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ABSTRACT Sequencing wastewater may be useful for detecting pathogens and as-
saying microbial water quality. We concentrated, extracted, and sequenced nucleic
acids from 17 composite influent wastewater samples spanning seven southern Cali-
fornia wastewater treatment facilities in May 2020. Bacteria were the most propor-
tionally abundant taxonomic group present, followed by viruses and archaea.

Monitoring sewage provides population-level data on the diversity and spread of
pathogens alongside clinical testing to assist in disease outbreak response (1–4).

This approach may be able to determine the disease burden of a population, even
when asymptomatic individuals are present (5). Likewise, the metagenomic sequencing
of wastewater may also be useful in monitoring microbial water quality (6, 7) and the
simultaneous detection of multiple pathogens.

Seventeen 24-hour composite wastewater influent samples were collected from
seven locations across southern California during May 2020. In San Diego County, we
collected samples from the South Bay Water Reclamation Plant (WRP), Hale Avenue
Resource Recovery Facility, North City WRP, and Point Loma Wastewater Treatment
Plant. In Los Angeles County, we collected samples from the San Jose Creek WRP,
Hyperion WRP, and Joint Water Pollution Control Plant. We stored samples at 4°C for 0
to 40 days until extraction (Table 1).

We followed a viral nucleic acid concentration and extraction protocol based on Wu
et al. (8). We pasteurized 42.5 ml of wastewater at 60°C for 90 min and then filtered
samples with a 0.22-�m filter (Corning, Corning, NY) into a tube containing 4.2 g
polyethylene glycol 8000 (PEG-8000) and 0.95 g NaCl (Thermo Fisher, Waltham, MA).
We then centrifuged the filtrate at 12,000 � g for 2 h at room temperature, aspirated
off the supernatant, and centrifuged it again for 10 min. We removed the remaining
supernatant and added 1.5 ml TRIzol (Thermo Fisher, Waltham, MA) to extract the
nucleic acids, transferred the mixture to a 2-ml tube, and incubated it for 5 min at room
temperature. We added 300 �l chloroform, vortexed the mixture for 1 min, incubated
it for 5 min at room temperature, and then centrifuged it at 12,000 � g for 15 min at
4°C. We moved the aqueous phase to a new tube and added 1 volume of 4°C
isopropanol and then incubated it for 15 min at room temperature, centrifuged it at
12,000 � g for 10 min at 4°C, and then removed the supernatant. We washed the
pellets with cold 75% ethanol and then centrifuged them at 12,000 � g for 3 min at 4°C,
followed by another wash. We air-dried the RNA pellets for 10 min and then resus-
pended them in 30 �l of RNase-free water and did not treat the RNA with DNase.

We generated cDNAs with SuperScript IV reverse transcriptase (Thermo Fisher,
Waltham, MA) using the manufacturer’s protocol on 10.5 �l template RNA. All reaction
mixtures included 40 units of recombinant human placenta RNase inhibitor (New
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England BioLabs, Ipswich, MA). We shipped cDNAs to the Microbial Genome Sequenc-
ing Center (MiGS, Pittsburgh, PA), which handled library preparation and sequencing.
MiGS prepared paired-end libraries with the Flex for Enrichment kit (Illumina, San
Diego, CA) and then sequenced the libraries as 2 � 150-bp paired-end reads on an
Illumina NextSeq 550 instrument. We used bbduk (9) with default parameters for
quality trimming and to remove artifacts and adapters. We assigned taxonomy to reads
with Kraken 2 (10), removed human contamination, and visualized the data with
ggplot2 (11) in R (12).

We received 45,415,020 total reads (mean, 2.67 million; range, 2.2 to 2.96 million), an
average of 33.8% of which were classified by Kraken 2 (range, 9.1 to 43.3%). Of the
classified reads, an average of 97.2% were bacterial (range, 86.1 to 99.2%), 0.08% were
archaeal (range, 0.02 to 0.26%), and 2.6% were viral (range, 0.65 to 13.4%) (Fig. 1). We
found viruses commonly present in wastewater, including CrAssphage (7) and Pepper
mild mottle virus (6) and, in low abundance, norovirus (13). As we sequenced several

TABLE 1 Descriptions of each sequenced samplea

Sample name Wastewater facility SRA accession no. Collection date
Days stored at 4°C
before extraction Latitude/longitude

Joint Water PCP 5.28.20-13 Joint Water PCP SRR12352293 28 May 2020 13 33.801023 N, 118.284708 W
Hyperion 5.27.20-14 Hyperion WRP SRR12352294 27 May 2020 14 33.925506 N, 118.430709 W
South Bay 5.28.20-13 South Bay WRP SRR12352295 28 May 2020 13 32.543403 N, 117.067960 W
San Jose Creek 5.28.20-1 San Jose Creek WRP SRR12352296 28 May 2020 1 34.033844 N, 118.023501 W
Joint Water PCP 5.28.20-1 Joint Water PCP SRR12352297 28 May 2020 1 33.801023 N, 118.284708 W
Hyperion 5.28.20-1 Hyperion WRP SRR12352298 28 May 2020 1 33.925506 N, 118.430709 W
Point Loma 5.29.20-0 Point Loma WTP SRR12352299 29 May 2020 0 32.679592 N, 117.246719 W
Hyperion 5.28.20-13 Hyperion WRP SRR12352300 28 May 2020 13 33.925506 N, 118.430709 W
North City 5.29.20-0 North City WRP SRR12352301 29 May 2020 0 32.878986 N, 117.198984 W
North City 5.29.20-12 North City WRP SRR12352302 29 May 2020 12 32.878986 N, 117.198984 W
Point Loma 5.27.20-14 Point Loma WTP SRR12352303 27 May 2020 14 32.679592 N, 117.246719 W
South Bay 5.28.20-1 South Bay WRP SRR12352304 28 May 2020 1 32.543403 N, 117.067960 W
Hale Ave 5.5.20-36 Hale Avenue RRF SRR12352305 5 May 2020 36 33.105224 N, 117.113170 W
Hale Ave 5.1.20-40 Hale Avenue RRF SRR12352306 1 May 2020 40 33.105224 N, 117.113170 W
Hale Ave 5.4.20-37 Hale Avenue RRF SRR12352307 4 May 2020 37 33.105224 N, 117.113170 W
San Jose Creek 5.29.20-12 San Jose Creek WRP SRR12352308 29 May 2020 12 34.033844 N, 118.023501 W
Point Loma 5.28.20-13 Point Loma WTP SRR12352309 28 May 2020 13 32.679592 N, 117.246719 W
a PCP, pollution control plant; WRP, water reclamation plant; WTP, water treatment plant; RRF, resource reclamation facility.

FIG 1 Stacked bar plot indicating the relative abundances of taxa in each sample. The color denotes the taxon, and sample names contain information about
each sample, including facility name, sampling date, and number of days stored at 4°C.
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bacteriophages with DNA-based genomes, there was likely DNA contamination in our
RNA extractions. Interestingly, we detected very few reads of viruses in the family
Coronaviridae, possibly due to low sequencing depth, storage time, or extraction
method (4).

Data availability. The raw metagenomic sequence data are available in the NCBI

Sequence Read Archive under BioProject number PRJNA649747.
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