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Abstract
During the course of evolution, bacteria have developed an intimate relationshipwith humans colonizing specific body sites at the
interface with the body exterior and invaginations such as nose, mouth, lung, gut, vagina, genito-urinary tract, and skin and thus
constituting an integrated meta-organism. The final result has been a mutual adaptation and functional integration which confers
significant advantages to humans and bacteria. The immune system of the host co-evolved with the microbiota to develop
complex mechanisms to recognize and destroy invading microbes, while preserving its own bacteria. Composition and diversity
of the microbiota change according to development and aging and contribute to humans’ health and fitness by modulating the
immune system response and inflammaging and vice versa. In the last decades, we experienced an explosion of studies on the
role of gut microbiota in aging, age-related diseases, and longevity; however, less reports are present on the role of the microbiota
at different body sites. In this review, we describe the key steps of the co-evolution between Homo sapiens and microbiome and
how this adaptation can impact on immunosenescence and inflammaging. We briefly summarized the role of gut microbiota in
aging and longevity while bringing out the involvement of the other microbiota.
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Introduction: inflammaging and immune
system in aging

The lifelong adaptation of the body to the insult from
bacterial/viral infections and other stressors represents the or-
igin of a profound age-related remodeling of the immune sys-
tem (IS) known as “immunosenescence” [1–6] that supports

the chronic low-grade inflammatory status called
“inflammaging” [6–9]. Even though both immunosenescence
and inflammaging (representing two sides of the same coin)
may contribute to a higher susceptibility to age-related dis-
eases, several studies demonstrated that they are also neces-
sary to extend survival/longevity [10]. The phenotype of old
people and centenarians is indeed surprisingly complex and
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very dynamic and is the consequence of the ability of the body
to respond/adapt to the detrimental stimuli we are exposed to
throughout our lifetime [9]. This phenomenon has been con-
ceptualized as “remodeling,” which can be considered a gen-
eral theory of aging [1, 7]. Centenarians are characterized by
high levels of anti-inflammatory molecules [11–14] in the
attempt to counteract the increase of inflammaging and find
an optimal balance between pro- and anti-inflammatory mech-
anisms, which likely allowed them to reach the extreme limit
of human lifespan [15]. This remodeling is shaped by the
immunological history of the organism, a concept dubbed
“immunobiography” [16]. According to this idea, everyone
has a peculiar immunobiography and consequently a personal
inflammaging/immunosenescence. In this scenario longevity,
aging and age-related diseases represent a continuum without
precise boundaries with the extremes represented by diseases
on one side and by centenarians, the best example of success-
ful aging, on the opposite side [17].

Inflammaging can be sustained not only by a variety of
external and internal stimuli such as pathogens (non-self)
and cell debris and misplaced molecules (self) but also by
nutrients and microbiota which are considered “quasi-self”
because they come from outside but are tolerated from the
IS [18]. In particular, the complex bacterial community that
populates different body sites and that represents an evolution-
ary adapted ecosystem contains an immense diversity of genes
that interact directly with human physiology to carry out vital
functions [19] and affect the efficiency of the host IS.
However, microbiota substantially changes with aging and
related disease outcomes [20]. The age-related microbiota
changes (dysbiosis) may contribute to inflammaging because
long-term stimulation of IS may cause immunosenescence.
Such inflammatory condition might make the host more sen-
sitive to potentially dangerous bacteria which in turn contrib-
ute to the progression of various pathological conditions in
older adults [19].

The present review not only will discuss the co-evolution
of microbes and humans and summarize the main findings
regarding the gut microbiota (GM) in aging and age-related
disease as well as in longevity, but will also focus on the role
of many other microbial sites in the human body which are
less studied than those in the gut but have a role in healthy and
unhealthy aging.

Humans are metaorganisms: co-evolution
between Homo sapiens and the microbiomes

Bacteria are older than humans; they were already present on
the Earth when eukaryotic cells arose about 2.2 billion years
ago. Together with archea, fungi, protists, helminths, and vi-
ruses, some bacteria became host-associated and started a long
history of co-evolution [21]. Due to symbiotic relationship

with the various microbial communities, collectively called
“microbiota” present in various anatomical locations of the
body, humans have to be considered as a metaorganisms (also
termed superorganisms or holobionts) [22]. Trillions of indi-
vidual bacterial cells colonize the mouth, upper airways, skin,
vagina, genito-urinary, and intestinal tract representing a high-
ly integrated ecosystem, which undergoes dynamic
changes through time to adapt and respond to environ-
mental signals. The intimate relationships between
humans and bacteria have molded the phenotypes in
our ancestral lineages. Evidence shows that there is an
overlap of the phylogenetic trees of the bacterial micro-
bio ta and of pr imates [23] demonst ra t ing the
host-microbiota co-evolution, also genetic [24], and the
transmission of microbes within the species through the
generations [25].

Environments underwent drastic modifications during hu-
man evolution, and climate changes and dietary modification
(switch from herbivorous to carnivorous habits and experi-
ences of famine) have been key selective pressures [26].
Mutations, through the natural selection process, point the
way to survival and evolutionary adaptation, improving fit-
ness in the new environments. Although the human
microbiome offers energy-sparing traits for the human host,
several studies exist on the adaptive survival traits to starva-
tion on the human genome, while little is known regarding the
microbiome adaptation [25]. Beneficial adaptation to environ-
mental changes will therefore offer advantages to species,
and this is the challenge that modern and urban envi-
ronments are posing to human health.

Together, the host and microbiota evolved an IS able to
restrict bacteria at the interface with body exterior and invag-
inations while preventing the colonization of internal organs
of human body. Host IS recognizes antigens of microorgan-
isms such as DNA, RNA, and cell wall components through
toll-like receptors (TLRs) and activates downstream intracel-
lular signaling circuitries to generate immune responses.
However, the host IS co-evolved with the microbiota to de-
velop complexmechanisms to recognize and remove invading
microbes, while preserving its own bacteria [25] (Fig. 1).

Modern lifestyles are characterized by the transition of tra-
ditional foods towards industrial products, use of antibiotics
and vaccines, extreme hygiene measures, increase of the rate
of cesarean sections, and use of formula instead of breast
feeding. These factors according to the “hygiene hypothesis”
[27] dramatically impact on microbiota reducing human ex-
posure to microbial symbionts and led to shrinkage of the core
microbiome. The progressive disappearance of the functional
microbial component (mainly from the gut) of the human IS
can contribute to the decrease of its resilience and homeosta-
sis, predisposing individuals to several modern diseases, such
as allergy, autoimmune disorders, obesity, inflammatory bow-
el diseases, and type II diabetes [28–33].
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The microbiota associated with the intestinal tract (the GM) is
currently themost studied.Microbes in the gut are fundamental for
the metabolism of complex vegetal polysaccharides, the biosyn-
thesis of vitamins, and the modulation of fat storage and increase
our capacity to extract energy from food [30, 31]; moreover, they
are able to strongly control innate and specific immunity. Recent
studies on germ-free and gnotobioticmice revealed that the intense
and dynamic crosstalk with the intestinal microbiota strongly im-
pacts the development, education, and homeostasis of the intestinal
IS [34]. The GM is associated with various disorders in humans.
Alterations in composition, diversity, andmetabolites derived from
the GM are connected with impairments of different organs of the
human body such as brain, lung, joint, heart, liver, and adipose
tissue [35]. Evidence for a causative role of the gut bacteria is
strongest in metabolic disease [35]. Many independent studies
described the microbiome changes as a function of age [36–38],
and our research group has shown that centenarians have their
peculiar GM [39, 40]. Given that an alteration in GM composition
has been linked to different diseases including those age related,
the study ofGMcomposition in aging and longevity underwent an
explosion in the last decades.

Summary of the main findings on aging
and inflammaging referred to the gut
microbiome

The GM undergoes both compositional and functional chang-
es along with physiological modifications that characterize the
advancement of age [38]. Such changes, documented by stud-
ies performed on populations of different geographic origin,

can be summarized in (i) a progressive decrease in butyrate-
producing, anti-inflammatory bacterial genera such as
Faecalibacterium and Roseburia, (ii) a decrease in biodiver-
sity, and (iii) an increase in the proportion of otherwise low-
abundant and potentially harmful bacteria (i.e., pathobionts),
such as members of the families Enterobacteriaceae,
Streptococcaceae, and Staphylococcaceae [41–43]. It has
been proposed that the increase of pathobionts can be promot-
ed by the low-grade inflammatory status at the level of the
intestinal mucosa, which is part of the general process of
inflammaging that accompanies the age advancement [44,
45]. Indeed, inflammation is well known to foster the bloom
of pathobionts [46] that, in turn, sustain the inflammation by
overtaking mutualistic symbionts able to produce short-chain
fatty acids (SCFAs), in particular butyrate [47]. SCFA pro-
ducers play a crucial role in the human gut by promoting
immune homeostasis and counteracting inflammation [48];
thus, their progressive decrease can consolidate and nurture
inflammatory processes, generating a sort of self-sustaining
loop between inflammaging and GM age-related changes.
The altered biodiversity often observed in elderly people
could contribute to this process by failing to offer an alterna-
tive metabolic pathway for SCFA production. In fact, a
healthy adult-like microbiota is characterized by a high func-
tional redundancy, sustained by high level of phylogenetic
biodiversity, that cope with compositional changes that can
occur in response to environmental events [49]. This fea-
ture is more likely to lack in the gut ecosystem of
elderly people, resulting in insufficient adaptation to en-
vironmental and dietary changes and, possibly, dimin-
ished ability to produce important metabolites.

Fig. 1 Co-evolution of Homo sapiens and microbiota. During human
evolution, environments underwent drastical modifications, and climate
changes, dietary modification, infections, and industrialization have been
major selective pressures [26]. Together, host and microbiota evolved an

IS able to prevent the colonization of the interior of human body
restricting the microbiota at the interface with the body exterior and
invaginations, and host IS developed complex mechanisms to identify
and destroy invading microbes, while preserving its own bacteria [25]
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In this scenario, it is natural to wonder what comes first,
inflammation processes at the mucosal level or microbiome
changes, the “chicken-and-egg question.” Being aging an ex-
tremely complex and multifactorial process, it is far from easy
to provide an answer, also because microbiota itself can be af-
fected by different aging covariates. In fact, age advancement
also promotes changes in lifestyle and dietary habits, in response
to physiological changes in thresholds for taste and smell, de-
creased physical activity, masticatory dysfunctions, etc. For this
reason, the diet of elderly people may include less fibers and
proteins and a decreased introduction of uncooked, fresh food
[50], with negative effects on microbiota diversity and on abun-
dance of fiber degrading and SCFA-producing bacteria. A recent
paper showed that undergoing Mediterranean diet for 1-year
changes gut microbiota composition of elderly improving health
status and reducing frailty [51].

Aging comorbidities, such as frailty, diabetes, cardiovascular
diseases, as well as cancer, can enhance the age-related changes
in GM that, in turn, can promote their consolidation or speed up
their progression [45, 52–54]. For instance, immunosenescence
can result in inappropriate response towards symbiotic microbi-
ota components and/or decreased capability to control pathogen
invasion, contributing to chronic inflammation and, on the long
term, to the onset of some cancer types, i.e., colorectal cancer [55,
56]. The decrease of biodiversity could also represent a weaken-
ing factor for the host defenses against pathogen invasion, for
instance promoting the onset of infections by opportunistic bac-
teria such as Clostridium difficile. C. difficile-associated diarrhea
is a major nosocomial complication for frequently hospitalized
elderly [57]. Finally, very recently, a field of particular interest for
microbiome and aging research is the possible association be-
tween inflammatory and debilitating diseases such as physical
frailty, sarcopenia, and osteoarthritis [58] with GM. Even if a
direct and causal link between microbes and these frequent
age-related conditions has yet to be explored, available data on
adults provide muscle mass and function as well as bone and
joint [58–61] that could become of importance in future inter-
vention strategies, including diet, supplements, and probiotics/
prebiotics, to increase the chances to achieve a “healthy aging”
[61, 62].

In addition to the gut microbiome, which role
do the other microbiomes play in aging
and age-related diseases?

The ecosystem of the human gut is the most studied
microbiome because of its pervasive role due to its capacity
to convert environmental signals and dietary nutrients in bio-
active compoundswhich signal to distant organs and tissues in
the body. Gut bacteria are thus able to connect to the immune
and hormone system, to host metabolism, to the central ner-
vous system as well as other functions of the host [35, 63].

However, beyond GM, all the other microbiomes present in
the different human body sites (Table 1) contribute to host phys-
iology, and may also play a critical role in host specific patho-
logical conditions, fuelling inflammaging and contributing to
immunosenescence, when the microbial equilibrium is altered
as a consequence of external/internal detrimental stimuli.

Each body habitat has indeed a unique configuration of
bacterial microbiota that reflects properties of the local envi-
ronment and changes with age shaping host development and
vice versa. Within each habitat, there is large variation be-
tween individuals; however, the compositional oscillations
in an individual’s microbiome over time are less abundant
than inter-individual alterations at a particular stage of life
[55, 64].

Although relatively few studies are present on the
role of the different microbiomes in aging and patholo-
gies, the following sections will describe the main find-
ings regarding the aging of the microbiome of other
human ecological niches such as oral cavity, lung, skin,
vagina, and genito-urinary tract and the development of
clinical diseases that are common among older adults
such as pneumonia and chronic obstructive pulmonary
disease (COPD), urinary tract infection, reactive airways
disease, and other malignancies.

Oral and nasal microbiome in elderly

The microbiota of the oral cavity is extremely diverse contain-
ing as many as 700 or more species [65–68], of which the vast
majority belong to the phyla Firmicutes, Actinobacteria,
Bacteroidetes, Proteobacteria, Fusobacteria [68–70], and
Spirochaetes [68]. Bacterial colonization in the oral cavity
and oropharynx occurs mainly on the lips, teeth, cheeks,
subgingival and supragingival surfaces, hard and soft palate,
and tonsils [68]. The Human Microbiome Project sampled
many of these locations and found that, in most, the dominant
genera were Streptococcus, followed by Haemophilus,
Actinomyces, and Prevotella in the buccal mucosa (cheek),
supragingival, and subgingival plaque, respectively [66]. It
is thought that there is a “core microbiome” present in the
majority of individuals which consists of Actinomyces,
Atopobium , Corynebacterium , Rothia , Bergeyella ,
Capnocytophaga, Prevotella, Granulicatella, Streptococcus,
Veillonella, Campylobacter, Cardiobacterium, Haemophilus,
Neisseria, TM7, and Fusobacteria [68]. Compared with the
gut, the relationship between the oral microbiome and aging is
not as well studied [65]. Ogawa et al. analyzed the oral
microbiome of elderly individuals living in a nursing home
(EN) and those that live independently (control) and found the
EN group was less diverse at the phyla level but not at the
genus level. The EN group had a higher relative abundance of
Actinomyces, Streptococcus, Bacilli, Selenomonas,
Veillonella, Haemophilus, and a lower relative abundance of
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Prevotella, Leptotrichia, Campylobacter, and Fusobacterium
compared with the controls [71]. Furthermore, Singh et al.
analyzed oral microbiomes of healthy aging (HA) and
non-healthy aging (NHA) individuals and found that HA
had a higher alpha diversity than NHA. The only genus
that was more abundant in HA of the overall most abun-
dant genera was Neisseria. Haemophilus, Fusobacterium,
and Capnocytophaga were all increased in HA, but were
lower abundance genera. [72].

Inflammaging likely plays a role in the relationship
between aging and oral microbiome [73]. During aging,
many changes occur in the oral cavity that can lead to
chronic inflammation, which can increase an individual’s
susceptibility to oral disease [74]. Additionally, age is
considered a risk factor for oral diseases, such as peri-
odontal disease, which, in the USA affects around 60%
of adult population [73]. Although a causative role has
not been demonstrated yet, it is interesting to mention
that periodontal pathology has been associated with ath-
erosclerosis, suggesting that bacteria from the oral cavity
may play a role in the onset of atherosclerosis and car-
diovascular disease [75]. Feres et al. analyzed the
subgingival microbiota within different age groups and
found that in healthy individuals, there were no differ-
ences in the amounts of the analyzed taxa within the
age groups but noted that the older adults (> 64) trended
towards an increased abundance of three F. nucleatum
ssp. However, in individuals with periodontal disease,
the younger group (< 35) had an increased amount of
the P. gingivalis and T. forsythia compared with the older
groups. Furthermore, the oldest group had higher levels
of four Actinomyces, especially Actinomyces naeslundii
and Actinomyces oris [73].

While much is known about the nasal microbiome
early in life, there is less research over the nasal
microbiome in elderly individuals. Bomar et al. stated
that one study found in elderly individuals the nasal

microbiota has a high abundance of Streptococcus, and
a study analyzing the nasal microbiota of elderly individ-
uals with Parkinson’s disease (PD) found that in both PD
and healthy controls, the composition of the nasal micro-
biota resembled that of the middle-aged adult. An addi-
tional study analyzing the nasal microbiota of elderly
individuals found no difference in diversity between
those living in a nursing home and those living indepen-
dently. However, the relative abundance of Lactobacillus
reuteri, Streptococcus, Staphylococcus epidermidis, and
Rothia mucilaginosa were increased in individuals resid-
ing in the nursing home [76]. Koskinen et al. examined
the relationship between the nasal microbiota and olfac-
tory function. They found that Faecalibacterium and
Porphyromonas strongly correlated with a reduction of
olfactory function, and Corynebacterium members corre-
lated with a reduction in odor discrimination and
threshold. Interestingly, they also found that compared
with the normal threshold scores, the individuals with
lower scores had a more diverse microbiome [77].
Additionally, Rullo et al. characterized both the oral
and nasal microbiome in newly diagnosed neovascular
age-related macular degeneration (AMD) and healthy
controls. In the oral microbiome, Propionibacteriales,
Rothia, Staphylococcus, and Cornyebacteriaceae were
increased in AMD, while Fusobacterium and Bacilli were
higher in controls. In the nasal microbiome, Actinomycetaceae,
Gemella, Proteobacteria, Actinomyces, and Veillonella were
significantly higher in AMD, and when compared with con-
trols, Streptococcus underwent the largest relative shift in
AMD. Although not relatively abundant, Burkholderiales were
also significantly increased in AMD, while Clostridia were in-
creased in the control group [78]. More studies are desired to
elucidate the relationship between the oral and nasal
microbiome and aging in order to prevent upper respiratory
tract infection [76] and subsequent lower respiratory tract, such
as lung (which is covered in the next section) infections.

Table 1 Predominat bacteria in specific body site

Predominant phyla Reference

Body site

Mouth Firmicutes (e.g., Streptococcus); Bacteroidetes (e.g., Prevotella);
Proteobacteria (e.g., Haemophilus); Actinobacteria (e.g., Actinomyces);
Spirochaetes (e.g., Treponema); Fusobacteria (e.g., Fusobacterium)

[154–156]

Nose Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria [157]

Lung Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria [80]

Skin Actinobacteria (Propionibacterium, Corynebacterium) and Firmicutes (Staphylococcus) [89, 90]

Gut Firmicutes (e.g., Lachnospiraceae, Ruminococcaceae), Bacteroidetes
(e.g., Bacteroides and/or Prevotella, depending on ethnicity), Actinobacteria
(Bifidobacterium, in different abundance according to the host’s age)

[37, 41, 42]

Vagina Firmicutes (Lactobacillus) [104, 107, 110]

Genito-urinary tract Actinobacteria (Gardnerella, Corynebacterium) and Firmicutes (Lactobacillus, Streptococcus) [128–131, 141]
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Lung microbiome

More and more evidence show that there are also diverse
resident microbes in healthy lungs. The main phyla are
Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria
[79]. The microbiome of the lung tissue is still largely un-
known, and many studies have linked changes in the lung
microbiome to the development of chronic lung diseases, such
as cystic fibrosis (CF) or chronic obstructive pulmonary dis-
ease (COPD). However, the complex relationship between
lung microbiota and disease remains to be elucidated. The
surface of healthy lung is a dynamic environment, and debris
and microorganisms from the mouth and nose continue to
enter this respiratory organ, and the ciliary cells of the bron-
chus can remove these debris and invading bacteria through
rhythmic movement.

In general, the lung microbiota is diverse, and it varies
greatly among specific individuals and is dominated by 9 core
genera: Prevotella , Sphingomonas , Pseudomonas ,
Acinetobacter, Clostridium, Megasphaera, Veillonella,
Staphylococcus, and Streptococcus [80]; some of them such
as Prevotella, Veillonella, and Streptococcus were also fre-
quently observed in the oral cavity [81]. Although the respi-
ratory system and its mucosa are interconnected, the lung
microbiota has very distinctive features that set it apart from
the upper respiratory tract [82].

Studies have shown several factors that are related to
changes in lung microbiology, such as air pollutions,
smoking, aging, and diseases. For instance, air pollution
caused an increase in the relative abundance of potentially
pathogenic bacterial groups such as Streptococcus and
Neisseria [83]. The characteristics of the lung microbiome
also change with the natural process of aging. Evidence has
shown the loss of diversity of lung microbiota with increasing
age and lung disease severity [79, 84], and antibiotic exposure
was strongly associated. Aging-related immune dysfunction
also affects the lung microbiome [84, 85]. A recent analysis of
the lung microbiota of 167 severe asthma patients also re-
vealed significant differences among patients with different
inflammatory phenotypes [86].

Skin microbiome and aging

The human skin is inhabited by a large and diverse commu-
nity of both bacteria and fungi that contributes to the protec-
tion against invading pathogens and educates the IS [87, 88].
The composition of the skin microbiome primarily depends
on the physiology of the skin site: for instance, sebaceous sites
are usually dominated by Propionibacterium members,
whereas moist areas, such as feet and elbow’s bend, are usu-
ally populated by Staphylococcus and Corynebacterium [89,
90]. This is related to the fact that microbes inhabiting skin are
selected based on their ability to utilize resources present in

sweat, sebum, and/or the debris of dead skin cells present in
the outermost layer of human epidermis [88].

Being that the skin is such an exposed environment, it
would be natural to think of its microbiome composition as
much less stable than that of more protected environments
such as gut or vaginal ecosystem; conversely, it has been
proven by longitudinal studies that skin microbiome compo-
sition is stable, especially in sebaceous sites, e.g., the forehead
[91]. Studies on individuals of different ages have provided
evidences that human skin microbiome stabilizes its compo-
sitional structure around the age of 3 years, similarly to what
happens for the GM [92], but it undergoes a dramatic
restructuring at the time of puberty, when changes in hormone
concentration stimulate sebum production [93]. Age-related
changes in skin microbiome are interesting because of the
many skin disorders associated with the puberty transition as
well as the different propensity for atopy shown by the chil-
dren and adult’s skin [88].

Analogously to pubescent individuals, skin structure and
physiology change for elderly alongwith aging-related endog-
enous intrinsic factors, e.g., changes in cellular metabolisms,
immunosenescence, and altered hormone condition [94].
Changes in skin structure also depend upon lifestyle choices
and environmental challenges taken during the whole adult
life, including cumulative UV exposure, smoking, and pollu-
tion [95]. These factors together usually determine a decrease
in sweat, sebum, and immune homeostasis, resulting in alter-
ations in skin physiology (e.g., pH, lipid composition). These
physiological changes ultimately provide alterations in the
microenvironment that affect the skin microbiome composi-
tion, especially in relation to the decrease in sebum production
[90] and the occurrence of skin ulcers in bedridden elderly
[96]. However, the literature focusing on the skin microbiome
in elderly population is far from comprehensive, with few
studies on limited populations currently available [97–99].
Ying and colleagues (2015) focused on rural and urban pop-
ulations from Shanghai area (China) and provided evidences
that, even if aging had an effect on skin microbiome compo-
sition, the rural/urban environment was the most relevant driv-
er for this exposed human microbiome. Shibagaki and col-
leagues, on the contrary, focused on a small population of
healthy Japanese women: besides identified a number of bac-
terial species that showed differential abundances between
older and younger women, the authors provided evidences,
confirmed later on by Wu and colleagues that age-related al-
terations in skin microbiome are site dependent. In forehead,
cheek, and forearm, the author found an age-associated de-
cline in Propionibacterium abundance, proposedly related to
the decrease in sebaceous gland activity which is typical of
older age. Indeed, Wu et al. confirmed not only in Sardinian
elderly (Italy) but also in centenarians from the same area that
Propionibacterium in forehead and palm microbiomes de-
creases along with the advancement of age, with other genera
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(i.e., Prevotella, Rothia, and Veillonella) becoming overrep-
resented. Wu et al. also took into account the eukaryotic skin
population alongside the bacterial one: skin fungi population
seemed to be less affected by the advancement of age, with
Malassezia consistently dominating the various skin sites. On
the contrary, it has been demonstrated that aging significantly
affects the proportion of the abundance of the Archaea coun-
terpart of the skin microbiome, which increases in older age in
relation to the lower sebum levels and reduced moisture [100].

More studies, on larger and more geographically spread
populations, will offer a comprehensive view of the
microbiome changes that occur along with the aging process
on the human skin, ultimately providing useful and exploit-
able information in the field of treating and preventing
age-related skin disorders. For instance, elderly is a subgroup
of patients with distinct atopic dermatitis manifestation with
respect to atopic infants, children, and adults [101], with the
atopic problem possibly opening the way to bacterial skin
infections [102]. Since it is known that skin microbiome,
and in particular an increase colonization by Staphylococcus
aureus, contributes to the exacerbation of atopic dermatitis
[103], it is necessary to understand if and how age-related
modification in the skin microbiome, in the different sites,
can favor a skin microecosystem in which atopic manifesta-
tions, as well as their infectious consequences, are promoted.

Vaginal microbiome in aging women

Vaginal microbiome is probably the most studied human mi-
crobial ecosystem after the gut, because of its well-known
relationship with the women health status [104].
Consistently across the whole literature, a vaginal environ-
ment dominated by Lactobacillus species is associated with
vaginal health, with this group of bacteria being considered as
keystone for the ecological balance of the vaginal environ-
ment. Lactobacillus species are responsible for the production
of metabolites such as lactic acid and hydrogen peroxide,
which contribute to the maintenance of the healthy value of
vaginal pH, as well as the creation of a microenvironment in
which colonization by anaerobic and microaerophilic patho-
gens is prevented [105–107]. The recent extensive application
of NGS to vaginal samples across different population and
physiological conditions allowed for the categorization of
vaginal microbiome into a discreet number (5 to 8) of com-
munity state type (CST), characterized by different degree of
dominance of different Lactobacillus species (i.e., L. iners,
L. crispatus, L. gasseri, L. jensenii) or by the absence of such
dominance. CSTs deprived of a strong Lactobacillus domi-
nance and enriched in other, often anaerobic, bacteria (e.g.,
Streptococcus, Atopobium, Megasphaera, Prevotella) were
associated to a higher probability of disease or poor health
outcome, such as bacterial vaginosis and pre-term delivery
[108–111]. In spite of these few possible configurations, the

vaginal ecosystem strikes as particularly dynamic and un-
dergoes compositional and functional changes along the
woman life, in relation to hormonal changes, the most evident
being puberty, pregnancies, and the beginning of menopause.
Smoking, diet, hygiene, and sexual practices add complexity
to the description of the vaginal microbiome dynamics [104,
112]. While puberty is known to represent the moment of the
most dramatic changes in the vaginal microenvironment
[112], pregnancy is of outmost interest because of the
proven contribution of vaginal microbiome to pre-term
labor and delivery [110, 111]; menopause-related chang-
es in vaginal ecosystem have started to interest research
only during the last decade [113–118].

Menopause causes modifications of the vaginal environ-
ment that include decrease of the mucus layer width, estrogen
level, and glycogen production. Such physiological changes
are accompanied by modifications in the resident microbiome
that includes a depletion in the proportion of Lactobacillus
members, as well as a general decrease in the absolute number
of colonizing bacteria and, consequently, an increase in bio-
diversity and vaginal pH [112, 118]. The focus of the majority
of the research in this field has been how these microbiome
changes are connected with genitourinary symptoms that are
experienced by a large number of aging post-menopausal
women. Indeed, vulvovaginal atrophy (VVA) and genitouri-
nary symptoms of menopause (GSM, including burning, dry-
ness, irritation, and so on) are experienced by approximately
half of western post-menopausal women [112, 119]. It was
reported that post-menopausal women with none to mild
symptoms had significantly higher Lactobacillus predomi-
nance, and consequently lower biodiversity, than those
complaining of more severe vaginal symptoms, whose sam-
ples were found enriched in bacteria such as Prevotella,
Porphyromonas, Peptoniphilus, and Bacillus [114]. Later
on, Brotman and colleagues confirmed that post-menopausal
women with the most severe VVA showed a vaginal CST
belonging to the group IVA, i.e., the one without
Lactobacillus dominance and enriched in Anaerococcus,
Peptoniphilus, Prevotella, and Streptococcus. Even if such
studies did not provide answer to the chicken-and-egg ques-
tion (VVA and GSM-related changes in microbiome cause or
are caused by menopausal symptoms?), it was a natural evo-
lution of the research field to wonder if therapies improving
menopause-associated disturbances also had some effect on
vaginal microbiome. Indeed, several studies showed that hor-
mone replacement therapy, besides being effective in reducing
menopausal symptoms [120, 121], influences the vaginal
microbiome in a positive manner, by increasing the
Lactobacillus amount and favoring the re-establishment of a
vaginal microenvironment more similar to the one found in
pre-menopausal women, i.e., higher glycogen production and
lower pH [112, 117, 118]. Based on this, even if the relation-
ship between estrogen level and vaginal microbiome in
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menopausal women has yet to be thoroughly explored, it is
suggested that the maintenance of a vaginal microbiome dom-
inated by Lactobacillus is relevant for ensuring a good quality
of life for post-menopausal women. For this reason, the pos-
sibility of probiotic usage, orally or locally administered, dur-
ing the management of VVA in aging women has been pro-
posed and explored [122, 123]. A few studies highlight-
ed that Lactobacillus-based products have the ability to
increase the Lactobaci l lus dominance in post-
menopausal women [124–126].

Genito-urinary tract microbiome and aging

Advances in our understanding of human microbiota especial-
ly GM and host interaction has stimulated our interest in other
mucosal sites such as the genito-urinary tract microbiome
(GUTM). Bladder and lower urinary tract were misunderstood
as sterile for a long time. Although in normal physiological
conditions, the commensals in GUTMwere less abundant but
highly variable compared with that in the gut [127], there are
several genera commonly observed, such as the most domi-
nant genera Lactobacillus and Gardnerella in healthy female
cohorts [128, 129] and Lactobacillus and Streptococcus in
healthy male cohorts [130, 131]. However, there are not al-
ways consistent results among studies for the commensals in
the GUTM, which may be caused by the different types of
samples and detection methodology [132]. Despite significant
differences in gross anatomy and physiology of the lower
urinary tract for females and males [133], the urine microbiota
in the male and female are dispersed clustered into several
“urotypes” rather than have a clearly separated clustering
[134]. It is worth noting that the diversity of urine microbiota
in healthy men is larger than that of healthy women [134].
Although the urine microbiota may have linkage with vaginal
microbiota and seminal microbiota (which was well summa-
rized in review) [135], it was not strongly influenced by the
distal regions of the urogenital tract. Whereas a significant
overlap between the bladder and vaginal microbiota was iden-
tified in a recent study [127], which reveals an interconnected
GUTM. Currently, there is no direct comparison between the
bladder microbiota (or clean-catch urine microbiota) and sem-
inal microbiota, while comparison of the bacterial communi-
ties in semen with those of first catch urine did demonstrate
that these specimens shared one-third of species [136]. Till
now, there remain some doubts on whether different urogen-
ital sites harbor a unique microbiome.

Many clinical situations such as urinary tract infection
[137], interstitial cystitis [138], urinary incontinence [129],
the formation of kidney stones (urolithiasis) [139], and even
genito-urinary tract cancer such as bladder cancer [140], pros-
tate cancer [141], and kidney cancer [142] have some corre-
lations with the altered GUTM. Those clinical conditions are
more relevant to the aging population, for example, the high

incidence of urinary tract infection was 40% of men and 28%
of women in their 70s [143, 144]. During the aging process,
host physiological and lifestyle changes, for instance, the IS
function declining, sexual activity frequencies decrease, more
frequent medication exposure, may affect the GUTM. There
are studies that demonstrated the age-related urine microbiota
variations in female, similar with the GM which also showed
age-related variations during aging [36, 145, 146]. A study
that characterized the urinary microbiota in elderly (average
71.8 years) and younger females in China (average 50.0 years)
has found significant differences between them [147]. The
relative abundance of Lactobacillus and Bifidobacteria was
negatively related to age, while Peptococcus was positively
related to age. Moreover, the correlation between a higher
level of Lactobacillus and diabetes was identified in the elder-
ly, and lower levels of Peptoniphilus and Dialister were cor-
related with asymptomatic bacteriuria. While another study in
the UK did not find significant correlations between age and
diversity of the bladder microbiome in healthy females [148],
the lactobacillus was observed related to the pre-menopausal
females, and Mobiluncus was related with post-menopausal
females. A study focused on the urine microbiota in the uri-
nary incontinence female and control has found that urine
microbiota formed six community types (urotype), which
was not significantly associated with the urinary incontinence
but was age-related [129]. The young females (< 51 years)
have a higher proportion of individuals with Lactobacillus-
dominated urotype structure (with relative abundance of
Lactobacillus > 89%). Interestingly, the younger females
without the Lactobacillus-dominated urotype were correlated
with a significantly high incidence of urinary incontinence but
not for the older females. Another similar study that surveyed
the urine microbiota only in the urinary incontinence female
showed that the younger females (average 55.8 years) have a
higher incidence of being positively detected with urine mi-
crobes compared with the older female (average 61.3 years),
and the Enterobacteriaceae-dominant urotypes were detected
within females with an average age of 70 years compared with
the Lactobacillus-dominated or Gardnerella-dominant
urotypes with an average age around 54 years [149]. A more
recent study describes the less disperse cluster of bladder mi-
crobiota in younger women (average 51 years) when com-
pared with the older female (average 59 years) [150].
Enterobacteriaceae and other potential pathogens including
Pseudomonas and Staphylococcus are consistent with clinical
observations that the older female has an upward trend of
getting urinary tract infection [151]. A study that used 16S
rRNA qPCR and cultivation methods indicated that the “de-
tectable” urine bacteria are not significantly associated with
age; however, Jonquetella, Parvimonas, Proteiniphilum, and
Saccharofermentans were found enriched in aged individuals
over 70 years [152]. Furthermore, an association has been
noted between male age and seminal bacteria; the presence
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of environmental bacteria such as Pseudomonas ,
Janthinobacterium , Gillisia , Flavobacterium , and
Acidovorax was associated with older age instead of vaginal
bacteria such as L. crispatus, L. iners, G. vaginalis, Dialister,
Atopobium vaginae, andMobiluncus curtisii that seemed to be
associated with younger age [153]. Although there is still no
comprehensive study of the aging-related urine microbiota,
the impact of the microbiota on genito-urinary tract homeo-
stasis and disease development is emerging. Future stud-
ies will improve our understanding of the causative re-
l a t ionsh ip be tween the def ined mic robes and
genito-urinary tract diseases. And undoubtedly, age
should be considered when we try to use the urine
microbiota as a predictor of disease or treatment.

A summary of the findings on the association of aging with
changes in microbiomes from the different body sites de-
scribed in this review is reported in Table 2.

Conclusions and perspectives

The human body and its microbiome represent an integrated
meta-organism, which results from million years of reciprocal
adaptation and functional integration conferring significant
advantages for both parties. All the members of this human
microbiota participate in host physiology and change accord-
ing to development and late in the life contributing to health

and fitness. The human IS is influenced by the microbiota
assembly, composition, diversity, and dynamics, and the
interaction of all these features plausibly contributes to
the process of inflammaging (Fig. 2). In the last decades,
we experienced an explosion of studies on the role of GM
in health and disease and the relationship between GM
and the other organs and tissues also due to an improve-
ment of the sequencing methods that can be applied to the
study of microbiota.

Though the knowledge on human holobiont is increasing
as a consequence of the improvement in the assessment of
both correlation and causal relationships of the collective
microbiome and host functions in health and disease, the com-
plex relationship between humans and the trillions of bacterial
cells that form our microbiome remains largely unexplored.
The consequences for medicine are challenging, since it is
likely that our multifaceted symbiosis affects each aspect of
health. Manipulating the intestinal microbiota and
microbiome may be helpful for preserving health and treating
disease, particularly among older adults. On the contrary, the
relationship between the microbiome of other human ecolog-
ical niches (i.e., oral cavity, lung, skin, vagina, and
genito-urinary tract) and the progress of other clinical diseases
that are common among older adults remains an important
area of future studies. It is also necessary to consider how
biological age (assessed by health status and life expectancy)
shapes the microbiota and IS and vice versa. Moreover, the

Fig. 2 The age-related microbiota changes (dysbiosis) at each body site.
Dysbiosis may contribute to inflammaging because long-term stimulation
of IS may cause immunosenescence. Such inflammatory state might

make the host more sensitive to bacteria, and in turn, alterations in the
composition of microbiota are associated with the progression of various
pathological conditions in older adults [19]
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complexity of the interactions within the microbiome of the
different body sites and betweenmicrobes and hosts presents a
major challenge; a more concerted and predictive theoretical
framework is imperative to progress.

Efforts to standardize specimen preparation and analytical
protocols and to increase the availability of the growing
body of data should be increased. These technical efforts
as well as robust clinical research will improve characteriza-
tion of the variation in the global human microbiomes, func-
tions of redundancy, disease biomarkers, immigration, effect
of lifestyles, and trajectories of development, all of which
will establish the basis to understand the progression from
health to disease and to efficiently discover new preventive
strategies and therapies.
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