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Abstract

Motivation: Phosphoproteomic experiments are increasingly used to study the changes in signal-

ing occurring across different conditions. It has been proposed that changes in phosphorylation of

kinase target sites can be used to infer when a kinase activity is under regulation. However, these

approaches have not yet been benchmarked due to a lack of appropriate benchmarking strategies.

Results: We used curated phosphoproteomic experiments and a gold standard dataset containing

a total of 184 kinase-condition pairs where regulation is expected to occur to benchmark and com-

pare different kinase activity inference strategies: Z-test, Kolmogorov Smirnov test, Wilcoxon rank

sum test, gene set enrichment analysis (GSEA), and a multiple linear regression model. We also

tested weighted variants of the Z-test and GSEA that include information on kinase sequence speci-

ficity as proxy for affinity. Finally, we tested how the number of known substrates and the type of

evidence (in vivo, in vitro or in silico) supporting these influence the predictions.

Conclusions: Most models performed well with the Z-test and the GSEA performing best as deter-

mined by the area under the ROC curve (Mean AUC ¼ 0.722). Weighting kinase targets by the kin-

ase target sequence preference improves the results marginally. However, the number of known

substrates and the evidence supporting the interactions has a strong effect on the predictions.

Availability and Implementation: The KSEA implementation is available in https://github.com/

evocellnet/ksea. Additional data is available in http://phosfate.com

Contact: pbeltrao@ebi.ac.uk or ochoa@ebi.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The functional plasticity of the proteome is modulated by specific

post-translational modifications (PTMs) such as phosphorylation,

glycosylation or ubiquitination. Reversible modification of proteins

controls signal transduction and information processing within the

cell, mediating molecular processes such as protein enzymatic regu-

lation, complex associations, protein degradation and changes in

subcellular localization (Choudhary and Mann, 2010). Through the

coordinated regulation of multiple parallel events, the cell is able to

integrate all available signals to appropriately respond to environ-

mental stimuli (Francavilla et al., 2016). Reversible phosphorylation

of individual residues remains one the most studied PTMs and its

status results from the net activity of kinases and phosphatases.

Kinases bind covalently a phosphate group onto specific amino-

acids, most frequently serine, threonine or tyrosine, while phosphat-

ases catalyze the reverse reaction.
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Previous studies of cell decision-making mediated by protein

phosphorylation have been limited by the reduced number of phos-

phosites and kinase activities that were possible to measure, most

frequently using phospho-specific antibodies (Miller-Jensen et al.,

2007). However, recent developments in large-scale phosphoproteo-

mics and mass spectrometry (MS) have fostered the system-wide

identification and quantification of phosphorylated sites before and

after controlled perturbation (Olsen et al., 2006). These advances

have not only allowed for the measurement of the response of thou-

sands of individual phosphosites in a very rapid and granular time-

frame (Humphrey et al., 2015; Kanshin et al., 2015), but also to

estimate kinase regulation in large scale based on the changes in

known kinase substrates (Casado et al., 2013; Drake et al., 2012).

The emergence of methods to estimate the activities directly from

high-throughput MS data and prior knowledge in kinase substrate

interactions introduces a new perspective on understanding the sig-

naling response. These have been used to study differences in tumors

(Casado et al., 2013; Drake et al., 2012), to study the effects of

drugs, to reconstruct signaling networks and to broadly survey the

kinase signaling states of the cell (Ochoa et al., 2016).

Substrate-based kinase activity prediction methods are founded

on the assumption that the regulatory state of a kinase is reflected

on the change of phosphorylation levels of its substrate sites. Drake

et al. (2012) first reported this notion and performed an enrichment

analysis of tyrosine kinase activities. The method used consisted of a

permutation analysis to infer an enrichment score using the

Kolmogorov Smirnov statistic, an algorithm similar to the popular

Gene Set Enrichment Analysis (GSEA) (Drake et al., 2012;

Subramanian et al., 2005). This approach has been applied to a large

number of kinases and conditions in a recent study (Ochoa et al.,

2016). Alternatively, Casado et al. (2013) proposed an algorithm

based on a one sample Z-test to measure for the first time the regula-

tion of large number of kinases in label-free cancer samples. More

recently, the IKAP machine learning method models the abundance

of each phosphosite as the sum of all kinase effects acting on it

(Mischnik et al., 2016).

These methods depend on the aggregation of kinase substrate an-

notations. Comprehensive resources have aggregated experimentally

verified in vivo and in vitro interactions between kinases and phos-

phorylation sites, including PhosphoSitePlus (Hornbeck et al.,

2015), Phospho.ELM (Dinkel et al., 2011), HPRD (Peri et al., 2004)

and Signor (Perfetto et al., 2016). This information is still limited to

a fraction of all sites and kinases in very few model organisms.

Computational approaches such as NetworKIN attempt to complete

our knowledge on kinase targets by predicting new substrates from

motif analysis and functional context derived from STRING

(Kersten et al., 2009; Mering, 2003).

Although the previously described methods have been bench-

marked to different degrees by experimental and computational

approaches (Casado et al., 2013; Drake et al., 2012; Ochoa et al.,

2016) they have not yet been systematically compared. The continu-

ous development of new strategies requires a standardized frame-

work to assess the substrate-based prediction of kinase activities.

Therefore, we selected from our previous compilation effort (Ochoa

et al., 2016) a subset of 24 conditional phosphoproteomic studies, in

which 30 different kinases are expected to display regulation. This

gold standard was used to evaluate 5 different methods: Z-test,

Kolmogorov-Smirnov test, Wilcoxon rank-sum test, GSEA algo-

rithm and a multiple linear regression model (MLR). We also eval-

uated the effect of the kinase sequence specificity by weighting

differently the target sites showing different sequence similarities to

the binding motif. Moreover, we benchmarked the impact of the

number of known target sites, as well as the effect of the evidence

supporting the substrate interactions on the performance of the

methods.

This gold standard and analysis provides a comprehensive

comparison of the strengths and limitations of different methodolo-

gies and provides the necessary framework to evaluate future

developments.

2 Methods

2.1 A benchmark dataset for kinase regulation

predictions
To evaluate the performance of different kinase activity prediction

methods, we obtained from a previous study (Ochoa et al., 2016) a

subset of 24 publications describing quantitative phosphoproteomic

data reporting the response of a variable number of human phos-

phosites after perturbations linked to specific kinase activations or

inhibitions. For example, the EGFR tyrosine kinase-receptor is acti-

vated when its ligand, the epidermal growth factor (EGF), binds the

receptor (Oda et al., 2005). It is therefore expected that experiments

assaying the phosphoproteomic response after EGF stimulation pre-

sent increased activities of EGFR. Similarly, the molecular response

to DNA damage has been associated with up-regulation of the ATR

and ATM kinases (Matsuoka et al., 2007). Alternatively, drug treat-

ments such as the addition of the kinase inhibitors Erlotinib or

Torin 1 are expected to specifically inhibit their corresponding tar-

gets EGFR and mTOR. This gold standard positive set contains 184

pairs between 30 different kinases regulated in 62 different perturb-

ations with publicly available phosphoproteomic data (Table 1). A

more detailed description of the conditions in the gold standard can

be found in Supplementary Table S1.

2.2 Human quantitative phosphoproteomic data

preprocessing and normalization
Despite the heterogeneity of the biological samples, as well as the

technical variation introduced by different experimental setups, high

reproducibility is expected in the quantitative response of the direct

kinase regulations included in the gold standard. As was done in our

previous study (Ochoa et al., 2016), we applied a set of filters and

quality control steps: (i) we restricted the analysis to peptides

mapped to the Ensembl canonical transcripts ignoring other modi-

fied isoforms; (ii) the log2-fold changes of phosphopeptides contain-

ing the same phosphosite position were averaged, even if differing in

exact sequence [i.e. RLS(ph)PTK and LS(ph)PTK in the same pro-

tein]; (iii) the log2-fold changes of the same phosphopeptides in dif-

ferent replicates were averaged; (iv) to increase the interpretation of

the fold changes as single PTMs, only monophosphorylated phos-

phopeptides were considered. Finally, after applying all filters, we

excluded perturbations in the gold standard containing <1000

quantified phosphopeptides. Quantifications across conditions were

quantile normalized to maximize reproducibility across samples.

The quantification data for each phosphosite for the conditions in

the gold standard can be obtained from our website (http://phosfate.

com).

2.3 Substrate-based kinase activity inference methods
For each perturbation in the gold standard, we calculated the

changes in kinase activities based on the quantitative phosphopro-

teomic profile and the set of known kinase substrates. A total of

2818 manually curated interactions for the 30 kinases under study

were compiled from PhosphoSitePlus (Hornbeck et al., 2015),
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Phospho.ELM (Dinkel et al., 2011) and Human Protein Reference

Database (Peri et al., 2004). From this collection, 150 auto-

regulatory sites were excluded in order to prevent biases due to dir-

ect regulatory phosphorylations. The five predictors here explored

can be classified according to their statistical properties as: paramet-

ric tests (Z-test), non-parametric tests (Kolmogorov-Smirnov test

and Wilcoxon test), MLRs models and empirical computational

approaches relying on data permutations (GSEA algorithm).

The parametric one-sample Z-test compares the mean fold

change of all substrates of a given kinase to the mean and variance

of all fold changes in the same condition. The non-parametric meth-

ods instead, assess the phosphorylation differences between the sub-

strate and the non-substrate fold-change distributions using

different metrics: the KS-test estimates the maximum distance be-

tween the cumulative probability distributions and the Wilcoxon

test evaluates the rank differences among both distributions. The

Z-test was implemented in R as previously described in (Casado

et al., 2013) and the non-parametric tests were calculated using the

available R functions. The GSEA algorithm uses a modified

weighted Kolmogorov-Smirnov test to look for the enrichment on

substrates of each kinase within the top or bottom of the ranked list

of phosphosites. To estimate the significance, the enrichment score

was compared against an empirical distribution of scores derived

from 10 000 random sets of substrates of the same size. To run the

method, we used the in-house developed and freely available ksea R

package (https://github.com/evocellnet/ksea).

Each of the aforementioned methods produces a P value that

summarizes the significance of the observed kinase regulation. In

order to get a kinase activity score that indicates whether the kinase

is increasing or decreasing in activity, we calculated the �log10 of

the P-values and signed them based on the mean fold change of all

substrate phosphosites. If in a given condition the target sites of a

Table 1 Human kinases displaying specific regulation—up or down—in perturbations quantified using high-throughput

phosphoproteomics

Experimental condition Kinases Regulation References

AKTi (Akt inhibitor VIII), AKTi (MK-2206),PI3Ki (GDC-

0941), PI3Ki (PI-103),PIK3CA activation (H1047R) þ
inhibitor

AKT1 down Wilkes et al. (2015), Wu et al. (2014)

PIK3CA activation (E545K),PIK3CA activation (H1047R),

RG7356

AKT1 up Weigand et al. (2012) Wu et al.

(2014)

Anti-CD3, anti-CD3 þ anti-CD28, Differentiation (PMA) PRKCA up Nguyen et al. (2016), Rigbolt et al.

(2011) Salek et al. (2013)

PKCi (BIM-1),PKCi (Gö-6976) PRKCA down Wilkes et al. (2015)

ATR inhibitor (VE-821) ATR down �Salovsk�a et al. (2014)

CAMK2i (KN-62),CAMK2i (KN-93) CAMK2A down Wilkes et al. (2015)

Crizotinib ALK down Oppermann et al. (2013)

Dasatinib (50 nM) MAPK3,ABL,LCK down Pan et al. (2009)

DNA damage (Etoposide), DNA damage (Ionizing radi-

ation), Early S (Thymidine), G1_S (Thymidine), Late

S (Thymidine)

ATR, ATM up Beli et al. (2012), Dephoure et al.

(2008), Olsen et al. (2010)

EGF AKT1, BRAF, EGFR,

MAP2K1, MAP2K2,

MAPK1, MAPK3, RAF1

up Engholm-Keller et al. (2011),

Mertins et al. (2012), Pan et al.

(2009)

EGFRi (PD-153035),EGFRi (PD-168393),

Erlotinib,Gefitinib

EGFR down Weber et al. (2012), Wilkes et al.

(2015)

EGF þ SB202190 MAPK14 down Pan et al. (2009)

EGF þ U0126, MEKi (GSK-1120212),MEKi

(U0126),Selumetinib (AZD6244)

MAP2K1, MAP2K2 down Pan et al. (2009), Stuart et al. (2015),

Wilkes et al. (2015)

ERKi (ERK inhibitor),ERKi (ERK inhibitor II),Dasatinib

(50 nM)

MAPK1 down Pan et al. (2009), Wilkes et al.

(2015)

Iloprost (5 nM) PRKACA up Beck et al. (2014)

Mitosis (AZD1152), Mitosis (MLN8054) AURKA down Kettenbach et al. (2011)

Mitosis (AZD1152) AURKB down Kettenbach et al. (2011)

Mitosis (BI2536),Mitosis (short Taxol þ BI2536),BI 4834

(on Mitosis Nocodazole), PLK1 Inhibitor (G2r - BI2536)

PLK1 down Grosstessner-Hain et al. (2011),

Halim et al. (2013), Kettenbach

et al. (2011)

mTORi (KU-0063794), mTORi

(Torin-1),Rapamycin,Starved,Torin1

MTOR down Hsu et al. (2011), Wilkes et al.

(2015)

PIK3CA activation (H1047R), PIK3CA activation (E545K) PIK3CA up Wu et al. (2014)

P70S6K1i (DG2), P70S6K1i (PF-4708671) RPS6KB1 down Wilkes et al. (2015)

ROCKi (H-1152), ROCKi (Y-27632) ROCK1 down Wilkes et al. (2015)

Sorafinib PDGFRB, PDGFRA, BRAF,

RAF1, FLT1, FLT3, FLT4

down Zhuang et al. (2013)

Quizartinib PDGFRA, FLT3 down Schaab et al. (2014)

LRRK2-IN-1 (Endogenous LRRK2),LRRK2-IN-1 (LRRK2

overexpression)

LRKK2 down Luerman et al. (2014) Schaab et al.

(2014)

VEGF FLT4, FLT1 up Zhuang et al. (2013)

Vemurafenib (PLX4032) BRAF down Stuart et al. (2015)
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kinase are increasing in phosphorylation, the kinase activity is ex-

pected to be also increasing and vice-versa.

In addition to the tests above we predicted kinase regulation

using a linear regression approach:

Y ¼ bXþ w

where, the dependent variable Y represents the phosphosite meas-

urements in a condition and X is the connectivity matrix represent-

ing the associations with kinases. Xij equals 1 when phosphosite i is

a known substrate of the kinase j, 0 otherwise. w represents the nor-

mally distributed error of the fit and b are the weights of the model

features and also represent the scores of the kinases activity changes

in the condition. Kinase activities were estimated by solving the re-

gression model applying an L2-norm regularization, ridge regres-

sion, and using the Python machine learning module scikit-learn

(Pedregosa et al., 2011). Using a L2-norm regularization allows to

ameliorate the impact of collinearity between features, namely dif-

ferent kinases can target similar sets of phosphosites. A regulariza-

tion coefficient of 0.1 was used.

2.4 Performance evaluation of the methods
To evaluate the performance of the kinase activity scores, we created

a set of kinase-condition pairs containing all predicted pairs in the

gold standard, as well as the same number of negative pairs gener-

ated by randomly sampling kinases and perturbations from the posi-

tive set. We repeated this procedure 60 times to generate a diverse

space of negative interactions. Due to the incomplete coverage of

the MS detection, only substrates for 24 kinases in the gold standard

were quantified. Using the ranked lists of positives and the randomly

generated negatives, the methods were evaluated using Receiver

Operating Characteristic (ROC) and Precision-Recall (PC) curves.

Area Under ROC Curve (AUC) and the observed precision at recall

0.5 were systematically used as performance metrics. The bench-

mark robustness was evaluated by comparing the summary metrics

obtained in each of the 60 negative set randomizations.

Additionally, the technical variance introduced by each of the meth-

ods was assessed by creating 10 permuted sets of kinase-substrate re-

lationships maintaining the same number of substrates per kinase.

2.5 Weighting kinase target sites by the kinase

sequence specificity
The weighted Z-test and GSEA methods introduced in this study

modify the original statistics to re-rank the substrate quantifications

in order to include binding specificities as a proxy for their binding

affinities. To calculate the estimated affinity, we constructed a li-

brary of position weight matrices (PWMs) from the amino-acid se-

quences surrounding the known kinase substrates (67 residues).

Next, we calculated the matrix similarity scores (MSS) to measure

the identity between each substrate flanking sequence and their cor-

responding kinase-PWM (Wagih et al., 2015). The MSS were calcu-

lated using a re-implementation of the MATCH tool (Kel et al.,

2003) adapted to consider amino-acid sequences (https://github.

com/omarwagih/matchtm). The MSS—ranging from 0 to 1—can be

interpreted as an approximation of the kinase-substrate binding

preferences. The kinase substrate fold changes were then multiplied

by their corresponding MSS to obtain their weighted fold changes.

As a consequence, differentially regulated substrates not showing af-

finity for the known kinase-binding motif would see their fold

changes diminished. The weighted fold changes were then used to

perform the Z-test and the GSEA algorithm as described previously.

The fold changes of the sites whose phosphorylation is not catalyzed

by the kinase under prediction remained unaltered. When bench-

marking the weighted version of the methods we only considered

kinases with at least 10 known substrates available to build

the PWM. This decreases the benchmark set to 135 positive

kinase-condition pairs including 21 kinases covering 57 different

perturbations.

2.6 Benchmarking in vivo, in vitro and in silico

substrates
Kinase activity prediction performances were evaluated separately

depending on the support of the kinase-substrate relationships:

in vivo, in vitro or in silico. The in vivo and in vitro sets were col-

lected from the curated information available in PhosphositePlus

(Hornbeck et al., 2015) while the in silico predictions were derived

from NetworKIN 3.0 (Linding et al., 2007). NetworKIN integrates

consensus substrate motifs based in NetPhorest (Miller et al., 2008)

with functional contextual information derived from STRING

(Mering, 2003), in order to improve the kinase–substrate inference.

A minimum of three substrates per kinase were required for the

three sets of evidences. The negative sets in each case were generated

using the same criteria as in the full set of substrates. To prevent the

biases derived from the different number of available substrates in

each category, the analysis was repeated by down-sampling the sub-

strates to the size of the smallest set 25 times.

3 Results

3.1 The benchmark dataset of expected kinase

regulation
The critical assessment of existing and forthcoming methods to infer

changes in kinase regulation requires an appropriate benchmark

datasets. Based on prior knowledge in kinase regulation, we ob-

tained from a previous compilation (Ochoa et al., 2016) a set of

human quantitative phosphoproteomic datasets where the assayed

perturbations are expected to trigger specific kinase responses. From

all the assayed conditions, we defined a benchmark set of 184 posi-

tive kinase-condition pairs including 30 kinases and 62 experimental

conditions. The selected perturbations include direct molecular regu-

lation via kinase inhibitors or induction of cellular pathways as con-

sequence of cellular processes or differentiation. The curated gold

standard set of kinases regulated under MS-quantified conditions is

shown in Table 1 along with the expected regulatory effect—up- or

down-regulation. The total number of quantified phosphopeptides

and more detailed information about the biological perturbations is

available in Supplementary Table S1. Although the gold standard

list of expected regulations is unlikely to be complete due to down-

stream and ‘off-target’ effects, it contains an enriched set of high

confidence conditional kinase regulations where direct mechanisms

of action have been reported in the literature.

3.2 Substrate-based inference of kinase activity

changes
In order to benchmark the changes in kinase activities under differ-

ent biological perturbations, we compared five different methodolo-

gies that integrate quantitative phosphoproteomics data and the

network of known kinase substrates. All of the predictors tested

have as a premise that known substrates of kinases under regulation

display a significant change in phosphorylation over the background

changes occurring in all phosphosites in the same condition. We had

previously shown, using the same benchmarking strategy, that a

GSEA algorithm can correctly predict kinase activity changes

1848 C.Hernandez-Armenta et al.

Deleted Text: (&hx002B;/- 
Deleted Text: &hx2122;
https://github.com/omarwagih/matchtm
https://github.com/omarwagih/matchtm
Deleted Text:  - 
Deleted Text:  - 
Deleted Text:  
Deleted Text: 3
Deleted Text: 3
Deleted Text:  - 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btx082/-/DC1
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: 5
Deleted Text: gene set enrichment analysis (
Deleted Text: )


(Ochoa et al., 2016). Here, we evaluated and compared the follow-

ing methodologies: Z-test, Kolmogorov-Smirnov test, Wilcoxon

rank-sum test, a MLR model and the GSEA algorithm (described in

Methods). For all methods except the MLR, the �log10 of the

P-value was used as a proxy of the kinase regulatory response.

These values were signed according to the mean fold change of the

kinase substrate sites, in order to estimate the kinase regulatory ef-

fect—activation or inhibition. For the MLR method we used the

beta values of the fitted model to quantify kinase regulation.

3.3 Benchmarking kinase activity changes predicted by

different methodologies
For each method, we compared the absolute activity changes for

kinases expected to display conditional regulation according to the

gold standard, against the activities of the kinases in random condi-

tions (Supplementary Fig. S1). For all methods, kinases under ex-

pected regulation display changes in activity significantly higher

than random kinases (two-sample Wilcoxon-test, all P-values <

1.33 � 10�6). It is noteworthy that some kinases in the negative set

also present significant regulation under specific conditions, poten-

tially due to other regulatory events not included in the gold stand-

ard. These could include, for example, downstream activation/

inhibition of kinases or off-target effects in the cases of drugs. All

methods were benchmarked using ROC and PC analysis (Fig. 1 and

Supplementary Fig. S2). The GSEA and the Z-test yield comparable

results showing higher median AUCs (0.734 and 0.721, respectively)

and median precision values at recall 0.5 (0.725 and 0.708) than

other approaches. To elucidate the performance variance due to

technical variability, we compared the AUCs and precisions derived

from the predictions based on the known regulons with those ob-

tained randomizing the network of kinase-substrates maintaining

the same degree distribution (Supplementary Fig. S3). As expected,

the randomization of the list of kinase targets results in near random

predictions.

To evaluate the robustness of the methods to the number of

quantified substrates, we compared the aforementioned perform-

ances with those obtained only for kinases with �5 quantified sub-

strates and those with more than 5 (Fig. 1). Overall, activity

predictions of kinases with fewer quantified substrates present lower

performances. When comparing performances across methods,

Wilcoxon, KS and MLR present significantly lower AUC

performances than GSEA or Z-test (Wilcoxon-test, P-value < 2.2 �
10�16) if the number of quantifications remains below five

substrates.

3.4 Kinase target site information impacts on the kinase

regulation predictions
We reasoned that not all kinase substrates might be equivalent prox-

ies of the upstream kinase activity. We hypothesize that target sites

that best fit the known kinase sequence preferences could better rep-

resent the regulation of the catalytic kinase. To test this, we obtained

position specific scoring matrices that describe the binding specifi-

city of the kinases in the positive set (see ‘Methods’ section). These

were used to score each target site based on their sequence and the

values incorporated into the Z-test and GSEA (see ‘Methods’ sec-

tion). In these ‘weighted’ versions of the methodologies, phospho-

sites that best match the kinase preference were more strongly

considered when predicting the regulation of the kinase. We

observed a small but significant improvement in AUC and Precision

at recall 0.5 whereby these changes tended to perform better than

the initial implementations: Z-test-weighted versus Z-test

(Wilcoxon-test, P-value ¼ 8.4 � 10�10) and GSEA-weighted versus

GSEA (Wilcoxon-test, P-value ¼ 1.26 � 10�6) (Fig. 2 and

Supplementary Fig. S4).

3.5 Activities inferred using in vivo, in vitro or in silico

supported substrates
In addition to analyzing the effect of the substrate confidence based

on their kinase specificity, we also compared the impact of the evi-

dence supporting the kinase-substrate interactions. Candidate kinase

substrates were separated into in vivo, in vitro and in silico sup-

ported substrates. Kinase activities predicted using GSEA or Z-test

using in vivo characterized substrates perform better than predic-

tions using in vitro supported substrates (AUC Wilcoxon-test,

P-value < 2.2 � 10�16) (Fig. 3). Moreover, kinase activities based

on substrates determined in silico display poor performances. To

avoid potential biases derived from the different number of sub-

strates in each set, we repeated the comparison by down-sampling

the substrates to the size of the smallest set (Supplementary Fig. S5).

Also in this case, in vivo characterized substrates present better

Fig. 1 Comparison of kinase activity prediction performances by method-

ology and number of known kinase substrates. The filtered gold standard of

149 kinase-condition pairs was assessed against the same number of 60 ran-

domly generated negatives (dots)

Fig. 2 Comparison of substrate-based kinase activity prediction methods

weighting substrates by kinase binding specificity. Similar to Figure 1.

‘Weighted’ GSEA and Z-test include the similarity of the neighboring region

to the kinase recognition motif to correct the relevance of each of the sub-

strates (see ‘Methods’ section). Weighted and unweighted performances are

based on the same set of kinases and conditions (135 positive kinase-condi-

tion pairs)
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performances. Similarly, we restricted the comparison to those posi-

tive pairs predicted in all sets observing a similar trend

(Supplementary Fig. S6). The poor performance displayed by the in

silico substrates can be improved by selecting a more stringent pre-

diction score (Supplementary Fig. S7). However, this effect is mostly

due to an enrichment of previously characterized substrates, rather

than the finding of novel substrates relevant for the kinase activity

prediction. Our results highlight the relevance of the curated in vivo

substrates to accurately infer changes in kinases activities.

4 Discussion

The progress and developments in MS have led to the unbiased ex-

ploration of cell signaling changes via phosphoproteomics. Single

experiments are now reporting how changes of thousands of phos-

phorylation sites occur across tens to hundreds of conditions (Abelin

et al., 2016; Mertins et al., 2016) and it has been proposed that the

activation status of kinases can be inferred by the measurement of

its targets sites (Casado et al., 2013; Drake et al., 2012). This ap-

proach has been used in several contexts, including the stratification

of cancer patients (Drake et al., 2016) or to study kinase pathway

changes occurring after specific stimulations (Terfve et al., 2015).

Although it is intuitive, that statistical analysis of changes in abun-

dance of target phosphosites reflects the activation status of kinases

such approaches have not yet been thoroughly benchmarked and

compared. Here, we have selected a benchmark set of conditions

where specific kinases are expected to be regulated and use it to

compare different methodologies to predict kinase activity changes,

as well as the quality of the list of substrates used. The required data

is available through our website (at http://phosphate.com) allowing

others to easily compare alternative approaches. We also provide an

R package including one of the best performing methods (GSEA at

http://github.com/evocellnet/ksea).

Overall, we see a strong performance of all methods tested.

Some true kinase-conditions pairs were not predicted to be regulated

(Supplementary Fig. S1). This could be due to technical issues in the

MS data acquisition and quantification or other experimental prob-

lems derived from the treatments to stimulate and monitor the kin-

ase activities: incorrect times selected to detect the changes in

activity, inadequate stimulation of the control condition or defective

concentration of the ligands to generate a cell response etc.

However, it should also be considered that complex regulatory

mechanisms are involved in the control of kinase activation like

feedback regulation, changes in subcellular localization or binding

to scaffold proteins. It is possible that different sets of substrates

(e.g. in different cellular compartments) might be relevant to esti-

mate the activity for different conditions. The performance of the

methods has been judged on the capacity to predict kinase regula-

tion in qualitative terms (i.e. regulated or not). We think the output

of the described predictors should relate to the strength of activation

but benchmarking these metrics as quantitative predictors would re-

quire also quantitative benchmarks of kinase activity in different

conditions/states. This knowledge opens the door for the rational se-

lection of kinase target sites that may serve as the best proxies for

the activity of the effector kinase.

We observed dependence on the evidence supporting the kinase

substrate interaction. This cautions against the use of predicted kin-

ase interactions in such algorithms, at least with their current state

of the art. Reversely, this suggests that the co-regulation patterns of

phosphosites across conditions can be used as a signal for the predic-

tion of new kinase targets.
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