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Macroautophagy is a conserved degra-
dative pathway in which a double-

membrane compartment sequesters cyto-
plasmic cargo and delivers the contents to
lysosomes for degradation. Efficient forma-
tion and maturation of autophagic vesicles,
so-called phagophores that are precursors to
autophagosomes, and their subsequent traf-
ficking to lysosomes relies on the activity of
small RAB GTPases, which are essential
factors of cellular vesicle transport systems.
The activity of RAB GTPases is coordi-
nated by upstream factors, which include
guanine nucleotide exchange factors (RAB
GEFs) and RAB GTPase activating pro-
teins (RAB GAPs). A role in macroautoph-
agy regulation for different TRE2-BUB2-
CDC16 (TBC) domain-containing RAB
GAPs has been established. Recently, how-
ever, a positive modulation of macroau-
tophagy has also been demonstrated for the
TBC domain-free RAB3GAP1/2, adding
to the family of RAB GAPs that coordinate
macroautophagy and additional cellular
trafficking pathways.

Macroautophagy is a membrane
mobilization and vesicle trafficking system

Macroautophagy is an evolutionarily
conserved eukaryotic process in which
cytoplasmic contents are sequestered by
phagophores, which mature into auto-
phagosomes and deliver their cargo to
lysosomes for degradation.1 The pathway
is induced under conditions of nutrient
deprivation or stress and is an important
functional component of the cellular
homeostasis network. Deterioration of
macroautophagy is associated with several
disorders, including neurodegenerative
diseases and cancer.2

One main characteristic of macroau-
tophagy is the double-membrane autopha-
gosomes, which are generated at distinct
cellular locations, the phagophore assem-
bly sites (PAS). Upon macroautophagy
induction, the activated ULK1/2 complex
(including ATG13 and RB1CC1/
FIP200) and phosphatidylinositol 3-
kinase complex (including PIK3C3/
Vps34, ATG14, and BECN1/Vps30/
Atg6) are recruited to the PAS and initiate
the formation of a phagophore by direct-
ing additional autophagic proteins to this
site. These include WIPI1/Atg18, WIPI2/
Atg18, ZFYVE1/DFCP1, ATG9, and the
ATG12–ATG5-ATG16L1 complex.3

The latter is part of a ubiquitin-like conju-
gation system and mediates the attach-
ment of phosphatidylethanolamine to the
C terminus of Atg8 family members. This
protein family comprises the subfamilies
of MAP1LC3 and GABARAP in mam-
mals, and lipidation results in their bind-
ing to the growing phagophore membrane
which is essential for phagophore expan-
sion and maturation.4

Phagophore formation and autophago-
some maturation are dependent on the ade-
quate supply of membranes and appropriate
cellular membrane dynamics. Recently, the
plasmamembrane, the Golgi, the ER,5,6 and
lipid droplets7 have been recognized as lipid
sources. In response to different regimens of
macroautophagic activity they are considered
to be selectively accessed to satisfy macroau-
tophagic membrane requirements.8 Interest-
ingly, it is considered that the phagophore
matures to an autophagosome by the addi-
tion of lipids via vesicular fusion rather than
via lateral movement of membranes from
existing cellular organelles.5,9 Consequently,
the resulting sophisticated and complex
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membrane acquisition system needs to be
carefully coordinated, and proteins that con-
trol vesicle transport systems are important
factors for macroautophagy.

The protein family of small RAB
GTPases is specialized in the control of vesi-
cle transport routes and ensures trafficking of
vesicles to their appropriate target compart-
ments.10 RABGTPases interact with effector
proteins such as cargo sorting complexes,
motor proteins, and tethering factors, which
results in vesicle budding, transport, and
fusion. The interactions with these effectors
are precisely controlled by GDP/GTP
exchange and hydrolysis of GTP. Since
GDP is principally tightly bound by RAB
GTPases and their intrinsic GTP hydrolysis
rates are low, this cycle is regulated by gua-
nine exchange factors (RABGEFs) that cata-
lyze the dissociation of GDP, and RAB
GTPase activating proteins (RAB GAPs)
that facilitate the hydrolysis of GTP.11 Both
regulators are required to coordinate the
temporal-spatial activity of RAB GTPases.
In recent years multiple RABGTPases, RAB
GEFs, and RAB GAPs have functionally
been associated with macroautophagy.12

This commentary will focus on RAB GAPs
and briefly address their effects on this degra-
dative pathway (schematically summarized
in Fig. 1) and vesicle trafficking systems.

TBCGAPs: TBC domain-containing
RAB GAPs that function in macro-
autophagy

In approaches aiming to identify RAB
GAPs that affect macroautophagy, several

TBC domain-containing RAB GAPs have
been characterized.13-15 The TBC domain
accelerates the hydrolysis of GTP by RAB
GTPases and TBC domain-containing
RAB GAPs (hereafter referred to as
TBCGAPs) are linked to different traffick-
ing routes, and are important factors that
integrate diverse cellular pathways.16

TBC1D25/OATL1 was identified in a
study expressing 41 TBCGAPs in mouse
embryonic fibroblasts and selecting pro-
teins that colocalize with endogenous
MAP1LC3.13 TBC1D25/OATL1 targets
the ATG16L1-interacting RAB GTPase
RAB33B and is recruited to autophago-
somes by direct binding to Atg8 family
members. Increased levels of TBC1D25/
OATL1 inhibit the fusion of autophago-
somes with lysosomes and prevent auto-
phagosomal maturation.

In an approach overexpressing 38
TBCGAPs in HEK293 cells and analyzing
their ability to inhibit autophagosome for-
mation upon nutrient deprivation, 11
TBCGAPs were shown to negatively regu-
late macroautophagy.14 The TBCGAP
TBC1D14 was analyzed in detail and was
shown to modify the trafficking of ULK1-
containing recycling endosomes and to
interfere with the activity of the RAB
GTPase RAB11A/B. The function of
RAB11 is required to transport recycling
endosomes to the PAS and, thus,
TBC1D14 and RAB11 regulate starvation-
induced formation of autophagosomes.

In another study employing GST affinity
isolation techniques, 14 TBCGAPs were

identified to interact with Atg8 family mem-
bers.15 Subsequently, the colocalization of
these TBCGAPs with MAP1LC3 and
SQSTM1 was analyzed, resulting in 4
promising candidates. The TBCGAP
TBC1D5 was further characterized and was
shown to have 2 binding motifs for Atg8
family members. During basal macroau-
tophagy conditions TBC1D5 binds to the
retromer complex and influences retrograde
transport routes. Upon macroautophagy
induction, TBC1D5 dissociates from the
retromer, associates with MAP1LC3, and
directs ATG9 and active ULK1 from the
retromer to the PAS.17 This rerouting of
ATG9 is additionally regulated by the cla-
thrin adaptor complex (AP2) and requires
functional clathrin-mediated endocytosis.
Thus, the dynamic translocation of
TBC1D5 to autophagosomes is central for
the trafficking of ATG9 from the retromer
complex to the site of autophagosome
biogenesis.

The protein TBC1D2/Armus is an
additional TBCGAP that interacts with
MAP1LC3 and integrates trafficking
pathways and macroautophagy.18 Overex-
pression of TBC1D2 results in the accu-
mulation of enlarged autophagosomes,
and its deficiency delays macroautophagic
flux. Upon macroautophagy induction,
TBC1D2 is recruited to autophagosomes
by binding to Atg8 family members and
regulates the activity of the RAB GTPase
RAB7, which is essential for the fusion of
autophagosomes and lysosomes.12 Inter-
estingly, TBC1D2 is also an effector of

Figure 1. Schematic representation of RAB GAPs established to function in macroautophagy. TBC1D5, TBC1D14, and RAB3GAP1/2 function during auto-
phagosome formation, and TBC1D2 and TBC1D25 support autophagosome-lysosome fusion. The TBC domain is depicted by dark purple globules. Note
that this domain is missing in the heterodimeric RAB3GAP complex.
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the small GTPase RAC1, which is a nega-
tive regulator of macroautophagy. Nutri-
ent deprivation inactivates RAC1, which
allows the association of TBC1D2 with
autophagosomes and results in regulation
of RAB7. Thus, the interplay of
TBC1D2, RAC1, and RAB7 underlines
the coordinate character of macroautoph-
agy and other cellular trafficking pathways
mediated by RAB GTPases and RAB
GAPs.

In these studies amultitude of TBCGAPs
were linked to macroautophagy, which are
summarized in Table 1 with respect to their
substrate RAB GTPases and their nonauto-
phagic functions, if characterized. Although

the influence on macroautophagy of the
majority of these RAB GAPs needs to be
confirmed, the large number of potential
candidates highlights the complexity of the
coordination ofmembrane or vesicle traffick-
ing and themacroautophagic pathway.

RAB3GAP1 and RAB3GAP2 as non-
TBCGAPs and their function in
macroautophagy and beyond

The introduced TBCGAPs function in
macroautophagy and contribute to the reor-
ganization of membrane trafficking routes
according to the cellular requirements. This
coordinate property has been well established
for TBCGAPs that are ideally placed for

such a role, as one TBCGAP can act as an
effector of different RAB GTPases. Interest-
ingly, according to sequence homology the
human TBCGAP family includes 44 pro-
teins and is complemented by the RAB3-
GAP complex, which is the only described
RAB GAP without a TBC domain.16 The
heterodimeric complex consists of the cata-
lytic subunit RAB3GAP1 and the noncata-
lytic subunit RAB3GAP219 and has been
well established to regulate the name-giving
RABGTPase RAB3A-D and tomodify neu-
rotransmitter release at the neuronal synapse.
In a RAB3GAP1 knockout mouse model,
GTP-bound RAB3 accumulates in the brain
and Ca2C-dependent glutamate release from

Table 1. Summary of macroautophagy-associated RAB GAPs.

RAB GAP Substrate RAB GTPases Nonautophagic function(s)
Association with
Macroautophagy

TBC1D1 RAB2A, RAB8A, RAB8B, RAB10,
RAB14

SLCA4/GLUT4 trafficking,31 glucose metabolism32 binds to Atg8 family members15

TBC1D2 (Armus, PARIS1) RAB7 CDH1/E-cadherin degradation33 binds to Atg8 family members;15

modulates autophagosome-
lysosome fusion18

TBC1D2B RAB22A, RAB22B ND binds to Atg8 family members15

TBC1D4 (AS160) RAB2A, RAB8A, RAB10, RAB14 SLC2A4/GLUT4 trafficking, insulin sensitivity34,35 OE inhibits autophagy14

TBC1D5 RAB7 endocytic trafficking17,36 binds to Atg8 family members;15

regulates ATG9 trafficking and
autophagosome formation15,17

TBC1D7 RAB17 primary cilium formation;37 influences MTOR
activity38

OE inhibits autophagy;14 binds to
Atg8 family members;15

influences MTOR activity38

TBC1D9 ND ND OE inhibits autophagy;14 binds to
Atg8 family members15

TBC1D9B RAB11A basolateral-to-apical transcytosis39 OE inhibits autophagy14

TBC1D10A (EPI64) RAB27A, RAB27B, RAB35, RAB8A melanosome transport;40 endocytic trafficking and
microvillus structure;41 exosome secretion42

OE inhibits autophagy;14 binds to
Atg8 family members15

TBC1D10B (EPI64B) RAB3A, RAB22A, RAB27A, RAB27B,
RAB31, RAB35

exosome secretion;42 regulation of exocytosis43 OE inhibits autophagy;14 binds to
Atg8 family members15

TBC1D10C (EPI64C, Carabin) RAB35 T cell receptor recycling, immunological synapse
formation;44 exosome secretion;42 PPP3/
calcineurin, NFAT, RRAS, MAPK/ERK, and CAMK2
signaling45

OE inhibits autophagy14

TBC1D14 ND endocytic trafficking14 OE inhibits autophagy;14 regulates
autophagosome formation14

TBC1D16 RAB4A, RAB5C EGFR recycling from endosomes46 OE inhibits autophagy;14 binds to
Atg8 family members15

TBC1D17 RAB21, RAB8 endocytic trafficking, interacts with OPTN47 OE inhibits autophagy;14 binds to
Atg8 family members15

TBC1D25 (OATL1) RAB2A, RAB13, RAB34, RAB33A,
RAB33B

ND binds to Atg8 family
members;13,15 regulates
autophagosome formation13

RABGAP1 (TBC1D11, GAPCenA) RAB2, RAB4, RAB6A, RAB6B,
RAB11, RAB36

microtubule and Golgi dynamics, metaphase/
anaphase transition48,49

binds to Atg8 family members15

RABGAP1L (TBC1D18, HHL) RAB22A, RAB34, RAB39B ND binds to Atg8 family members15

SGSM2 (RUTBC1) RAB9A, RAB32, RAB33B, ND OE inhibits autophagy14

RAB3GAP1/2 GAP: RAB3A-D,50 GEF: RAB1823 neurotransmitter release;20 LMAN1 trafficking;25

CLDN1 exocytosis;26 maintenance of ER
structure23

regulates autophagosome
formation22

OE, overexpression
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cerebrocortical synaptosomes is inhibited.20

Indeed, by regulating the activity of RAB3,
the RAB3GAPs are essential formaintenance
of synaptic homeostasis.21 Recently, we
showed that the TBC domain-free RAB3-
GAP1/2 also modulate macroautophagy
and are essential factors of autophagosome
formation.22 Deficiency of both proteins in
human primary fibroblasts deteriorates auto-
phagosomal biogenesis and reduces macro-
autophagic activity at basal and induced
macroautophagy conditions, whereas their
overexpression enhances this process. The
positive modulation of macroautophagy is
dependent on the GAP activity of RAB3-
GAP1 but independent of RAB3, suggesting
that RAB3GAP1/2 access an alternative
RAB GTPase, which has not been identified
yet. Interestingly, the RAB3GAP complex
was recently shown to be a RABGEF for the
RAB GTPase RAB18 and provokes localiza-
tion of RAB18 to the ER, which is necessary
for maintenance of ER structure.23 Excit-
ingly, mutations in RAB3GAP1/2 and
RAB18 cause theWarburgMicro syndrome,
a devastating developmental disorder.24 The
molecular mechanisms of this disease are not
clarified yet but a functional association of
RAB3GAP1/2 and RAB18 might support
the identification of responsible pathogenetic
pathways. Next to RAB3 regulation and its
involvement in macroautophagy, RAB3-
GAP1 interacts with LMAN1/ERGIC5325

and mediates the exocytosis of CLDN1,26

which highlights the coordinative character
of this TBC domain-free RABGAP in cellu-
lar trafficking systems.

As indicated above, several macroau-
tophagy-modifying TBCGAPs were iden-
tified by their interaction with Atg8
family members and this interaction is
counteracted by other interacting proteins
that compete for binding sites. The ability
of Atg8 family members to direct RAB
GAPs to phagophores indicates that they
might act as scaffolding molecules and,
thus, are central partners for the activity of
RAB GAPs in macroautophagy. This
mechanism is comparable to the interac-
tion of Atg8 family members with cargo
receptors involved in selective macroau-
tophagy, such as SQSTM1, NBR1, or
CALCOCO2.27 MAP1LC3 serves as a
binding partner and recruits cargo recep-
tors to phagophores, which mediates sub-
strate-specificity to macroautophagy.

Interestingly, an interaction with Atg8
family members has also been indicated
for RAB3GAP1/2 based on a proteomic
approach,28 although a direct physical
interaction awaits confirmation.22

Relevance of RAB GAPs in
macroautophagy and compensatory
mechanisms for membrane mobilization

The formation and transport of autopha-
gosomes is one of the major challenges for
the entire macroautophagy process and
needs to be carefully controlled to reduce
interference with other cellular trafficking
pathways. The activity of RAB GTPases,
RAB GEFs, and RAB GAPs positions these
proteins as central factors for this coordina-
tion and their relevance for macroautophagy
has been shown in multiple studies.12 How-
ever, the selection of macroautophagy-defi-
cient yeast strains resulted in the
characterization of at least 40 Atg proteins,
most of which do not appear to be involved
in membrane mobilization or vesicle trans-
port. An exception (although not an “Atg”
protein) is the ortholog of RAB1, Ypt1,29

and its RABGEF, the TRAPPIII complex,9

which have been defined as important factors
for autophagosome formation in yeast and
possess a likewise important role for macro-
autophagy also in mammalian cell lines.12

Interestingly, several RAB GAPs modulate
macroautophagy particularly under induced
conditions when macroautophagic mem-
brane requirements are increased, which
underlines the need for a stringent control,
and some RAB GAPs seem to function in
overlapping pathways. For example,
TBC1D14 and TBC1D5 appear to be
important both for the coordination of
endosomal trafficking and autophagosome
biogenesis.14,15,17 Recently, TBC1D2,
which effects the RAB GTPase RAB7 and
modulates autophagosome-lysosome fusion,
was shown to be activated by LRRK1 upon
macroautophagy induction.30 Therefore, the
characterization of upstream factors that
modulate the activity of RAB GAPs and the
identification of target RAB GTPases will
help to dissect the precise pathways that are
modulated by these proteins and allow the
identification of possible compensatory
mechanisms. This will increase our under-
standing of the reorganization and the
condition-dependent plasticity of cellular

trafficking systems that are necessary to keep
macroautophagy going.
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