor tyrosine-based activation motif

(ITAM), which can be phosphorylated to initiate signal

transduction. Binding of monomeric serum IgA Ca1 and

Ca2 Fc domains to the membrane distal domain of

FcaRI occurs in a 1:2 stoichiometry (1 IgA:2 FcaRI) as

shown in Figure 2.37 In the presence of ITAM, binding of

IgA–antigen complex to FcaRI initiates signal cascades,

ultimately leading to an inflammatory response

(Figure 2). However, when uncomplexed mIgA associates

with FcaRI, ITAM inhibitory signal cascade is initiated,

resulting in inhibition of cells and associated anti-

inflammatory/homeostatic role (Figure 2).37 Furthermore,

two FcaRI single-nucleotide polymorphisms have been

identified in humans: Ser248/Gly248 and Asp92/Asn92.

Gly248 FcaRI has been associated with increased

proinflammatory potential of serum IgA38 and Asn92

FcaRI has been associated with increased risk of

myocardial infarction.39 Interestingly, sIgA and dIgA bind

poorly to FcaRI because of steric hindrance associated

with the J chain and secretory component; however, dIgA

has been reported to initiate effector functions via FcaRI
against bacteria.37 A recurrent theme in early literature

suggests that serum dIgA and pIgA enhances phagocytosis

compared with mIgA, even with steric hindrance.40,41

This may occur through FcaRI binding of dIgA at

alternative binding sites, increased stability of IgA in vitro

and a greater capacity for antigen binding because of

increased valency and avidity than mIgA (Table 1).37

ANTITUMOR ROLE OF IgA

A small number of research groups have recently focused

on IgA and FcaRI engagement to treat cancer.44 Whereas

most research has focused on IgG in mAb therapy

because of potent antitumor mechanisms including

complement activation and natural killer cell-mediated

ADCC, IgA appears to be potent in the recruitment and

activation of neutrophils via the FcaRI to kill tumors,

providing an attractive target for mAb antitumor

therapy.45 Several neutrophil IgA-mediated antitumor

functions have been described in vitro, such as ADCC,

phagocytosis, immune cell recruitment, release of

cytotoxic molecules and induction of necrosis.44,46

Target-specific IgA mAbs enable formation of an

immunological synapse by bringing neutrophils and

target tumor cells together to enhance killing (Figure 3).

Recently, IgA mAbs targeting tumor cells such as HER2

(mammary carcinoma) and CD20 (B-cell lymphoma)

have shown promising antitumor effects.46 Interestingly,

the use of FcaRI transgenic mouse models has shown

that IgA2 anti-EGFR antibodies can induce tumor cell

killing, most likely mediated by macrophages.3 However,

more in vivo work is needed to dissect the contribution

of FcaRI-expressing effector cells in tumor killing. While

there are several properties of IgA that make it

advantageous as an antitumor mAb, IgG remains the

antibody isotype of choice when it comes to mAb

development as outlined in Table 1 (also reviewed

elsewhere 46). Moreover, there is great debate in the field

as to how effective IgA will be as an mAb therapy

because high concentrations of serum IgA can be

extremely detrimental as observed in the case of IgA

nephropathy.47 Furthermore, technologies available for

the expression and purification of IgA (especially dIgA/

pIgA) are comparatively more complicated than IgG.48

However, modifications to IgA mAb can improve half-life

and stability.49,50 Combinations of IgG and IgA mAbs can

enhance tumor killing and work on “cross-type

antibodies” such as IgGA and tandem antibodies

combines the best of both IgG (complement binding)

and IgA (cytotoxicity/phagocytosis) antitumor effects.51

BACTERIA

Invasive bacterial infections can cause severe disease such as

sepsis and meningitis. Early research from the 1970s

through to the early 2000s highlights the role of serum IgA

in the second (serum) and potentially third line (liver) of

defense from bacteria that enter the blood and tissues.

Killing of various bacterial species including S. pneumoniae,

Bordetella pertussis, Escherichia coli, Staphylococcus aureus

and N. meningitidis was associated with IgA-mediated

intracellular killing via phagocytosis as highlighted in

various vaccine studies (Figure 3).40,41 Johnson et al.41

observed an initial capsule-specific serum pIgA response in

both natural infection (1 month) and immunization (1–
3 months). Janoff et al.40 later reported killing of

S. pneumoniae via phagocytosis using human

polymorphonuclear leukocytes and HL-60s mediated

through binding of capsule-specific serum pIgA to FcaRI.
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Interestingly, phagocytosis of S. pneumoniae in this study

also required complement as shown by inhibition of FcaRI
and CD35/CD11b, where killing was reduced by 50%.

Thus, killing of the S. pneumoniae in the blood involves a

combination of serum pIgA/FcaRI and complement.40

Antibacterial phagocytosis mediated by serum IgA/FcaRI
has been observed against B. pertussis in FcaRI transgenic

mice using IgA-coated B. pertussis with human

polymorphonuclear leukocyte, leading to enhanced bacterial

clearance in the lungs.6 The phagocytic role of serum IgA

in other bacterial species is more controversial, like that of

Neisseria spp., the causative agents of gonorrhea

(N. gonorrhoeae) and meningitis (N. meningitidis).7 Some

studies have reported IgA-opsonized bacteria being

phagocytosed, whereas others fail to observe such a

phenomenon.7,56,57 Under “normal” conditions (not

vaccine studies) serum IgAs often fail to induce

phagocytosis of Neisseria spp. and we now understand that

this is because of secretion of anti-IgA molecules discussed

below (see the “Anti-IgA Mechanisms” section).56

Furthermore, the role of IgA in the third line of defense

was demonstrated in an in vivo study using Kupffer cells of

the liver which naturally express FcaRI. van Egmond

et al.58 observed efficient removal of serum IgA-opsonized

E. coli from portal circulation mediated by interaction

between serum IgA (mIgA, dIgA and pIgA) and FcaRI. It
is evident from existing research that serum IgA and FcaRI
have the potential to initiate phagocytosis of IgA-opsonized

bacteria.

Figure 2. Initiation of immunoglobulin A (IgA)/Fc alpha receptor I (FcaRI) immunoreceptor tyrosine-based activation motif (ITAM) and ITAM

inhibitory (ITAMi) signal cascades and resulting Fc effector functions reviewed by Mkaddem et al.42. (a) IgA–antigen complex crosslinking of FcaRI

initiates phosphorylation of ITAM with Fyn43 followed by generation of (1) multimolecular adapter complex (Cbl, SLP-76, Grb2, CrkL, Shc, Sos,

SHIP) and/or (2) recruitment of Syk and activation of phosphoinositide 3-kinase (PI3K) which phosphorylates Btk and activates protein kinase C

(PKCa). PKCa ultimately leads to activation/inflammatory effector functions and inactivation of SHP-1 via S591 phosphorylation. (b) Uncomplexed

monomeric IgA (mIgA) binding to FcaRI initiates partial phosphorylation of ITAM by Lyn, leading to ITAMi signaling. Lyn also phosphorylates SHP-

1 at Y536, triggering a conformational change which activates SHP-1, leading to inhibition of heterogenous receptors, causing the cell to enter a

resting state and take on homeostatic (anti-inflammatory) functions. Phosphorylated SHP-1 is recruited to the receptor via Syk.43 ADCC, antibody-

dependent cellular cytotoxicity; Fc, fragment crystallizable; PLCc, phospholipase C-gamma.
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Serum IgA can induce additional effector functions such

as ADCC and powerful neutrophil effector functions,

although limited literature describes such processes in

bacterial infection (Figure 3).37 ADCC has been observed

to occur using vaccine-induced sIgA and serum IgA

against various bacterial species including Salmonella

enterica serotype Typhi.59 Interestingly, other structures

such as neutrophil extracellular traps (NETs) may also be

key to IgA/FcaRI role in bacterial infection. NETs are

web-like structures extruded by neutrophils trapping and

killing pathogens.60 NET formation can occur in two

forms: rapid formation within minutes independent of

reactive oxygen species or slow formation over several

hours dependent on generation of reactive oxygen species,

resulting in cell membrane rupture and cell death,

commonly referred to as NETosis.61 Recently, Aleyd

et al.60 observed that S. aureus opsonized with IgA

resulted in NETosis via the FcaRI, compared with non-

IgA-opsonized bacteria which did not. The study of serum

IgA in vaccine settings has highlighted the potential of IgA

Fc effector function in bacterial clearance. However, in

natural infection, as briefly mentioned previously,

regarding Neisseria spp., bacteria can overcome the

antibacterial Fc effector functions of serum IgA.56,62

Anti-IgA mechanisms

Evolution of anti-IgA bacterial mechanisms is a unique

feature of many pathogenic bacteria highlighting the

importance of IgA in the control and clearance of

invasive bacterial diseases including N. meningitidis,

Haemophilus influenzae and group A and B

streptococci. Two such mechanisms include IgA

proteases and IgA-binding proteins (Figure 3).

Interestingly, such anti-IgA mechanisms are yet to be

reported for viruses, although some viruses have

evolved to secrete FccR-blocking proteins.63 This

suggests that IgG-mediated Fc functions may

evolutionarily be more efficient at viral control than

IgA-mediated Fc mechanisms. Furthermore, evolution

of alternative mechanisms, such as B-cell dysfunction in

HIV, ultimately disrupts antibody maturation as a

whole, including the function of IgA.64

IgA proteases

IgA1 proteases are secreted by many bacterial pathogens

including N. meningitidis, H. influenzae and

S. pneumoniae to aid invasion into tissues and potentially

the blood leading to septicemia and bacterial meningitis.

These enzymes cleave the exposed hinge region of IgA1 at

various different sites including specific Pro–Ser or Pro–
Thr peptide bond.62 Furthermore, cleaved IgA1 may

compete for functional antibodies via binding of the

fragment antigen-binding region to antigen preventing

binding of intact antibodies.62 These proteins have arisen

through convergent evolution and are associated with

virulence.65 Closely related strains of these bacteria

lacking IgA1 proteases are nonvirulent.65 Interestingly,

some bacteria including Pseudomonas aeruginosa secrete

Table 1. Antibody properties of IgG1, IgA1, IgA2 and dIgA/pIgA in terms of effector function and viability as therapeutic monoclonal

antibody.12,13,16,49,52–55,81,82

Property IgG1

Serum IgA

IgA1 IgA2 dIgA/pIgA

Half-life ~21 days (FcRn recycling) 5.9 days 4.5 days a

Valency/avidity + + + +++

Expression/purification +++ +/++ +

Neutralizing/opsonization capacity +++ + ++

Neutrophil activation +++ +++ ++

Natural killer cell-mediated ADCC +++ – –

Myeloid cell-mediated ADCC and phagocytosis +++ ++ ++

Anti-inflammatory role + (FccRIIb) +++ (FcaRI) ++ (FcaRI)

Complement activation +++ (all pathways) + (potentially alternative and lectin

pathways)

Therapeutic antibody potential +++ ++

Diseases/conditions of interest Various infectious diseases and some cancers Some cancers, autoimmunity/allergy

and some infectious diseases

-, None; +, Weak; ++, Moderate; +++, Strong. ADCC, antibody-dependent cellular cytotoxicity; FcaRI, Fc alpha receptor I; Ig, immunoglobulin.
aContrasting literature reported.
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broad-spectrum proteases that can cleave IgA1 and IgA2.

Although IgA2 possesses a closed and more protected

hinge region, bacteria such as Clostridium ramosum and

Pasteurella multocida secrete proteases that cleave IgA2m

(1) and IgA2m(2), respectively.66,67

IgA-binding proteins

Another evasion mechanism present in bacteria is IgA-

binding proteins expressed by many strains of group A

and B streptococci. Streptococcus group A possess Arp4

and Sir22 (M peptide family) IgA-binding proteins are

associated with virulence and group B Streptococcus has

an unrelated b protein.68 These proteins interact with the

Fc interdomain region between the Ca2 and Ca3
domains, competing for FcaRI binding, and inhibit IgA

Fc functions in natural infections.68 An IgA-binding

protein has also been identified in pathogenic E. coli

(EsiB) which impairs neutrophil activation via IgA.57

Vaccination and mAb therapy aiming to increase serum

IgA levels may overwhelm bacterial evasion mechanisms

and thus induce effective clearance of bacteria via IgA/

FcaRI activation. However, prolonged elevation of IgA

levels may be detrimental in the long term42 (see the

“The Future of IgA in Infectious Disease mAb Therapy”

section).

VIRUSES

Although research into the role of serum IgA in viral

infections is less comprehensive than bacterial infection,

the potential for serum IgA to mediate protection is

highlighted in rotavirus and HIV infections. In various

rotavirus vaccine trials, serum IgA has been established as

a correlate of protection for vaccine efficacy in a systemic

review of antirotavirus serum IgA titers of Rotarix (RV1)

Figure 3. Serum immunoglobulin A (IgA) effector functions dependent and independent (neutralization) of Fc alpha receptor I (FcaRI) against

bacteria, viruses and tumor cells and IgA countermeasures enabling persistence of infection. Crosslinking of FcaRI with IgA results in FcaRI-

dependent effector functions via immunoreceptor tyrosine-based activation motif (ITAM) signaling [antibody-dependent cellular cytotoxicity

(ADCC), phagocytosis, NETosis and reactive oxygen species (ROS)]. Binding of monomeric IgA (mIgA) to FcaRI leads to ITAM inhibitory and the

resulting effector cell inhibition aiding in persistence of infection/cancer. Release of anti-IgA molecules by bacteria reduces bacterial clearance via

IgA. NET, neutrophil extracellular trap.
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and RotaTeq (RV5) vaccines.69 Patel et al.69 proposed

that serum IgA titers >90 postvaccination showed a

significant increase in efficacy of the vaccines. However, a

study with children from the United States showed that

greater IgA titers (>200) correlated with protection from

natural infection.70 As for the mechanism of protection,

it has been hypothesized that the serum and/or sIgA may

neutralize rotavirus.71 However, work using IgA mAbs

directed against the intermediate capsid protein VP6 of

rotavirus in mice did not neutralize the virus, but

inhibition of viral transcription in epithelial cells was

observed.4 The role of serum IgA Fc functions in

rotavirus protection and clearance is yet to be reported.

HIV

The protective potential of serum IgA has been suggested

in elite controllers (individuals that spontaneously control

HIV-1 viremia) in whom higher titers of HIV-1-specific

serum IgA have been observed compared with HIV-1

progressors.72 In vitro studies have demonstrated that

monoclonal IgA has the capacity to activate antibody

functions against HIV-1 antigens (ADCC and

phagocytosis).10,73 Furthermore, mucosal IgA (sIgA) may

prevent HIV-1 infection via immune exclusion/

opsonization as observed in highly exposed seronegative

individuals and various nonhuman primate vaccine trials

(Figure 3).74

However, the role of serum IgA in HIV-1 infection is

controversial. This was highlighted by the protective

RV144 human HIV-1 vaccine trial (31.2%) in which

HIV-1-specific IgG was associated with ADCC and

protection from HIV-1 infection in vaccinated

individuals.75 However, RV144-induced serum IgA was

associated with reduced ADCC and vaccine efficacy, as a

result of IgA epitope competition with protective HIV-1-

specific IgG for the same binding site on HIV envelope

proteins.52 Interestingly, low titers of HIV-1-specific

antibodies are produced especially during chronic

infection.74 This suggests that the probability of HIV-

specific IgA complexed with HIV-1 binding to FcaRI,

initiating ITAM signaling and associated effector cell

functions, may be very low. Furthermore, uncomplexed

serum mIgA may initiate ITAM inhibitory signaling via

FcaRI, dampening inflammatory cellular effector

functions, thus polarizing the immune response to an

anti-inflammatory response and hindering viral clearance

(Figure 3).

THE FUTURE OF IgA IN INFECTIOUS
DISEASE mAb THERAPY

In the era of mAb therapy, IgA may provide a viable

alternative to IgG mAb for various bacterial and viral

diseases including M. tuberculosis, the causative agent of

tuberculosis. In 2011, FcaRI transgenic mice showed

protection against tuberculosis after being given a novel

human IgA (monomeric IgA1) mAb as part of passive

immunotherapy.5 Balu et al.5 hypothesized that binding

of mIgA complexed with M. tuberculosis to FcaRI-
positive alveolar macrophages and/or neutrophils

activated antibacterial activity of the infected cells. As

knowledge of chimeric IgA mAb design for cancer

therapy increases, researchers can begin tailoring of mAbs

for bacterial clearance such as increasing resistance to

bacterial proteases and IgA-binding proteins and

enhancing activation of potent IgA Fc effector functions.

Limitations of IgA in infectious diseases and mAb

therapy

Although mice models have been extensively used in the

study of serum IgA and mAb therapy, there are several

substantial differences in the IgA systems between

humans and mice, as summarized in Table 2. Although

recombinant FcaRI mice models have been created,

translation of serum IgA research in transgenic mice

infection to human infections should be interpreted

carefully.

IgA autoantibodies have been reported as the mediator

for several diseases including IgA nephropathy (elevated

IgA levels), rheumatoid arthritis, coeliac disease and

Table 2. Characteristics of human and mouse serum IgA systems.

Human Mouse

Isotypes Two (IgA1 and IgA2)21 One21

Major molecular form of serum IgA Monomeric (IgAI)21 Dimeric21

Presence of Fca/lR (CD351) Yes28 Yes76

Presence of FcaRI (CD89) Yes28 No77

Ability to bind bacterial IgA-binding proteins Yes78 No78

Human IgA half-life 4–6 days79 10–14 h80

IgA, immunoglobulin A; FcaRI, Fc alpha receptor I.
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various IgA-associated skin diseases reviewed by Heineke

and van Egmond.44In many of these cases, elevated IgA

levels coincide with increased IgA autoantibodies,

resulting in high levels of inflammation including

excessive activation of neutrophils. This suggests that

prolonged elevation of serum IgA, especially IgA targeting

self-antigens, can have dire consequences. Therefore,

extreme care should be taken when developing IgA mAbs

and a personalized medicine approach may need to be

considered based on basal serum IgA levels and IgA

autoantibody levels to maintain a healthy balance between

inflammation and anti-inflammatory mechanisms.

FUTURE DIRECTIONS AND CONCLUSIONS

Creating a balance between inflammatory response to

clear infection while not inducing an over inflammatory

environment is crucial to effective serum IgA response to

pathogenic infections. However, further research into

FcaRI signaling pathways (ITAM and ITAM inhibitory)

is critical to understand this balance. Uncovering how

these pathways moderate inflammation, downregulate the

overall activation of effector cells and discovering if this

is associated with persistence of infection, will give

researchers insight into the importance of serum IgA in

infection. Furthermore, the role of IgA/FcaRI in

infectious disease appears to vary between pathogens

(bacterial or viral) and between species (e.g. HIV and

rotavirus). Thus, IgA/FcaRI level of activation and/or

inhibition should be characterized independently for each

pathogen to confirm the respective roles of IgA function

for specific infections. Renewed research will provide

valuable insights regarding the therapeutic potential of

serum IgA.
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