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SUMMARY

Electrocardiograms (ECGs) arewidely used to clinically detect cardiac arrhythmias (CAs). They are also

being used to develop computer-assisted methods for heart disease diagnosis. We have developed a

convolution neural networkmodel to detect and classify CAs, using a large 12-lead ECGdataset (6,877

recordings) provided by the China Physiological Signal Challenge (CPSC) 2018. Our model, which was

ranked first in the challenge competition, achieved a median overall F1-score of 0.84 for the nine-type

CA classification of CPSC2018’s hidden test set of 2,954 ECG recordings. Further analysis showed that

concurrent CAs were adequately predictive for 476 patients with multiple types of CA diagnoses in

the dataset. Using only single-lead data yielded a performance that was only slightly worse than using

the full 12-lead data, with leads aVR and V1 being the most prominent. We extensively consider these

results in the context of their agreement with and relevance to clinical observations.
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INTRODUCTION

Cardiac arrhythmias (CAs) are harbingers of cardiovascular diseases and the potential associated mortality

(Kibos et al., 2013). CAs are usually diagnosed from electrocardiograms (ECGs), a noninvasive, inexpensive,

and widely used clinical method for monitoring heart function. The diagnosis of CAs is based on wave-like

features, such as the P wave, QRS wave, and T wave, of ECGs. A complete ECG usually contains recordings

from six limb leads (I, II, III, aVR, aVL, aVF) and six chest leads (V1, V2, V3, V4, V5, V6), with each lead

measuring electrical activity from a different angle of the heart, covering both the vertical plane (limb leads)

and the horizontal plane (chest leads) (Malmivuo et al., 1995; Wilson et al., 1954).

The different leads exhibit distinct features of ECG signals that are associated with specific types of CA. For

example, atrial fibrillation (AF) is characterized by the fibrillatory atrial waves and irregular conduction of

QRS (Bayes de Luna et al., 1988; Platonov et al., 2012). Left bundle branch block (LBBB) is diagnosed by

the distinct QRS morphology at leads I, aVL, V1, V2, V5, and V6, whereas right bundle branch block

(RBBB) is diagnosed by the rsR0 pattern at V1 and V2 (Surawicz et al., 2009). First-degree atrioventricular

block (I-AVB) is defined as constant PR intervals longer than 0.2 s (Wesley, 2016). The premature atrial

contraction (PAC) and premature ventricular contraction (PVC) indicate the electrical impulse from an

abnormal site; specifically, the P wave or QRS morphology of PAC and PVC differs from that in normal heart

beats (Garcia and Miller, 2004; Kobayashi, 2018). ST segment is abnormal if either ST-segment elevation

(STE) or ST-segment depression (STD) is greater than 0.1 mV (Hanna and Glancy, 2011).

To reliably recognize these complex CA-associated ECG characteristics, considerable training is required.

Indeed, studies have shown that internists or cardiologists sometimes misdiagnose CA types (Hannun

et al., 2019; Shiyovich et al., 2010). The significant growth of ECG examination, which increases physicians’

workload, exacerbates the problem. This problemmight be alleviated by developing computer algorithms

that produce accurate and automatic diagnosis to assist the physicians. Although such a task would be diffi-

cult owing to the large variance in the geometrical and physiological features of ECG signals (Hoekema

et al., 2001), significant progress has been made, especially in recent years (Lyon et al., 2018).

Two general approaches are available for developing an automatic CA diagnostic tool. The first splits ECG

signals into units of the heartbeat, or cycles of the characteristic ECG waveforms. Thus, even with a small

number of subjects, this beat-based approach can generate a large amount of data for machine learning to

train predictive classification models. However, extracting ECG morphological features to delineate ECG
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signals is challenging because it is often an imprecise undertaking (Lyon et al., 2018). Although prediction

accuracies as high as >99% have been reported in beat-based studies (Lyon et al., 2018), they could be

confounded by both training and test beats coming from the same individuals. This issue is illustrated

by a study in which test beats were taken from patients who were not included in the training set;

the cross-validation accuracy of classification for six types of CA decreased from 99.7% to 81.5%

(Qin et al., 2017).

The MIT-BIH Arrhythmia Database (MIT-BIH AD) (Goldberger et al., 2000; Moody and Mark, 2001) and the

UCI Machine Learning Repository: Arrhythmia Data Set (UCIAD) (Guvenir et al., 1997), which, respectively,

contain only 48 and 452 subjects, have been the source of publicly available ECG data for most previous CA

prediction studies. However, databases with such small numbers of subjects can cause over-fitting

problems for classification, especially for neural network algorithms (Begg, 2006). Data over-fitting can

also arise from significantly unbalanced data, as with one or a few CA types being over-represented among

cases. These problems can produce biased results from analyses of MIT-BIH AD and UCIAD (Mustaqeem et

al., 2018; Nayak et al., 2016). For instance, in a study using UCIAD, a high accuracy (92%) of CA classification

was achieved when 80% of the data were used for the training set and the remaining 20% for the test set, but

the accuracy dropped to only 60% when the training-test split was 50-50 (Mustaqeem et al., 2018). Addi-

tional drawbacks are that ECG data in MIT-BIH AD only include two leads (e.g., leads II and V1, II and

V5, II and V4, and V2 and V4), whereas the UCIAD only has extracted features available (average width

of Q, amplitude of Q, etc.), not the raw data from 12-lead ECGs.

The second approach provides an end-to-end solution, avoiding the main difficulty of the beat-based

approach. This approach requires a very large ECG database as well as the construction of a suitable

deep learning artificial neural network to take advantage of it. Developments in both factors in recent years

have made the second approach increasingly attractive. For example, to promote open-source research,

the PhysioNet/Computing in Cardiology Challenge 2017 (CinC2017) released single-lead (lead I) ECG data

from 8,528 subjects with four types of heart rhythms (AF, normal, other rhythms, noise) to the public

(Clifford et al., 2017). Using convolutional neural network (CNN) plus three layers of long short-term

memory (LSTM, one kind of recurrent neural network [RNN]), Xiong et al. (2018) produced the top

performance in CinC2017 with an F1 score (the harmonic mean of the precision and recall) of 0.82 on its

hidden test set (3,658 subjects).

Similar to CinC2017, the China Physiological Signal Challenge 2018 (CPSC2018), hosted by the seventh

International Conference on Biomedical Engineering and Biotechnology (Liu et al., 2018), released a large

ECG database for free download and set aside a hidden test set to assess models submitted by challenge

participants from around the world. In contrast to CinC2017, CPSC2018 used 12-lead ECG data and

subjects were grouped according to normal heart rhythm and eight types of CA: AF, I-AVB, LBBB,

RBBB, PAC, PVC, STD, and STE. This represents the largest 12-lead ECG database with the most labeled

CA types in the public domain to date. Here, we report a deep learning artificial neural networkmodeling of

the CPSC2018 ECG data, and the results that won the first place in the competition.
RESULTS

Construction of a CNN-Based Model of CAs

Figure 1 depicts the architecture of our model for automating recognition of the CAs labeled in the

CPSC2018 dataset. The model and the data used are described in more detail in Transparent Methods

of the Supplemental Information. Briefly, the model consists of five CNN blocks, with several other types

of neural network layers appended to achieve optimal performance while reducing over-fitting. To derive

the model, CPSC2018’s open-source ECG dataset was randomly divided into 10 equal folds, with 8 of the

10 folds serving as the training set and each of the two remaining folds serving as the validation set and the

test set, respectively. This 10-fold cross-validation procedure of machine learning was repeated to produce

hundreds of trainedmodels, and the models producing the best validation results were selected for further

evaluation on the test folds. For each model, a subject, identifiable by a unique ID number, would appear

only once, exclusively in one of the three subsets (training, validation, or test). Single-lead models with the

same architecture were similarly derived using this procedure. An ensemble model combining the best

validation models of both 12-lead models and single-lead models was submitted to compete in the

CPSC2018 challenge.
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Figure 1. The Architecture of Deep Learning Artificial Neural Network for 12-Lead ECG CA Detection and

Classification

Layers and blocks are specified in rectangle boxes; ‘‘X5’’ indicates that five CNN blocks are tandem connected before

connecting to the bidirectional RNN layer, which is a gated recurrent unit layer. The output layer at the bottom contains

the probabilities predicted by the model for each of the nine types of the CA classification. The type with the highest

probability is the type predicted by the model for the input ECG recording.
Best Validation Models on 10-Fold Tests and Ensemble Model on Hidden Test

In Table 1, for each CA type the median accuracy, AUC (area under the receiver operating characteristic

curve), and F1-score for the ten 10-fold tests from the best validation models are compared with those

of the ensemble model, as well as with the F1-score of the ensemble model on the hidden test set of

CPSC2018. The comparisons show that the ensemble model performed somewhat better than the best

validation models, which is expected because the former combined and optimized the latter to produce

the best 10-fold test results (see Methods). In addition, the ensemble model’s performance was quite

stable across all CA types, from the publicly available data to the hidden test data, reflecting the fairly

similar compositions of the two sets of data, as mentioned in Transparent Methods.

Table 1 also reveals differential difficulties in predicting CA types. Namely, the prediction accuracy

decreased from AF, bundle branch blocks, and premature contractions to ST abnormalities, with the

normal type being one of themore difficult-to-predict types. Themodel’s prediction for STE had the lowest

F1-score (0.5–0.6), which may be due in part to physicians’ variable opinions on how to diagnose STE

(McCabe et al., 2013). The same trend, including the prediction of the normal type, was observed in all

other top-performing models of CPSC2018 (Table S1). Indeed, almost all the top models produced very

high F1-scores (>0.9) for AF and bundle branch blocks. Our model had significantly better predictions

than the other models for several CA types, especially PAC, PVC, STD, and STE. This outcome explains

how we outperformed others (Table S1). However, it should be noted that all top models performed

well (overall F1-score > 0.8), and the difference between our model and the second-place model was

minimal (Table S1).
Concurrent CA Types

One reason that models perform less accurately for certain CA types is that multiple CA types are predicted

with almost equal probabilities for some patients. Figure 2 displays the probabilities output by the best

validation models for ECG subjects when they were in the test fold of the 10-fold tests. As may be seen,

normal, STD, and STE lack a probability score that can make them stand out from the other eight types,

which is consistent with the model’s performance results presented in Table 1. Further analysis on model

probabilities showed that, for many patients with AF, a common concurrent CA was RBBB, whereas

RBBB was often concurrent with PAC and PVC, in addition to AF (Figure 2). These probability results of

concurrent CAs agreed well with the statistics for the 476 multi-labeled subjects; specifically, the three
iScience 23, 100886, March 27, 2020 3



Best Validation Models Ensemble Model

CA Typ Median

Accuracy

Median AUC

(95% CI)

Median

F1-Score

Median

Accuracy

Median AUC

(95% CI)

Median

F1-Score

Hidden Set

F1-Score

Normal 0.940 0.890 (0.810–0.942) 0.795 0.949 0.867 (0.832–0.973) 0.808 0.801

AF 0.969 0.928 (0.902–0.985) 0.897 0.983 0.963 (0.914–0.993) 0.944 0.933

I-AVB 0.972 0.899 (0.864–0.988) 0.865 0.977 0.950 (0.875–0.990) 0.899 0.875

LBBB 0.990 0.914 (0.748–1.000) 0.821 0.995 0.942 (0.763–1.000) 0.899 0.884

RBBB 0.955 0.956 (0.887–0.988) 0.911 0.952 0.946 (0.871–0.976) 0.903 0.910

PAC 0.957 0.867 (0.749–0.955) 0.734 0.963 0.920 (0.779–0.981) 0.797 0.826

PVC 0.970 0.928 (0.841–0.988) 0.852 0.977 0.932 (0.864–0.996) 0.874 0.869

STD 0.951 0.878 (0.797–0.972) 0.788 0.959 0.906 (0.815–0.970) 0.834 0.811

STE 0.976 0.707 (0.558–0.995) 0.509 0.977 0.773 (0.603–0.993) 0.600 0.624

Table 1. Comparison of Model Performances on Tests

Results are from the best validation models and the ensemble model on the ten 10-fold tests, except for those in the last column (boldfaced), which are the

ensemble model’s median F1-scores for the hidden test set of CPSC2018 reported at its website http://2018.icbeb.org/Challenge.html, which did not provide

accuracy or AUC results.
most multi-labeled incidences in these subjects were AF/RBBB, RBBB/PAC, and RBBB/PVC (Table 2). An

ensemble model without these 476 multi-labeled subjects being added back to the training set

(see Methods) performed well in predicting these multiple types of CA (Tables S3 and S4), indicating

the model’s ability to capture ECG features of concurrent CAs. These results are also generally compatible

with clinical observations that rate-dependent (phase 3) block during ectopic atrial beats or AF can lead to

RBBB (Nielsen et al., 2010; Gertsch, 2016). However, a larger dataset of multi-labeled subjects is required to

fully evaluate our model’s performance on concurrent CA diagnoses.
Model Performances with Single-Lead Data

The median F1-scores for models for a single lead in the 10-fold tests are presented in Figure 3. The

performances for the best validation models using the 12-lead data in Table 1 were largely replicated by those

using only single-lead data. In most cases, only minimal changes of F1-scores for the classification of individual

CA types were noted between the analyses of 12-lead and single-lead ECGs. The results also indicate aVR was

one of the best-performing single leads, with its performance ranking first in the overall average and the three

individual CA types (normal, AF and STD), as well as within the top three for all CA types except STE and PAC.

Another well-performing single lead is lead V1, which ranked first in three types (I-AVB, RBBB, and PAC) but did

worse thanmost other leads for other types. In comparison, lead I,whichwas usedbyAppleWatch (Apple, 2019),

was not as remarkable in our tests. Lead II, which is favored among the 12 leads by physicians for a quick impres-

sion of an ECG recording due to its clearest signal (Beebe and Myers, 2012), ranked fifth in the overall average

but was statistically no different from the best performing leads (p value of paired t test < 0.05). These results

are largely supported by a Bayes factor analysis (Goodman, 1999) that rigorously assessed statistical differences

between these leads (see Tables S5–S7).

These performance rankings suggest that the current model identified the lead-specific morphology of the

various CA types. For examples, the deep and broad S-waves in lead V1 and the broad clumsy R-waves in

V6 have been used for the diagnosis of LBBB (Podrid et al., 2015), and V1 and V6 were identified as

having the leading performance among the single leads. Meanwhile, the diagnostic criteria of RBBB

included the rSR0 pattern in leads V1 and V2 (Chugh, 2014), which were also selected as top-performing

single leads.
DISCUSSION

In recent years, deep learning of artificial intelligence (AI) has been successfully used to make medical

diagnoses (Esteva et al., 2019). The present work for CA detection and classification is related to the
4 iScience 23, 100886, March 27, 2020
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Figure 2. Probabilities Output by the Best Validation Models in the Test Folds of the 10-Fold Tests

On the right is the color-coded probability scale.
competition in CinC2017 (Clifford et al., 2017) and recently published studies (Clifford et al., 2017; Hannun

et al., 2019). A direct comparison of performance between different studies is difficult because not all of

them used publicly available ECG data and different CA types and type numbers were predicted. The

complexity of these deep learning models also differed; for example, our model had a total of 18 neural

network layers, compared with 33 (Hannun et al., 2019) and 5–7 (Clifford et al., 2017) in others.

Our model can be best compared with one reported very recently (Yao et al., 2020). Themodel of that study

used an architecture that is quite similar to ours, albeit with some significant differences in detail as

discussed in Transparent Methods, and its performance on the same CPSC2018 hidden test set was

reported. As the comparisons in Table S8 showed, Yao et al.’s model achieved a better F1-score than

our best validation models for most of the CA types, but the reverse was true when it was compared

with our ensemble model. This reinforces the notion that an ensemble model can often achieve an even

better performance than those achievable by individual models alone.

Interestingly, all these recent studies achieved an overall F1-score of 0.82–0.84 in predicting CA types.

Although not fully tested in real-world scenarios, AI-based ECG diagnosis of CAs has been shown to

significantly improve diagnosis accuracy, compared with general physicians and cardiologists (Hannun

et al., 2019; Shiyovich et al., 2010) (also see Table S2 for a very small sampling). Therefore, these AI

models are capable of reducing erroneous diagnoses and medical overload. Although this outcome is

very encouraging, it is sobering to remember that until most of the ‘‘ground truth’’ CA diagnoses

used to derive AI models are made by expert cardiologists, further improvement of model accuracy

may be limited.

Our analyses suggest that the models built on single-lead information could predict CA types with minimal

differences in performance from those based on 12 leads. The clinical diagnostic criteria of CA types are

often lead specific. The top-ranking single lead for RBBB or LBBB in our model was compatible with the

leads in the diagnostic criteria for RBBB and LBBB (Surawicz et al., 2009), solidifying the validity of the
iScience 23, 100886, March 27, 2020 5



AF I-AVB LBBB RBBB PAC PVC STD STE

AF 0 0 29 172 4 8 33 2

I-AVB 0 8 10 3 5 6 4

LBBB 0 0 10 6 3 4

RBBB 0 55 51 20 19

PAC 2 3 6 5

PVC 0 18 2

STD 0 2

STE 0

Table 2. Label Count Statistics of the 476 Multi-Labeled Subjects in the Released CPSC2018 Dataset

Only the upper triangle portion of the symmetrical concurrent CA label counts is shown. The three largest counts are bold-

faced.
present AI diagnostic model. The performance of aVR, a lead that is often clinically ignored, in our AI model

is intriguing and deserves attention. The leads I, II, and V1 are conventionally used as the modified leads in

continuous monitoring or mobile devices for ECG (Apple, 2019; Brunner et al., 2010). In our AI model, aVR

could predict several CA types with better performance than the conventional leads. Rather than consid-

ering reciprocal information from the left lateral side, the purpose of lead aVR is to obtain specific informa-

tion from the right upper side of the heart, including the outflow tract of the right ventricle and the basal

part of the septum. The vector of lead aVR is parallel to the anatomical and corresponding electrical axis

from atrial base to ventricular apex, and thus it may maximize the electrical signals of atrial and ventricular

depolarization. These factors may give the unique role of aVR to diagnose CAs with a potential mechanism

to outperform the other leads. In comparison, lead I, which is used in Apple Watch for AF detection

(Krueger, 2018), did not perform as well in our analysis. Our results suggest that the best predictive

single lead for different CA types could be different for clinical applications. Our results may provide an

impetus for future studies to investigate the potential use of lead aVR in different CA types and ECG

devices (wearable or portable).

CAs are complex and concurrent CA types are not uncommon, especially for those that are related in

cardiac electrophysiology. Although ECG-based CA diagnostic models have so far focused only on

single-type predictions, our analysis shows that AI is capable of multi-type CA diagnosis. Detection and

classification of concurrent CAs should be a subject for future studies, and our model is a first step in

that direction. ECGs have been shown to be capable of disease/health detection beyond CAs, including,

for example, the prediction of asymptomatic left ventricular dysfunction (Attia et al., 2019) and non-invasive

potassium tracking (Attia et al., 2016). As methods of AI machine learning continue to advance and become

friendlier for non-AI specialists to employ, we can expect ECGs to be explored for their diagnostic power in

many more diseases and clinical applications.
Limitations of the Study

Although our model produced state-of-the-art accuracy on the hidden test set of CPSC2018, which was

collected from 11 hospitals in China, it will most likely still need further refinement to achieve the same level

of performance for other ECG datasets. However, a recent study (Hannun et al., 2019) has shown that this

will probably only require transfer learning, that is, keeping the same model architecture while retraining

network weights for the new data. Additionally, other deep learning architectures may exist that can

achieve even better CA prediction accuracy and, as the comparisons with Yao et al.’s study (Yao et al.,

2020) showed, even within a similar network architecture, different models (e.g., using different number

of trainable parameters) exist to achieve similar performances. Furthermore, although different CA types

might be better modeled by using information from different single leads, it remains to be studied whether

different methods, or different network architectures, should be used for different single leads. In the

absence of a systematic evaluation approach, as well as the lack of a truly gold standard training set, as

alluded to above, these limitations are difficult to address at present.
6 iScience 23, 100886, March 27, 2020



Figure 3. The Ranked F1-Score Results of Single-Lead Models

The F1-scores (on the y axis) are from the single-lead models performed on the 10-fold tests (see Methods). Lead aVR is

shown in red, V1 in green, I in blue, and II in orange.
METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
DATA AND CODE AVAILABILITY

The CPSC2018 ECG data and the code of our model (entry no. CPSC0236) are available at http://2018.

icbeb.org/Challenge.html.
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.100886.
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Table S1.  CPSC2018’s top 10 models and results (reported by the conference on 

http://2018.icbeb.org/Challenge.html) a. Related to Table 1. 

Rank Overall F1 Faf Fblock Fpc Fst 

1 0.837 0.933 0.899 0.847 0.779 

2 0.830 0.931 0.912 0.817 0.761 

3 0.806 0.914 0.879 0.801 0.742 

4 0.802 0.918 0.89 0.789 0.718 

5 0.791 0.924 0.882 0.779 0.709 

6 0.783 0.905 0.902 0.722 0.708 

7 0.782 0.911 0.891 0.775 0.670 

8 0.778 0.921 0.858 0.797 0.676 

9 0.776 0.906 0.876 0.773 0.711 

10 0.766 0.894 0.857 0.733 0.683 

aOur team’s results are ranked first (boldfaced), and the highest scores of each sub-

competition are indicated in red. Overall F1 is the average of the F1 values from each 

classification type. Faf: F1 of AF; Fblock: F1 of I-AVB, LBBB and RBBB; Fpc: F1 of 

PAC and PVC; Fst: F1 of STD and STE. 

  



Table S2. Comparisons of CA diagnosis between conference-assigned label, our model prediction, and consensus from three expert 

cardiologists. Related to Table 1. 

PatientID  Conf.  Model  Cardiologist 1 Cardiologist 2 Cardiologist 3 Consensus 

6268 STE Normal Normal SR (normal) SR (normal) Normal 

6215 STD AF 

Narrow-QRS 

tachycardia, SVT, 

RBBB, RAD 

PSVT PSVT PSVT 

4237 RBBB I-AVB I-AVB I-AVB, SR, TWI (V1-V4), rSR’ (V1) I-AVB,SR I-AVB 

6380 STE LBBB LBBB LBBB,SR,LAE LBBB,SR LBBB 

1452 AF RBBB AF, MVR, RBBB 
AF, RBBB, Q wave, STE with 

reciprocal change, w/o old MI 
AF, RBBB RBBB 

5398 PVC PAC PAC PAC PAC,SR PAC 

5963 STD PVC PVC PVC,SR,STD(V3-V6) PVC,SR PVC 

4278 RBBB STD Normal SR, minimal STTC(II, III, aVF) STD-like, SR Normal 

504 Normal STE STE-like SR, early repolarization SR Normal 

Conference assignments (regarded as “ground truth” for model training) and our model predictions in agreement with the consensus of 

the three expert cardiologists are highlighted in red. SVT: Supraventricular tachycardia; RAD: Right Axis Deviation; MVR: mitral 



valve replacement; SR: sinus rhythm; PSVT: Paroxysmal supraventricular tachycardia; LAE: left atrial enlargement; MI: myocardial 

infarction; STTC: ST-T change 

  



Table S3. The performances of models trained without multi-labeled dataa. Related to Table 1. 

 Best Validation Models  Ensemble Model 

CA Type Median 
Accuracy 

Median AUC 
(95% CI) 

Median 
F1-score 

 Median 
Accuracy 

Median AUC 
(95% CI) 

Median 
F1-score 

Normal 0.940 0.908 
(0.791-0. 916) 0.807  0.937 0.901 

(0. 808-932) 0.794 

AF 0.974 0.949 
(0.885-0.992) 0.915  0.980 0.955 

(0.929-0.995) 0.935 

I-AVB 0.973 0.918 
(0.852-0.991) 0.876  0.976 0.912 

(0.900-0.996) 0.879 

LBBB 0.993 0.927 
(0.748-1.000) 0.870  0.993 0.913 

(0.770-1.000) 0.862 

RBBB 0.961 0.954 
(0.895-0.981) 0.922  0.944 0.925 

(0.880-0.972) 0.885 

PAC 0.957 0.852 
(0.747-0.961) 0.747  0.965 0.889 

(0.798-0.984) 0.796 

PVC 0.973 0.926 
(0.832-0.989) 0.858  0.974 0.950 

(0.820-0.992) 0.870 

STD 0.950 0.869 
(0.800-0.966) 0.786  0.956 0.914 

(0.790-0.950) 0.821 

STE 0.974 0.667 
(0.491-0.995) 0.394  0.975 0.663 

(0.491-0.995) 0.444 

a For these models, the 476 multi-labeled recordings were not included in the training set. These results are from the best validation 

models and the ensemble model for the ten 10-fold tests. These performances are comparable with those presented in Table 1. 



Table S4. Successfully predicted CA types for the 476 multi-labeled subjects in the released 

dataset of CPSC2018a. Related to Table 2. 

 AF I-AVB LBBB RBBB PAC PVC STD STE 
AF 0/0 0/0 17/29 154/172 0/4 6/8 4/33 0/2 

I.AVB  0/0 2/8 8/10 0/3 2/5 0/6 0/4 
LBBB   0/0 0/0 2/10 4/6 0/3 0/4 
RBBB    0/0 34/55 49/51 16/20 5/19 
PAC     0/0 3/3 4/6 2/5 
PVC      0/0 6/18 0/2 
STD       0/0 2/2 
STE        0/0 

a Only the upper triangle portion of the symmetrical concurrent CA label counts is shown. The 

numbers shown are the number of correctly predicted subjects/the total number of multi-labeled 

subjects for a given CA type. The two CA types with the highest and the second highest 

probabilities are the predicted concurrent CA types. Boldfaced are the three most common 

concurrent CA labels in these subjects (see Table 2). 

 

  



Table S5. The Bayes factorsa (in log scale) of each lead’s performance (F1 score) relative to that 

of the best performing lead in each CA type (see Fig. 3). Related to Figure 3. 

    I II III aVR aVL aVF V1 V2 V3 V4 V5 V6 
Normal 3.4  0.3  14.1  -0.9  3.1  4.1  7.3  5.3  5.0  0.9  0.4  -0.1  

AF -0.8  -0.8  -0.6  -0.9  -0.3  -0.7  -0.9  0.2  1.1  0.8  -0.3  -0.2  
I-AVB 1.2  0.1  3.7  -0.4  0.1  0.8  -0.9  1.3  -0.5  0.5  1.1  -0.1  
LBBB -0.9  6.1  6.4  -0.8  0.4  6.1  -0.9  0.2  1.0  3.8  1.9  -0.1  
RBBB 18.3  15.5  22.2  11.4  4.1  18.8  -0.9  9.9  12.9  16.0  18.6  1.8  
PAC -0.9  -0.9  -0.6  -0.3  -0.1  -0.9  -0.9  -0.8  -0.7  -0.2  -0.4  -0.2  
PVC -0.8  -0.9  -0.8  -0.8  -0.6  -0.9  -0.9  -0.9  -0.9  -0.9  -0.9  -0.6  
STD 6.0  -0.9  15.4  -0.9  10.2  2.4  14.9  11.9  5.6  0.6  -0.8  -0.5  
STE 11.9  1.7  11.3  3.7  23.1  6.7  12.2  7.1  0.3  -0.9  0.4  0.8  

aComputed using the BayesFactor routine in the R package. 

  



Table S6. Leads in the top-performing group (threshold: Bayes factor<3.0) a. Related to Figure 3. 

 I II III aVR aVL aVF V1 V2 V3 V4 V5 V6 
Normal 0 1 0 1 0 0 0 0 0 0 1 1 

AF 1 1 1 1 1 1 1 1 0 0 1 1 
I-AVB 0 1 0 1 1 0 1 0 1 0 0 1 
LBBB 1 0 0 1 1 0 1 1 0 0 0 1 
RBBB 0 0 0 0 0 0 1 0 0 0 0 0 
PAC 1 1 1 1 1 1 1 1 1 1 1 1 
PVC 1 1 1 1 1 1 1 1 1 1 1 1 
STD 0 1 0 1 0 0 0 0 0 0 1 1 
STE 0 0 0 0 0 0 0 0 1 1 1 0 
Total 4 6 3 7 5 3 6 4 4 3 6 7 

aThe leads in the top-performing group, indicated by 1 (0 for those excluded from this group), for 

a given CA type are considered to perform equally well statistically based on the threshold of 

Bayes factor < 3.0, which indicates the null hypothesis of no difference from the best-performing 

lead holds. Based on this threshold, the sum total shows that leads aVR and V6 received the most 

top-performing group counts, followed by leads II, V1, and V5. 

  



Table S7. Leads in the top-performing group (threshold: Bayes factor < 0.33) a. Related to Figure 

3. 

 I II III aVR aVL aVF V1 V2 V3 V4 V5 V6 
Normal 0 0 0 1 0 0 0 0 0 0 0 0 

AF 1 1 1 1 0 1 1 0 0 0 0 0 
I-AVB 0 0 0 0 0 0 1 0 1 0 0 0 
LBBB 1 0 0 1 0 0 1 0 0 0 0 0 
RBBB 0 0 0 0 0 0 1 0 0 0 0 0 
PAC 1 1 1 0 0 1 1 1 1 0 0 0 
PVC 1 1 1 1 1 1 1 1 1 1 1 1 
STD 0 1 0 1 0 0 0 0 0 0 1 1 
STE 0 0 0 0 0 0 0 0 0 1 0 0 
Total 4 4 3 5 1 3 6 2 3 2 2 2 

aThe leads in the top-performing group, indicated by 1 (0 for those excluded from this group), for 

a given CA type are considered to perform equally well statistically based on the threshold of 

Bayes factor < 0.03, which indicates the null hypothesis of no difference from the best-

performing lead holds. Using this threshold, the sum total shows that lead V1 received most top-

performing group counts, followed by lead aVR. 

  



Table S8. The F1 scores of our best validation models and the ensemble model, and Yao et al.’s 
model.* Related to Table 1.  

CA type Best validation models Yao et al.’s model 
(ATI-CNN) Ensemble model 

Normal 0.795 0.789 0.801 
AF 0.897 0.920 0.933 

I-AVB 0.865 0.850 0.875 
LBBB 0.821 0.872 0.884 
RBBB 0.911 0.933 0.910 
PAC 0.734 0.736 0.826 
PVC 0.852 0.861 0.869 
STD 0.788 0.789 0.811 
STE 0.509 0.556 0.624 

*F1 scores better than Yao et al.’s model are shown in red. The F1 scores of our models have 
also appeared in Table 1. The F1 scores for Yao et al.’s model and the ensemble model were on 
CPSC2018’s hidden test set, while the best validation models were tested on its publicly released 
data set. 

 
  



Table S9. Numbers and sizes of hyperparameters and trainable parameters of our model. Related 
to Figure 1. 

CNN block & other 
network layers   CNN layer Kernel Kernel size Padding Stride Parameters* 

1 
1 12 3 1 1 12×(12×3+1)=444 
2 12 3 1 1 12×(12×3+1)=444 

3 (pooling) 12 24 1 2 12×(12×24+1)=3,468 

2 
4 12 3 1 1 12×(12×3+1)=444 
5 12 3 1 1 12×(12×3+1)=444 

6 (pooling) 12 24 1 2 12×(12×24+1)=3,468 

3 
7 12 3 1 1 12×(12×3+1)=444 
8 12 3 1 1 12×(12×3+1)=444 

9 (pooling) 12 24 1 2 12×(12×24+1)=3,468 

4 
10 12 3 1 1 12×(12×3+1)=444 
11 12 3 1 1 12×(12×3+1)=444 

12 (pooling) 12 24 1 2 12×(12×24+1)=3,468 

5 
13 12 3 1 1 12×(12×3+1)=444 
14 12 3 1 1 12×(12×3+1)=444 

15 (pooling) 12 48 1 2 12×(12×48+1)=6,924 
Bi-GRU - - - - - 2×12×3×(12+12+2)=1,872 
Attention - - - - - 12×2×(12×2+2)=624 

Batch-normalization - - - - - 12×2×4=96 
Dense - - - - - 9×(12×2+1)=225 
Total      28,035  

* Computed as follows: 
CNN layer: #lead×(#kernels×kernel size+bias) 
Bi-GRU: #directions×#cells×#gates×(#leads+#leads+bias) 
Attention: #leads×2×(#leads×2+bias) 
Batch-normalization: #leads×2×4 
Dense: #output×(#leads×2+bias) 
#directions = 2 (bi-direction) 
#gates = 3 (gates of reset, update, and current memory) 
#leads = 12 (12 ECG leads) 
#output = 9 (9 rhythm types) 

 

 

  



Transparent Methods 

The CPSC2018 ECG database has been described in detail by Liu and coworkers (Liu et 

al., 2018). Briefly, a total of 9,831 12-lead ECG recordings from 9,458 individuals were 

collected from 11 hospitals in China. The ECGs were sampled by a frequency of 500 Hertz for a 

few seconds to a minute, with a few exceptions including one lasting as long as 144 seconds. 

Each recording was also labeled as a normal type or one of eight abnormal CA types as 

mentioned above. The database was divided by a random 70-30 training-test split, and only the 

training set was made available to the public. Gender and age distribution between the training 

set and the test set were fairly balanced, as were the distributions of the subjects from the 11 

hospitals and the CA types (Liu et al., 2018). Of the 6,877 training-set recordings, 470 received 

two CA-type labels and six received three.  

Our model was built on a combined architecture of five CNN blocks, followed by a 

bidirectional gated recurrent unit (GRU), an attention layer (Schuster and Paliwal, 1997; Yang et 

al., 2016), and finally a dense (i.e., fully connected) layer (Figure 1). Our choice of using five 

CNN blocks and the specific number and types of neural network layers was determined by a 

limited trial and error process, as we made no attempt to examine many other potentially good 

models, either of a similar or of a very different architecture. In our model, each CNN block 

contained two convolution layers that were followed by a pooling layer to reduce the amount of 

parameters and computation in the network and to control over-fitting (Hearty, 2016). 

Furthermore, between these CNN blocks or between other independent layers, including the one 

between the last CNN block and the bidirectional GRU layer, we randomly dropped 20% of their 

connections. We chose to use CNN and RNN because of their demonstrated ability to handle 



noisy signals and time series data (Pal and Prakash, 2017; Rutkowski, 2008) and of recent 

studies that included ECG classification (Tan et al., 2018). GRU is a new form of RNN that was 

recently proposed, and it may require less training time and fewer iterations than LSTM (Cho et 

al., 2014; Chung et al., 2014). We used batch normalization to adjust and scale the input from the 

attention layer, which is in a special form proposed by Yang et al. (Yang et al., 2016) and which 

determines a vector of importance weights, to the dense layer (Ioffe and Szegedy, 2015). 

LeakyReLU activation function, a leaky version of Rectified Linear Unit, was used for each 

layer, except for the dense layer, for which Sigmoid activation function was used (Maas, 2013).  

Table S9 lists the types and sizes of hyperparameters as well as the number of trainable 

parameters for each network layer used in our model. In comparison to a recently published 

model (Yao et al., 2020), which is quite similar to ours in terms of network architecture, main 

differences include our use of one bi-directional GRU layer, instead of two layers of uni-

directional LSTM, for the RNN, and our placement of batch normalization near the end of the 

network as opposed to at the end of every CNN layer. Intriguingly, the total numbers of trainable 

parameters between the two models are vastly different, with ours being the much smaller of the 

two (~28K vs. ~5M) mainly because of very different kernel sizes used (cf. Table S9 and Yao et 

al.’s Table 3). This suggests the existence of likely numerous different deep learning models that 

can achieve similar performances, at least for the case of CA detection using ECG data. 

In our implementation, the CPSC2018 ECG data were processed in a matrix form 

consisting of three elements: the first was the subject ID; the second identified which of the 

ECG’s 12 leads was being considered; and the third contained its 72,000 ECG values, which 

corresponded to the recordings taken for the maximum recording time (144 seconds) and at a 



frequency of 500 Hertz. We padded zeroes up front for any recording that was less than the 

maximum time. The 476 multi-labeled subjects were extracted when the other 6,401 subjects 

were randomly divided into 10 equal parts to set up an 8-1-1 train, validation, and test scheme of 

machine learning. The extracted multi-labeled subjects were then added back to be included for 

the training. Our classification training was carried out using categorical-cross-entropy loss 

function and ADAM optimizer in the GPU version of TensorFlow from the Keras package 

(Abadi et al., 2016; Charles, 2013; Kingma and Ba, 2014). Models were evaluated on their 

performance on the validation set for 100 training epochs (an epoch refers to one cycle through 

the full training dataset in artificial neural network learning). The best model, which was the one 

with the smallest loss on the validation set, was further evaluated by computing its F1-score on 

the test set. The procedure was repeated 10 times to complete the 10-fold training and validation 

plus test to produce 10 best validation models. The median F1-score for each CA label, including 

the normal type, for the 10 test sets was calculated using the F1-score package from Scikit-learn 

(Pedregosa et al., 2011).  

We further investigated the performance of using only single-lead data. To do that, for a 

given lead we simply assigned zero to all the ECG values of the other 11 leads and derived the 

model using the same network architecture and the same 10-fold cross-validation plus test 

procedure described above. This process resulted in 120 best single-lead validation models and a 

median F1-score for each of the 12 single leads on each of the nine CA labels.  

To compete for CPSC2018, the 130 best validation models (10 from full-lead training and 

120 from single-lead training) were combined into one ensemble model for which the average of 

the output probabilities from the 130 models for each CA type was adjusted by a weight vector 



to produce the final probability for that CA type. The vector’s nine weights, each for each of the 

nine CA types, were optimized by a genetic algorithm (GA) (Goldberg, 1989) to produce the 

best overall median F1-score on the 10 test sets. In this GA optimization, a mating system 

consisting of 40 genes, each of a DNA length of 9, and a population of 100 was set up, and the 

mating (optimization) process was followed for 100 generations using a mating probability 

(DNA crossover) of 0.5 and a mutation probability also of 0.5. Given an input of an ECG 

recording, the CA type receiving the largest probability from the ensemble model would then be 

the type of CA predicted for that ECG recording. The ensemble model was our model submitted 

to CPSC2018, and its performances on the hidden test set (2,954 recordings) as computed and 

reported by CPSC2018 organizers are presented in Table 1. 

Supplemental references 

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., 

Dean, J., Devin, M., et al. (2016). TensorFlow: Large-Scale Machine Learning on 

Heterogeneous Distributed Systems. In ArXiv e-prints. 

Charles, P.W.D. (2013). Project Title. GitHub repository https://github.com/charlespwd/project-

title. 

Cho, K., Van Merriënboer, B., Bahdanau, D., and Bengio, Y. (2014). On the properties of neural 

machine translation: Encoder-decoder approaches. arXiv preprint arXiv:14091259. 

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated recurrent 

neural networks on sequence modeling. arXiv preprint arXiv:14123555. 

Goldberg, D.E. (1989). Genetic Algorithms in Search Optimization and Machine Learning. 

Addison-Wesley Longman Publishing. 



Hearty, J. (2016). Advanced Machine Learning with Python (Packt Publishing). 

Ioffe, S., and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by 

reducing internal covariate shift. arXiv preprint arXiv:150203167. 

Kingma, D.P., and Ba, J. (2014). Adam: A Method for Stochastic Optimization. In ArXiv e-

prints. 

Liu, F., Liu, C., Zhao, L., Zhang, X., Wu, X., Xu, X., Liu, Y., Ma, C., Wei, S., He, Z., et al. 

(2018). An Open Access Database for Evaluating the Algorithms of Electrocardiogram Rhythm 

and Morphology Abnormality Detection. Journal of Medical Imaging and Health Informatics 8, 

1368-1373. 

Maas, A.L. (2013). Rectifier Nonlinearities Improve Neural Network Acoustic Models Proc. 

icml 30 (1), 3.  

Pal, A., and Prakash, P. (2017). Practical Time Series Analysis: Master Time Series Data 

Processing, Visualization, and Modeling using Python (Packt Publishing). 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., 

Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine Learning in Python. 

Journal of Machine Learning Research 12, 2825-2830. 

Rutkowski, L. (2008). Computational Intelligence: Methods and Techniques (Springer Berlin 

Heidelberg). 

Schuster, M., and Paliwal, K.K. (1997). Bidirectional recurrent neural networks. Ieee 

Transactions on Signal Processing 45, 2673-2681. 

Tan, J.H., Hagiwara, Y., Pang, W., Lim, I., Oh, S.L., Adam, M., Tan, R.S., Chen, M., and 

Acharya, U.R. (2018). Application of stacked convolutional and long short-term memory 



network for accurate identification of CAD ECG signals. Computers in biology and medicine, 94, 

19-26 

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A.J., and Hovy, E.H. (2016). Hierarchical 

Attention Networks for Document Classification. Paper presented at: HLT-NAACL. 

Yao, Q., Wang, R., Fan, X., Liu, J., and Li, Y. (2020). Multi-class Arrhythmia detection from 

12-lead varied-length ECG using Attention-based Time-Incremental Convolutional Neural 

Network. Information Fusion, 53, 174-182. 

 


	ISCI100886_proof_v23i3.pdf
	Detection and Classification of Cardiac Arrhythmias by a Challenge-Best Deep Learning Neural Network Model
	Introduction
	Results
	Construction of a CNN-Based Model of CAs
	Best Validation Models on 10-Fold Tests and Ensemble Model on Hidden Test
	Concurrent CA Types
	Model Performances with Single-Lead Data

	Discussion
	Limitations of the Study

	Methods
	Data and Code Availability
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References



