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Abstract

Drosophila imaginal disc cells exhibit preferred cell division orientations according to loca-

tion within the disc. These orientations are altered if cell death occurs within the epithelium,

such as is caused by cell competition or by genotypes affecting cell survival. Both normal

cell division orientations, and their orientations after cell death, depend on the Fat-Dachsous

pathway of planar cell polarity (PCP). The hypothesis that cell death initiates a planar polar-

ity signal was investigated. When clones homozygous for the pineapple eye (pie) mutation

were made to initiate cell death, neither Dachsous nor Fat was required in pie cells for the

re-orientation of nearby cells, indicating a distinct signal for this PCP pathway. Dpp and Wg

were also not needed for pie clones to re-orient cell division. Cell shapes were evaluated in

wild type and mosaic wing discs to assess mechanical consequences of cell loss. Although

proximal wing disc cells and cells close to the dorso-ventral boundary were elongated in

their preferred cell division axes in wild type discs, cell shapes in much of the wing pouch

were symmetrical on average and did not predict their preferred division axis. Cells in pie

mutant clones were slightly larger than their normal counterparts, consistent with mechani-

cal stretching following cell loss, but no bias in cell shape was detected in the surrounding

cells. These findings indicate that an unidentified signal influences PCP-dependent cell divi-

sion orientation in imaginal discs.

Introduction

Oriented cell division influences how animal tissues grow, especially in tissues where cells are

not very motile[1–4]. It is also hypothesized that the orientation of cell division can release

mechanical tensions that arise during growth[5–7].
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Previously, we reported that the orientation of division in wing imaginal discs from Dro-
sophila is altered in the vicinity of apoptotic cells[8]. Mitotic spindles tend to become re-ori-

ented towards locations where cell death occurs, leading to a division axis towards the dying

region (division axis refers to the direction in which the daughter cells separate whereas the

division plane, where the new cell boundary forms, is at right angles to the division axis). This

effect of cell death required the Fat-Dachsous planar polarity system[8]. Fat and Dachsous are

also required for the normal patterns of division orientation in wild type wing discs, which

suggests that a common mechanism may control the orientation of normal divisions and their

reorientation in response to cell death [4, 8]. The source of the spatial information that orients

cell divisions in normal wing development is not yet clear, although there may be roles for

mechanical forces and junctions with neighboring cells [9, 10]. By contrast, the dying cell is

presumed to be the direct or indirect source of the hypothesized signal that orients cell division

in response to local cell death, providing a system to investigate the source of orienting signals.

Fat and Dachsous are large proto-cadherin molecules in the plasma membrane that can

mediate heterophilic cell adhesion. They are required for the planar cell polarity of differenti-

ated epithelial cells that is revealed through the positioning of certain sub-cellular structures,

such as the wing hair structures that are produced at the apical surface of each cell in the wing

blade [11, 12]. Mutations in both fat and dachsous also enhance growth, through effects on the

Salvador-Hippo-Warts pathway of tumor suppressors [13–15]. Effects of Fat and Dachsous on

planar cell polarity are mediated by the atypical myosin Dachs and by Atrophin and Fbxl7.

The latter two proteins bind to the intracellular domain of Fat [16, 17]. Dachs and Fbxl7 also

affect growth, whereas cells lacking Atrophin grow similarly to controls, but lack proper cell

division orientation [8, 17–19]. Fat affects growth cell-autonomously and behaves as a receptor

for Dachsous [20]. However, there are also circumstances where Dachsous appears to respond

as a reciprocal receptor for Fat[21]. Dachsous is expressed in gradients in imaginal discs that

are thought to define PCP, in conjunction with a reciprocal gradient of Four Jointed, a Golgi

protein that phosphorylates the Fat and Dachsous extracellular domains[22–24].

Fat, Dachsous and Atrophin are required for division orientation in the normal developing

wing[4, 8]. During the third instar larval stage, cells dividing in the wing pouch region of the

wing disc tend to divide along the proximo-distal axis, and this contributes to the proximodis-

tal elongation of clones of cells growing during this period (Fig 1A)[4]. There are other pre-

ferred orientations of cell division elsewhere and at other stages. For example, cells at the

periphery of the wing pouch, which will contribute to the proximal wing and the wing hinge,

tend to divide circumferentially, i.e. orthogonal to the proximo-distal axis. In addition, cells

adjacent to the dorso-ventral wing boundary that runs across the wing pouch tend to divide

parallel to this boundary, in sharp distinction to other cells of the wing pouch(Fig 1A)[4]. All

these divisions become more random in orientation without Fat, Dachsous, or Atrophin, and

clones of cells mutant for these genes are more rounded than elongated[4, 8].

The relationship of cell division orientation to cell death first came to attention in studies of

cell competition. Cell competition refers to loss of cells from genetic mosaics that would sur-

vive in a homogenous environment, such as the loss of cells heterozygous for ribosomal pro-

tein mutations (‘Minute’ cells), or of cells near to cells with higher copy numbers of the myc
gene[25–28]. The disadvantaged cells often undergo apoptosis in the competitive environment

[26, 27, 29]. Both competitive situations are associated with progressive intermingling of the

competing cell populations to a greater degree than is observed between non-competing cell

populations [8, 30, 31]. In the case of competition between wild type and Minute cells, compet-

ing wild type cells tended to re-orient their cell division axes perpendicular to the boundary

with Minute cells, with one daughter cell closer and one more distant [8]. When baculovirus

p35 was expressed to prevent cell death, both the division orientation and the intermingling
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were reduced, suggesting that cell death re-orients nearby cell divisions through the Fat-

Dachsous pathway and potentially affects the shapes of descendent cell clones. Consistent with

this hypothesis, cell divisions were also re-oriented near clones of cells homozygous for a

mutation, pie, that leads to a chronically elevated cell death rate [8]. Surprisingly, however,

enhanced intermingling of competing cell populations with different myc levels was recently

observed in the pupal notum, at a stage where very little cell division occurs[31].

Several studies indicate that mechanical forces may affect cell division orientation. It has

long been known that the division plane tends to bisect the long axis of the cell [32, 33]. Cell

shape is affected by the forces acting upon cells, which include forces exerted by neighboring

cells. Within the wing disc, cells in the wing pouch region lack a consistent shape but cells at

the periphery of the wing disc that will give rise to the proximal wing and the wing hinge are

stretched in a circumferential manner that correlates with their cell division orientation [4,

34]. This stretching is thought to be due to the growth of the central wing pouch region during

the larval growth phase. Because the periphery of the disc does not grow fast enough to accom-

modate the central expansion, cells of the central wing pouch are relatively compressed

whereas those of the periphery are stretched[10, 35, 36].

In this study we manipulated the genotypes of dying cell populations in mosaic clones in

order to test for possible instructive roles of the Fat/Dachsous planar cell polarity pathway and

morphogen signaling pathways in orienting cell division. We found no evidence for instructive

roles of known signaling molecules on the changes in cell division orientation that accompany

local wing disc cell death and instead discuss the possibility that mechanical consequences of

local cell loss might affect cell division orientation.

Materials and Methods

Mutant and transgenic strains were used as follows

pieE1-16 was obtained from Dr. T. Grigliatti and characterized molecularly in our laboratory

[37, 38]; dsUA071[39] was obtained from the Bloomington Drosophila Stock Center; ftNY1 was

isolated in our laboratory[40]; dppd12 and wgRF were obtained from Dr. G. Morata[41]; P{arm-
LacZ} transgenes were obtained from BDSC[42]. Mitotic clones were induced using heat

Fig 1. Cell divisions in the wing disc. A, Wing pouch region of the wing disc. Cells outlined with anti-Dlg.

Typical orientations of cell divisions are indicated by blue arrows, as described in previous studies. In the

center of the disc, cells tend to divide parallel to the dorso-ventral boundary. Most cells divisions in the wing

disc point distally, towards the center of the DV boundary. Peripheral cells in the proximal wing pouch tend to

divide circumferentially[4]. B, Enlarged portion up of a wing disc contained cell clones homozygous for the

pieE1-16 mutation (lacking GFP label). Mitotic figures labeled with anti-pH3 (magenta). Selected mitotic

division orientations indicated by arrows (white). C, When the orientation of nearby cell divisions is measured

with respect to clones homozygous for the pieE1-16 mutation, in which chronic cell death occurs[38] there is a

strong bias for cells to divide towards nearby clones [8]. By contrast an almost random distribution is seen

near wild type clones because even though division may be locally biased, clone boundaries vary so that the

two bear little relationship [8]. Examples of the cell division orientation distributiion near clones that do not re-

orient divisions are shown in Fig 3A–3C of this paper.

doi:10.1371/journal.pone.0167637.g001
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shock induction of Flp recombinase[43]. Recombination was induced 60±12h after egg laying

and larvae dissected for clone examination 60h later.

Antibodies included mAb40-1a (ßgal) and mAb4F3 (Dlg) from Developmental Studies

Hybridoma Bank and rabbit anti-pH3 form Cell Signaling Technology. Immunochemistry

procedures have been described[44]. Orientation of cell divisions was measured as described

previously[8]. Mitotic figures were visualized by anti-pH3 labeling of wing imaginal discs and

the orientation of anaphase and telophase figures recorded. The orientation with respect to

nearby clone boundaries was assessed as the angle between the direction of chromosome seg-

regation (the division axis) and the nearest clone boundary, defined as the line connecting the

midpoint of the boundary faces of the two flanking cells[8].

Cell shapes were recorded by confocal microscopy of wing imaginal discs labeled for anti-

Dlg. Where junctional Dlg protein was expressed in different z planes across the disc, appro-

priate z planes were focus-stacked using Adobe Photoshop CS5. Images were made binary

using thresholds in Image J (v1.44j) and the angle of the cells long axes recorded using the fit

ellipse measurement. Since this software records an angle of 0˚ for perfectly round cells, such

cells were excluded by requiring a long axis: short axis ratio >1.25.

To measure apical cell size, mutant clones or wild type territories were traced, areas mea-

sured using Image J (v1.44j) and divided by the number of cells.

To assess the orientation of cells surrounding pie homozygous clones, cells adjacent to pie
clones were outlined by anti-Dlg labeling and the longest cell axis determined. The angle made

with the clone boundary was determined using the same method described for cell division

orientation. Control cells were selected from cells at the same proximo-distal position in the

disc.

Results

A previous study described oriented cell division in response to cell death that depends on the

planar cell polarity genes ft, ds, and atro[8]. This was first observed when death was due to cell

competition of ‘Minute’ cells, heterozygous for a ribosomal protein mutation, at interfaces

with wild type cell populations. The same phenomenon was seen when cell death was a cell

autonomous consequence of loss of a PHD finger protein encoded by the pineapple eye gene

(Fig 1B and 1C). Although the function of the pie gene is not known in detail, when the gene is

mutated in imaginal disc clones then a high frequency of apoptosis results[38]. This provides a

useful assay for signals produced by dying cells, since the rate of apoptosis is not sufficient to

eliminate the pie mutant clones completely, which provide a continuous source of dying cells.

The pie gene is also required for germline stem cell self-renewal, where it may affect BMP sig-

naling[45].

In some assays, Fat behaves as a cell-autonomous receptor for Dachsous. It was therefore

possible that Dachsous might be the activity coming from dying cells that orients nearby cell

division. To test this model, clones of cells simultaneously mutant for both pie and dachsous
were induced in wing discs. As has been described before, the majority of mitotic figures

observed close to clones of pie mutant cells were oriented towards the clones (Fig 2A and 2B).

By contrast, mitotic figures show little referred orientation near to wild type clones (although

mitosis is oriented with respect to global axes in particular disc regions, clone boundaries take

a variety of courses so show little correlation with mitotic axis[8]). When the dying cells lacked

Dachsous expression, the orientation of division around ds pie clones was indistinguishable

from that near pie clones, indicating that whatever polarizing signal resulted from cell death

did not depend on the ds locus within the dying cell population (Fig 2C and 2D). We used the

mutation dsUA071, a chemically-induced mutations that has been genetically characterized as a

Planar Cell Polarity, Apoptosis, and Division Orientation
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Fig 2. Cell division re-orientation is independent of Dachsous or Fat in the dying cells. Wing discs containing

clones homoygous for pieE1-16 (A), dsUA071 pieE1-16 (C), ftNY1 pieE1-16 (E), and dsUA071 ftNY1 pieE1-16 (G). Mutant

clones lack LacZ labeling. Genotypes: (A) hsF; pieE1-16 FRT40A / P{armLacZ} FRT40A; (C) hsF; dsUA071 pieE1-16

FRT40A / P{armLacZ} FRT40A; (E) hsF; ftNY1pieE1-16 FRT40A / P{armLacZ} FRT40A; (G) hsF; dsUA071 ftNY1 pieE1-16

FRT40A / P{armLacZ} FRT40A. B,D,F,H show the frequency of adjacent cell divisions with different orientations with

respect to the clones. Clones of all these genotypes tend to orient nearby cell divisions.

doi:10.1371/journal.pone.0167637.g002
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loss-of-function allele, [8, 39]. Although the ds pie mutant clones are smaller than ds mutant

clones would be, presumably because of chronic cell death that occurs in pie mutants, mitotic

clones mutant for ds induced at the same developmental stage clearly lost ds function, suggest-

ing that Dachsous protein does not perdure for 60h following recombination (see ref [8]).

Although Fat is generally considered a receptor for Dachsous, there are also assays in which

Dachsous appears to respond to Fat from neighboring cells[21]. To test whether ft might

encode an orienting signal from dying cells, divisions were examined next to ft pie mutant

clones. As was the case with ds, the clones of ft pie mutant cells continued to orient nearby cell

divisions in a manner indistinguishable from clones mutant for pie alone (Fig 2E and 2F). We

used the mutation ftNY1, a chemically-induced mutations that has been genetically character-

ized as a loss-of-function allele[8, 40].

Since both ft and ds can have signaling properties in certain assays, we considered the possi-

bility that they might encode redundant signals from dying cells, and tested this model using

ds ft pie triple-mutant clones. However, nearby wild type cells were oriented by ds ft pie mutant

clones to the same degree as by pie clones (Fig 2G and 2H), as had been seen for each mutant

individually. Therefore it does not seem that ds or ft, either individually or together, encode

signals from dying cells that orient the division of other cells nearby. It was interesting that ds
ft pie clones were larger than either ds pie or ft pie clones, suggesting greater hyperplasia in the

absence of both ft and ds (Fig 2G).

Although these results argued against positive signaling roles for ft and ds, they did not rule

out inhibitory signaling mechanisms. Thus one could envisage that, if apoptotic cells downre-

gulated ft or ds expression before dying, then it could be this reduction in either or both pro-

tein that provided an orienting signal. If this were the case, then mutating ft or ds in dying cells

would not affect orientation, because the mutation would mimic the effect of apoptosis in

downregulating Ft or Ds expression.

If it was reduced expression of ds or ft, alone or together, that provided the orienting signal

from dying cells, then we would expect that clones lacking these genes would orient the divi-

sion of nearby cells, mimicking the effects of cell death. To test this model, the mitotic orienta-

tion of wild type cells was measured near clones of ds, ft, or ds ft mutant clones. In all three

cases the orientation of wild type cells was unaffected by proximity to the mutants, just as

when wild type cells are near to wild type clones, and quite unlike wild type cells near to pie
mutant clones (Fig 3). These results did not support the model that loss of Ft or Ds or both

from apoptotic cells was a signal that orients the division of nearby cells.

Fig 3. Loss of Dachsous or Fat is not sufficient to orient cell division. A, Frequency of adjacent cell

divisions with different orientations with respect to clones homozygous for dsUA071, induced in the genotype hsF;

dsUA071 FRT40A / P{armLacZ} FRT40A. B Frequency of adjacent cell divisions with different orientations with

respect to clones homozygous for ftNY1, induced in the genotype hsF; ftNY1 FRT40A / P{armLacZ} FRT40A. C

Frequency of adjacent cell divisions with different orientations with respect to clones homozygous for dsUA071

ftNY1, induced in the genotype hsF; dsUA071 ftNY1 FRT40A / P{armLacZ} FRT40A.

doi:10.1371/journal.pone.0167637.g003
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Since the data rule out contribution of Ds or Ft as signals in any simple way, cell-autono-

mous roles of ds and ft in the oriented cells may reflect responses to some other signal from

dying cells. Two candidates are the secreted signaling molecules Decapentaplegic (Dpp) and

Wingless (Wg)[46, 47]. Gradients of Dpp and Wg are responsible for multiple aspects of wing

patterning, and previous studies have suggested they are both released by apoptotic cells and

may contribute to proliferative responses to cell death[41, 48, 49]. Levels of Wnt signaling can

influence cell division axis and planar cell polarity through the other PCP pathway dependent

on Frizzled proteins [50]. To test whether Dpp and Wg released from dying cells orient the

division of nearby cells, mitotic figures were examined in the vicinity of dpp wg pie triple

mutant clones. Since both dpp and wg mutations act non-autonomously, mutant clones rarely

affect patterning of the wing [51, 52]. The division of nearby cells continued to be oriented, as

for pie clones, suggesting that Dpp and Wg were not required for the hypothesized orienting

signal (Fig 4).

It cannot be ruled out that dying cells produce other biochemical signals that orient nearby

cells. Having excluded the known signals, however, we also considered other mechanisms. It

has long been known that cells tend to divide in the direction of their long axis, and this is also

true for some cells in the wing disc[32]. If local apoptosis changes the shape of nearby cells, for

example because nearby cells are stretched when apoptotic cells shrink and are removed, such

cell shape changes might alter the orientation of cell division. In this kind of model, the effect

of apoptosis on cell division would be indirect and due to the mechanical and morphological

consequences of cell loss.

To examine whether cell division orientation correlated with cell shape in normal develop-

ment, we examined the shape of epithelial cells in the wing pouch region of the wild type,

where most divisions are normally oriented towards the dorsoventral boundary that defines

the future distal tip of the wing. Apical cell boundaries were revealed by labeling with an anti-

body against Discs Large, a membrane protein that localizes to septate junctions (Fig 5A and

5B)[53]. The direction of the long axis of each cell was identified (see Methods). When the api-

cal orientation was plotted against the direction of the dorsal-ventral axis, preferred orienta-

tions were seen in some parts of the disc (Fig 5C and 5D). Specifically, cells near the dorso-

ventral boundary were more often oriented parallel to the boundary, which correlates with

their preferred division axis, and cells at the periphery of the wing pouch tended to be elon-

gated orthogonal to the proximo-distal axis, which also correlates with their preferred

Fig 4. Cell division is not oriented by dpp or wg. A, Wing pouch containing clones homoygous for mutations in

dpp, wg and pie. Mutant clones lack LacZ labeling. Genotype: hsF; dppd12 wgRF pieE1-16 FRT40A / P{armLacZ}

FRT40A. B, Cell divisions near dpp wg pie homozygous clones frequently orient towards them, similar to cell

divisions near pie homozygous clones (compare Fig 2B).

doi:10.1371/journal.pone.0167637.g004
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Fig 5. Cell shapes in the wing disc. A, Wing pouch region of the wing disc. Cells outlined by staining for Dlg protein. Mitotic cells occupy large apical

profiles. Bars indicate the medial region enlarged in panel B. B, Cell shapes in the medial wing pouch. The long axis of cells was determined as a function of

their distance from the dorso-ventral compartment boundary. This distance was recorded by dividing the dorsal and ventral medial regions of the wing discs

into the dorso-ventral compartment region (zone 0) and five equally-wide zones arranged from distal to proximal (zones 1–5 dorsally and 1’-5’ ventrally). The

larger area of proximal cells compared to distal is evident in this picture. C, Orientation of the cellular long axis and the dorsoventral compartment boundary.

Cells were group in bins of 10˚, where 0˚ represents cells elongated parallel to the dorsoventral boundary, 90˚ represents cells elongated perpendicular to it.

The y-axis represents the proportion of cells exhibiting that orientation. Cells around the dorsoventral boundary (zone 0), as well as proximal cells (zones

4–5), both tend to parallel the dorsoventral boundary. There is no location where cells are predominantly oriented perpendicular to the boundary, although

this is their preferred division orientation. Data for equivalent zones in the dorsal and ventral wing pouch were combined (eg 5 and 5’). D, Data averaged over

4 wing discs. Error bars represent 1 SEM.

doi:10.1371/journal.pone.0167637.g005
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circumferential division axis (Fig 5C and 5D). Within the main part of the wing pouch, how-

ever, where mitotic spindles tend to align proximo-distally, pointing towards the dorsoventral

boundary, no such elongation of the interphase cells was seen (Fig 5C and 5D). Thus there was

no discernible correlation between cell division axis and cell shape within the wing pouch

where our studies of the effects of cell death have been conducted. Similar results have been

reported by others using different methods[10, 35].

To examine whether cell death induces changes in cell shape within the wing pouch, we

compared the size of cells within pie homozygous clones to those of pie heterozygous or wild

type cells at comparable locations (Fig 6). A modest but statistically significant increase in the

apical surface area of pie homozygous cells was observed compared to controls (Fig 6A–6C).

To assess cell shape in the surrounding cells whose division orientation has been found to be

affected, we determined the long axis of cells adjacent to pie homozygous clones in the wing

pouch and its angle with respect to the clone. No significant elongation towards the clones was

observed (Fig 6D).

Discussion

In this paper we made use of the observation that clones of imaginal disc cells mutant for pie,
which exhibit an elevated rate of apoptosis, bias the cell division orientation of other cells

nearby in a search for a signal responsible for cell division orientation[8]. It is hypothesized

that dying pie cells may be the source of a polarizing signal that is detected by other cells, and

the roles of candidate signals were evaluated by removing them genetically from pie mutant

cells. It is further hypothesized that the result may also be relevant to the orientation of cell

divisions in normal development.

Since cell division orientation requires the PCP receptor Fat, we tested whether its PCP

ligand Dachsous was required, but excluded this model. Since cell division orientation also

requires Dachsous in the dividing cells, we also tested whether Fat itself was a signal required

Fig 6. Effect of pie clones on cell size and orientation. A, pie homozygous clones lacking GFP. Cells outlined

with anti-Dlg (magenta). B, Anti-Dlg labeling from panel A. The scattered cells with large apical profiles are mitotic

cells, whose cell body rises apically to divide in the plane of the junctions. C, Apical area of pie homozygous cells

compared to all other pie/+ and +/+ cells from similar proximo-distal locations in the wing pouch. On average, pie/pie

cells were 1.27x larger. Error bar is 1 SEM. Significance assessed by paired sample t-test. D, Angle between clone

boundaries and longest axes of cells surrounding clones. Cells adjacent to pie/pie clones were no more likely to be

oriented towards the clones than cells surrounding control territories. Error bar is 1 SEM. Significance assessed by t

test.

doi:10.1371/journal.pone.0167637.g006
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in the apoptotic clones but excluded this also. In fact both Fat and Dacshous could be elimi-

nated together from the dying cell population without preventing the orientation of nearby

cells (Fig 2). We next considered the possibility that rather than expressing Fat or Dachsous,

apoptotic cells might down-regulate one or both proteins and that this might affect nearby

cells, but found that eliminating one or both genes was not sufficient to orient nearby cell divi-

sions (Fig 3). We did not test the possible contribution of Four-jointed, a kinase that phos-

phorylates Fat and Dachsous proteins in the Golgi, because Four-jointed should be unable to

signal in cells already mutated for both ft and ds [54, 55]. Altogether, the experiments elimi-

nated known ligands for the Fat/Dachsous PCP pathway, suggesting that the pathway must be

required to orient cell division in response to some other signal.

It has been suggested that apoptotic imaginal disc cells secrete the morphogens Dpp and

Wg in the process of stimulating compensatory proliferation[41, 48, 49]. Since Dpp and Wg

pattern many aspects of imaginal disc development, including the expression of some PCP

genes [50], they were candidates to orient the division of imaginal disc cells. Contrary to this

prediction, clones of apoptotic cells lacking Dpp and Wg continued to orient nearby cell divi-

sions (Fig 4). We cannot exclude that there may be other biochemical signals from dying cells

that orient cell division. For example, there are other Wnt proteins in Drosophila that might

affect cell polarity[56].

One other model consistent with these results is that cell division is oriented by physical

constraints rather than biochemical signals[10, 35]. It is thought that in the wild type wing

disc, the characteristic circumferential division pattern of the peripheral cells is a result of their

being stretched around the growing wing pouch[10, 35]. Consistent with this conclusion, it

has been reported that when a clone of cells grows more rapidly than the surrounding epithe-

lium, cells around the clone are stretched circumferentially to accommodate the hyperplastic

region, and this change in shape tends to orient cell divisions in a circumferential pattern

around the hyperplastic clones[10]. By analogy to these findings concerning enhanced growth,

it might be expected that clones of cells experiencing high rates of cell death would expand

more slowly than surrounding cells, and that this would stretch the cells around the clone

inwards towards the slow growing region, leading to a reorientation of cell divisions towards

the slow growing clone, opposite to the case of more rapidly growing clones. As expected

given their persistent cell death, clones of pie homozygous cells grow more slowly than control

clones, and exhibit a small increase in apical cell size, consistent with local tension in the epi-

thelium (Fig 6A–6C). We have reported the changed orientation of cell division near to pie

clones previously[8]. We were unable here, however, to measure a consistent change in shape

of the wing cells adjacent to pie homozygous clones, the population of cells where the altered

division orientation is measured (Fig 6D). This lack of correlation between cell shape and cell

division orientation is also seen for wing pouch cells in the wild type wing disc, which show a

proximo-distal division preference but no obvious proximo-distal polarization[35, 36]. We did

not measure the shapes of mitotic cells separately, and so cannot exclude the possibility that

only the mitotic cells exhibit altered shapes in the wing pouch[36]. Recently, it has been

reported that the orientation of epithelial cell division is determined by microtubule interac-

tions with cell junction vertices, and that cell shape is a poor predictor of cell division in

rounded cells, where the disposition of cell junction vertices varies[9]. This may explain why

both the normal cell division orientation and the response to cell death do not correlate with

cell shape within the wing pouch region, where cells are more rounded than in peripheral

regions of the wing disc.

Oriented cell divisions are suggested to contribute to organogenesis[4, 57]. It was suggested

that oriented cell divisions are responsible for the shape of cell clones in the wing disc, which

ultimately determines the shape of the whole tissue (which is a collection of clones)[4].
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Oriented cell divisions may have other functions, for example they may represent a homeo-

static mechanism that ameliorates growth-induced mechanical stress[5–7].

The shape of cell clones becomes less regular during cell competition, and the interfaces

between wild type and Minute cell populations become more convoluted and interdigitated [8,

30]. Previously, we suggested that oriented cell division could be responsible for the intermin-

gling of wild type and Minute cells[8]. Recently, Levayer et al described very similar intermin-

gling between cells in the pupal notum that are induced to compete by expression of different

levels of Myc protein[31]. Very little cell division occurs in pupal notum, and Levayer et al

describe cell neighbor exchanges that are responsible for intermingling the cell populations.

They propose these exchanges are promoted by mechanical effects of differential growth rates

[31]. Wild type and Minute cells also grow at different rates[25], but the apoptotic protein

baculovirus p35 reduces the degree of intermixing between wild type and Minute cells[8].

There is now evidence that p35 also stimulates Minute growth rate, while having less effect on

wild type cells[58]. Although the precise mechanism is unclear, Minute cell growth is possibly

stimulated by signals from the undead Rp/Rp cells that are preserved when p35 is expressed

[59]. Together these data raise the possibility that p35 may affect both cell division orientation

and intermingling of wild type and Minute cells by equalizing their relative growth rates. In

the case of pie clones that expand slowly, differential growth might result in local mechanical

stretching which influences nearby cell divisions, although it can’t be excluded that the pie
mutant clones have other differences from wild type.

Fat has a role as an upstream regulator of the Salvador-Warts-Hippo (SWH) pathway of

tumor suppressors[18, 60–63]. There is substantial evidence that the SWH pathway responds

to mechanical cues. Inputs are reported from actin polymerization status and from adhesion

junctions via alpha-catenin and Juba proteins[64, 65]. Recent studies indicate that the SWH

pathway itself promotes epithelial junctional tension, which is reduced in clones of ft or wts
mutants[66]. Cell division orientation also depends on atro, however, which has been thought

not to affect SWH activity, since it does not affect growth[8]. Recent studies suggest that muta-

tions in the Fat-Dachsous pathway may affect PCP through a disruption of the Spiny Leg pro-

tein by de-repressed Dachs that is not a reflection of normal Dachs function[67, 68]. This does

not explain how cell division orientation is affected by Fat or Dachsous but it does raise the

possibility that Fat and Dachsous mutations might affect processes that depend little on their

normal alleles. What we report here is that the model developed for planar cell polarity, in

which ligand-receptor interactions between Fat and gradients of Dachsous control cell polar-

ity, do not seem applicable to the orientation of cell division in the wing disc, where mechani-

cal factors may be important.
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