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a b s t r a c t 

Steroid resistance represents a major clinical problem in the treatment of severe asthma, and therefore a better 

understanding of its pathogenesis is warranted. Recent studies indicated that histone deacetylase 2 (HDAC2) and 

interleukin 17A (IL-17A) play important roles in severe asthma. HDAC2 activity is reduced in patients with severe 

asthma and smoking-induced asthma, perhaps accounting for the amplified expression of inflammatory genes, 

which is associated with increased acetylation of glucocorticoid receptors. Neutrophilic inflammation contributes 

to severe asthma and may be related to T helper (Th) 17 rather than Th2 cytokines. IL-17A levels are elevated in 

severe asthma and correlate with the presence of neutrophils. Restoring the activity of HDAC2 or targeting the 

Th17 signaling pathway is a potential therapeutic approach to reverse steroid insensitivity. 
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Asthma is one of the most common chronic inflammatory diseases

f the airways, affecting an estimated 300 million individuals world-

ide. It is a serious global health problem affecting all age groups, with

ncreasing prevalence in many developing countries and representing a

ising burden for patients and the community. 1 Although steroids are the

ost effective anti-inflammatory therapy available for asthma, a subset

f asthmatic patients who proceed to develop severe asthma with steroid

esistance, frequent exacerbation, or decreased lung function still ex-

sts. 2 These patients suffer greater morbidity, face a higher risk of death

rom asthma, and impose a larger burden on health resources than other

sthma patients. 1 Steroid resistance represents a major barrier to treat-

ng severe asthma, the mechanisms of which are still poorly understood.

everal molecular mechanisms have now been identified to account for

teroid insensitivity in severe asthma, including genetic susceptibility,

efective glucocorticosteroid receptor (GR) binding and nuclear translo-

ation, increased GR 𝛽 expression, transcription factor activation, abnor-

al histone acetylation, and decreased regulatory T cells. 3 Recent stud-

es have shown that histone deacetylase-2 (HDAC2) and T helper 17

Th17) cells play important roles in steroid-resistant asthma. Although

osinophils are the most characteristic inflammatory cell type present

n mild to moderate asthma, evidence suggests that neutrophils play an

mportant role in patients with severe asthma. 4 Neutrophilic airway in-

ammation appears to be resistant to steroids and may be related to

h17 rather than Th2 cytokines. 5 IL-17A is a proinflammatory cytokine

ainly secreted from Th17 cells and is important for the induction of
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eutrophil recruitment and migration at sites of inflammation. 6 The in-

reased expression of inflammatory genes in inflammatory lung diseases

s regulated by the acetylation of core histones, whereas HDAC2 sup-

resses inflammatory gene expression. 7 An understanding of the roles

f HDAC2 and Th17 cells is now providing important insights into the

echanisms of resistance to steroids in asthma and other inflammatory

iseases such as chronic obstructive pulmonary disease (COPD). These

oncepts are also pointing the way towards the development of novel

herapeutic approaches. 

This review highlights the roles of HDAC2 and IL-17A in steroid-

esistant asthma. We further discuss the novel therapeutic options tar-

eting this resistance. The literature search was carried out only in En-

lish with the following index words: “asthma ”, “neutrophilic inflam-

ation ”, “steroid resistance ”, “histone deacetylase 2 ”, and “Th17 cells ”.

e also reviewed reference lists of the identified articles for relevant

itations. 

eneral characters of histone deacetylases 

Histone deacetylases (HDACs) are divided into two major classes:

lass I (HDAC1–3 and 8) and class II (HDAC4–7, 9, and 10). Class I

DACs are predominantly localized in the nucleus, whereas class II

DACs shuttle into and out of the nucleus in response to intracellu-

ar signaling. HDACs interact with corepressor molecules, which aid

DACs in gene repression and might provide specificity by selecting

enes which are regulated by individual HDACs. 8 In contrast, histone

cetylation is a major modification that increases gene transcription and
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s regulated by histone acetyltransferases (HATs) and HDACs. HATs and

DACs are key enzymes involved in modifying the expression of inflam-

atory genes in airway diseases. 9 The role of other HDACs in inflamma-

ory diseases is far less clear, but the regulation of inflammatory genes

y HDAC2 appears to be of critical importance. 

DAC2 in steroid-resistant asthma 

HDAC2 expression and activity are decreased in alveolar

acrophages and PBMC in patients with severe asthma who are

nown to be resistant to the anti-inflammatory effects of steroids. 10 , 11 

urther studies have demonstrated that HDAC2 activity was decreased

n peripheral blood mononuclear cells (PBMC) from severe asthmatic

atients compared with the level in normal subjects, and the decrease

as correlated with impaired sensitivity to corticosteroid therapy in

itro . 10 , 12 Even more importantly, HDAC2 activity was negatively

ssociated with the expression of inflammatory genes in alveolar

acrophages. 13 A recent study showed that passive smoking impairs

DAC2 function via phosphoinositide-3 kinase (PI3K) signaling activa-

ion, which could contribute to corticosteroid-insensitive inflammation

n children with severe asthma. 14 

The reasons for the reduction in HDAC2 activity are not yet clearly

nown. The recruitment of HDAC2 to activated inflammatory genes is a

ajor mechanism of inflammatory gene repression by corticosteroids. 3 

ctivated glucocorticoid receptor (GR) interacts with coactivator com-

lexes to induce HDACs, particularly HDAC2, to perform transrepres-

ion. Growing evidence shows that a reduction of HDAC2 activity am-

lifies the expression of inflammatory genes and is associated with in-

reased acetylation of GR in severe asthma, as well as in COPD, which

ay be a major mechanism accounting for steroid resistance in these

iseases. 15 S-nitrosylation of HDAC2 on Cys262 and Cys274 has been

eported to affect its chromatin binding capacity and this may contribute

o reduced GR function. 16 

Glucocorticoid receptor 𝛽 (GR 𝛽) may also contribute to steroid insen-

itivity by competing for the transcriptional coactivator molecules or by

ompeting with GR 𝛼 for binding to the glucocorticoid response element

GRE) site. Increased GR 𝛽 with resultant reduction in HDAC2 expression

as been implicated in the pathogenesis of steroid resistance in severe

sthma. However, a recent study by Butler et al. 17 has shown that GR 𝛽

essenger RNA (mRNA) is expressed at low levels in a minority of severe

sthmatics and that HDAC2 expression is not downregulated in severe

sthma. These findings do not support upregulated GR 𝛽 and resultant re-

uced HDAC expression as the principal mechanism underlying steroid

nsensitivity in severe asthma. The conflicting reports on GR 𝛽 may be

xplained in part by clathrin cross-reactivity with commercial antibod-

es. 17 Cigarette smoke downregulates HDAC2 activity by promoting its

hosphorylation and and inducing proteasomal degradation in human

acrophages and lung epithelial cells in vitro and in mouse lung in vivo ,

hich may be a critical factor in the development of steroid insensitiv-

ty in some severe asthma patients who smoke cigarettes. 18 Oxidative

tress also activates the PI3K pathway, which results in phosphorylation

nd inactivation of HDAC2. 19 

Collectively, these studies indicated that HDAC2 is necessary

or corticosteroid-associated anti-inflammation, implying that steroid-

esistant asthma is associated with HDAC2. However, the detailed

olecular mechanisms involved need to be further investigated.

edicines that restore HDAC2 activity and expression might alleviate

C insensitivity. 

eneral characters of Th17 cells 

For a long time, CD4 + T cells were classified as type 1 T helper (Th1)

nd type 2 Th (Th2) based on their cytokine expression profile. Classi-

ally, Th1 cells produce interferon (IFN)- 𝛾, whereas Th2 cells produce

L-4, IL-5, IL-9, and IL-13 accompanied by eosinophil recruitment to

he airways, which have been shown to be critical for the pathogenesis
109 
f allergic inflammation. 20 However, the T helper cell population was

learly not limited to these two subsets. In recent years, a novel subset

f CD4 + effector T cells, Th17 cells, has been demonstrated in humans

nd mice. Th17 cells differentiate when naïve T cells are triggered by

ransforming growth factor (TGF)- 𝛽, IL-6, IL-1 𝛽, IL-21, and IL-23 during

timulation by a cognate antigen. Other T-cell lineages and their asso-

iated cytokines such as IFN- 𝛾 and IL-4 also promote the development

f Th17 cells. 21 , 22 Differentiated Th17 cells selectively secrete IL-17A,

L-17F, IL-21, and IL-22. 23 IL-17A and IL-17F are members of the IL-17

ytokine family that share common receptor subunits, IL-17 receptor A

IL-17RA), and IL-17 receptor C (IL-17RC). 21 IL-17A has critical roles

n the development of inflammation, tumors, and autoimmunity, and is

lso involved in the host defenses against bacterial and fungal infections,

hereas IL-17F has a role mainly in mucosal host defense mechanisms. 6 

L-17A and IL-17F are predominantly expressed by CD4 + T helper 17

Th17) cells, but they can be produced by other lymphocytes as well. 24 

otably, IL-25 (IL-17E) is unique in that, unlike other family members,

t augments Th2 cell immune response. 25 

h17 cells in steroid-resistant asthma 

The Th1/Th2 paradigm has provided important insights into the

athogenesis of asthma. However, the pathological characteristics of

atients with severe asthma failed to be completely explained by ei-

her classic Th1 or Th2 cells. In addition to eosinophilic inflammation,

ncreased neutrophil levels have been found in patients with steroid-

esistant asthma compared with the levels in controls. Neutrophilic in-

ammation may contribute to severe asthma and may be related to Th17

ather than Th2 cytokines. 4 , 26 Elevated levels of IL-17 mRNA and pro-

ein were found in the serum, 27 peripheral mononuclear cells, bron-

hoalveolar lavage fluid (BALF), sputum, 28 , 29 and bronchial tissues 30 

rom asthmatic patients. Increased IL-17A and IL-17F levels have also

een reported to be positively correlated with airway hyperresponsive-

ess (AHR) and disease severity. 31 Furthermore, increased IL-17A has

een correlated with increased neutrophilic inflammation. 32 Similarly,

n vitro studies demonstrated that IL-17A reduced HDAC activity in a

ronchial epithelial cell line, and appeared to be involved in IL-17A-

nduced GC insensitivity 14 ( Fig. 1 ). Overexpression of HDAC2 reversed

L-17A-induced GC insensitivity, suggesting a possible molecular mech-

nism behind this insensitivity. 14 

Notably, our previous study revealed that the expression of retinoid-

elated orphan nuclear receptor 𝛾t (ROR 𝛾t) was significantly in-

reased in human bronchial epithelium (HBE) cells exposed to house

ust mite (HDM) when HDAC2 was knocked down. 33 Manel et

l 34 demonstrated that the overexpression of ROR 𝛾t significantly in-

uced IL-17A expression, and vice versa. ROR 𝛾t is a key transcrip-

ion factor that orchestrates IL-17A expression. 35 More specifically,

OR 𝛾t plays an important role in the differentiation from naïve

D4 + T cells to Th17 cells, in which HDAC2 is involved. Singh

t al 36 showed that HDAC2 interacts with IL-17A promoter and in-

ibits IL-17A transcription through SUMOylation of ROR 𝛾t. Taken to-

ether, these findings support a protective role of HDAC2 in HDM-

nduced airway inflammation by suppressing IL-17A production via

nhibiting ROR 𝛾t transcriptional activity. They might also suggest

hat the activation of HDAC2 and/or inhibition of IL-17A produc-

ion could prevent the development of allergic airway inflammation

 Fig. 2 ). However, further studies are needed to determine the inter-

ction between HDAC2 and IL-17A signaling pathways, and the identi-

cation of the ROR 𝛾t/HDAC2 axis that controls IL-17A expression may

rovide new ideas for developing novel therapeutic approaches. 

herapeutic implications 

Steroid resistance in severe asthma is a major clinical barrier that

annot be overcome by high-dose inhaled cortisteroid (ICS) or oral cor-

icosteroids. Restoring the activity of HDAC2 or targeting the Th17 sig-
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Fig. 1. Proposed mechanism of steroid resistance in severe asthma. Th17 cells differentiate when naïve T cells are triggered by cigarette smoke or repeated antigen 

exposure. Th17-related cytokines (e.g., IL-17A, IL-22) and oxidative stress impair the activity of HDAC2 and increase neutrophil recruitment. This amplifies the 

inflammatory response to NF- 𝜅B activation, but also reduces the anti-inflammatory effect of corticosteroids. APC: antigen-presenting cell; Eos: eosinophil; HDAC2: 

histone deacetylase 2; IL: Interleukin; MCP-1: monocyte chemoattractant protein-1; MIP-2: macrophage inflammatory protein 2; NF- 𝜅B: Nuclear factor- 𝜅B; Th2: T 

helper 2; Th17: T helper 17; TSLP: thymic stromal lymphopoietin. 
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aling pathway, which facilitates the suppression of proinflammatory

ytokines by corticosteroid, is a potential therapeutic approach to re-

erse steroid insensitivity. Antioxidants, which inhibit steroid-resistant

irway inflammation, are another potential treatment for overcoming

teroid resistance. 

Theophylline is an old drug that has been used in the treatment

f airway disease for many years. Low concentrations (10 − 6 mol/L)

f theophylline have been shown to activate HDAC and reverse cor-

icosteroid sensitivity. 37 Such low concentrations were also shown to

ave inhibitory effects on phosphoinositide metabolism and the oxidant-

ctivated PI3K pathway. 38 Bin et al 39 showed that thephylline inhibits

igarette smoke (CS)-induced IL-8 and tumor necrosis factor- 𝛼 (TNF- 𝛼)

evels elevation by enhancing HDAC2 expression and decreasing nuclear

actor- 𝜅Bp65 (NF- 𝜅Bp65) activation. 

Low-dose macrolides such as azithromycin and erythromycin have

lso been shown to restore HDAC2 activity. Maintenance treatment with

ow-dose azithromycin (500 mg three times a week) in randomized

lacebo-controlled trials (RCTs) has been reported to achieve a signifi-

ant reduction in the rate of exacerbation in patients with neutrophilic

evere asthma. 40 , 41 

Statins are lipid-lowering agents that also have anti-inflammatory

nd immunomodulatory properties, which could benefit asthma pa-

ients. Previous studies have reported the use of statins in the treat-

ent of asthma, but inconsistent results have been described. Some re-

ent systematic reviews include a meta-analysis showing that statins

ay reduce airway inflammation in asthmatics, without having a sig-

ificant effect on lung function, asthma control, or steroid-sparing. 42 , 43 

owever, a retrospective, cross-sectional study on patients with severe

sthma showed that statin users had better asthma symptom control

han non-users. 44 

Curcumin, a dietary polyphenol, also reverses steroid resistance in-

uced by either cigarette smoke extract (CSE) or oxidative stress in
110 
uman monocytes. Thus, curcumin may have the potential to reverse

teroid insensitivity in asthma and COPD. 45 Several nonselective HDAC

nhibitors, such as trichostatin A and valproate acid, have potent anti-

sthmatic activity, but their molecular mechanisms remain largely un-

esolved. Additionally, many novel drugs that are currently being in-

estigated for the treatment of asthma may find a therapeutic role in

eversing the steroid insensitivity in patients with severe asthma and

mokers with asthma. 

Several monoclonal antibodies against IL-17A or IL-17RA are cur-

ently in clinical trials for asthma. A clinical trial (NCT01478360) is un-

erway to investigate the efficacy and safety of AIN457 (secukinumab)

n patients with uncontrolled asthma, in which favorable results are ex-

ected. 46 , 47 In addition, a phase II clinical trial was recently completed

or the anti-IL-17RA monoclonal antibody AMG-827 (brodalumab). 48 , 49 

t showed the benefits of brodalumab in improving bronchodilator re-

ersibility, despite failing to achieve clinical improvements in Asthma

uality Control (AQC) score. Because IL-1 𝛽, IL-23, and IL-6 are crucial

o the development of Th17 cells, blocking these cytokines may also be

 therapeutic target for steroid-insensitive asthma. 50 Clinical trials of

gents that block IL-1 𝛽, IL-23, or IL-6 have been conducted in patients

ith Th17-related diseases such as rheumatoid arthritis and multiple

clerosis. However, more studies are needed to determine the poten-

ial efficacy of targeting IL-17RA signaling in the treatment of steroid-

esistance asthma. 

uture directions for research 

Steroid-resistant asthma is resistant to current therapies and con-

umes 50–60% of healthcare costs attributed to asthma. 51 However, the

echanisms underlying the steroid resistance in severe asthma are not

ompletely understood. Epigenetic mechanisms such as histone acety-

ation/methylation and DNA methylation have been reported as key



L. Ouyang, G. Su, J. Quan et al. Chinese Medical Journal Pulmonary and Critical Care Medicine 1 (2023) 108–112 

Fig. 2. Schematic diagram on the role of the interplay between HDAC2 and IL-17A in HDM-induced allergic inflammation. When naïve T cells are triggered by TGF- β, 

IL-6, IL-1 β, IL-21, and IL-23 under HDM stimulation, Th17 cells differentiate and IL-17A expression is subsequently initiated. Among these, the differentiation of Th17 

cells secreting IL-17A requires expression of the transcription factors ROR 𝛾t and STAT3. HDM exposure significantly reduces HDAC2 expression in HBE cells and 

co-stimulation with IL-17A further reduces HDAC2 activity in the bronchial epithelial cell line. When HDAC2 is reduced, the expression of ROR 𝛾T increases, and the 

binding of ROR 𝛾T to the IL-17A promoter is facilitated, which further reduces HDAC2 expression, thus creating a vicious cycle that ultimately leads to a diminished 

protective function of HDAC2 in airway inflammation as well as increased neutrophil recruitment, amplifying the inflammatory response to NF- 𝜅B activation and 

causing neutrophilic asthma. GM-CSF: granulocyte-macrophage colony-stimulating factor; HDAC2: histone deacetylase 2; HDM: house dust mite; HBE cell: human 

bronchial epithelium cell; IL: Interleukin; NF- 𝜅B: nuclear factor 𝜅B; TGF- 𝛽: transforming growth factor- 𝛽; ROR 𝛾T: retinoid-related orphan nuclear receptor 𝛾t; STAT3: 

signal transducer and activator of transcription 3; Th17: T helper 17. 
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layers in severe asthma. 52 Previous studies found that HDAC2 ex-

ression was downregulated in steroid-resistant asthma. 12 The signif-

cant interaction between HDAC2 and IL-17A creates a vicious cycle

hat leads to the exacerbation of asthma. However, the roles of HDAC2

nd Th17 cells in steroid-resistant asthma remain largely unknown and

ome research questions on this issue need to be addressed. First, al-

hough airway neutrophilia and activity of the Th17/IL-17 axis are read-

ly observed in a subset of steroid-insensitive asthmatics, whether they

lay causative roles in the disease pathogenesis remains to be deter-

ined. Second, HDAC2 and Th17 cells play important roles in alveolar

acrophages of steroid-resistant asthma. However, their roles in human

ronchial epithelial cells are still largely unknown. The specific molec-

lar mechanisms of the interaction between HDAC2 and IL-17A also re-

uire further investigation.Third, low-dose theophylline and macrolide

ave been shown to restore HDAC2 activity, but the molecular mech-

nisms behind this remain to be determined. Lastly, the deleterious ef-

ects of smoking on airway inflammation, lung function, and corticos-

eroid responsiveness in asthma are well known, but whether the effect

f smoking cessation on corticosteroid responsiveness is mediated by

DAC2 and IL-17A in severe asthma remains largely unknown. 

In conclusion, corticosteroids are widely used in the treatment of

sthma, despite the lack of a clinical benefit in patients with severe

sthma. Several mechanisms behind the emergence of corticosteroid re-

istance have been postulated. In patients with steroid-resistant asthma,

here is a reduction in HDAC2 expression, which may be due to oxida-

ive stress. Th17 cells are important for the development of neutrophilic

irway inflammation and appear to be steroid-resistant. Currently, only

 few selective drugs are available for corticosteroid unresponsiveness

n severe asthma. Understanding the mechanisms of steroid insensitiv-
111 
ty may lead to novel therapeutic approaches for the treatment of severe

sthma. 
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