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Abstract HIV +Elite and Viremic controllers (EC/VCs) are able to control virus infection, perhaps

because of host genetic determinants. We identified 16% (21 of 131) EC/VCs with CD4 +T cells

with resistance specific to R5-tropic HIV, reversed after introduction of ccr5. R5 resistance was not

observed in macrophages and depended upon the method of T cell activation. CD4 +T cells of

these EC/VCs had lower ccr2 and ccr5 RNA levels, reduced CCR2 and CCR5 cell-surface

expression, and decreased levels of secreted chemokines. T cells had no changes in chemokine

receptor mRNA half-life but instead had lower levels of active transcription of ccr2 and ccr5,

despite having more accessible chromatin by ATAC-seq. Other nearby genes were also down-

regulated, over a region of ~500 kb on chromosome 3p21. This same R5 resistance phenotype was

observed in family members of an index VC, also associated with ccr2/ccr5 down-regulation,

suggesting that the phenotype is heritable.

DOI: https://doi.org/10.7554/eLife.44360.001

Introduction
Human immunodeficiency virus type 1 (HIV-1) is pandemic, with more than 36 million people

infected world-wide. Anti-retroviral therapy (ART) is a mainstay of treatment, but once therapy is

stopped or drug resistance develops, viral rebound occurs within weeks and CD4 +T cell counts

decline (Holkmann Olsen et al., 2007). A small population of HIV-infected individuals termed elite

controllers (ECs) and viremic controllers (VCs), however, are able to control viral replication (plasma

viral load, VL <50 [ECs] or 50 < VL < 2000 [VCs] for at least 6–12 months) in the absence of ART by a

mechanism that is not fully elucidated (Deeks and Walker, 2007; Gonzalo-Gil et al., 2017;

Lambotte et al., 2005). EC/VCs are considered examples of ‘functional’ cures, in which virus is not

fully eradicated and yet for the most part the patient does not develop immune dysfunction over

time. The clinical status of most EC/VCs cannot be explained by defective HIV particles or genomes

(Wang et al., 2002; Blankson et al., 2007). Rather, these individuals appear to have an intrinsic abil-

ity to control HIV infection, perhaps because of host genetic determinants. A genome-wide
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association study (GWAS) identified certain human leukocyte antigens (HLA)-B and HLA-C alleles

that are associated with viral control in ECs (Pereyra et al., 2010). However, these protective alleles

only accounted for ~20% of the effect, suggesting that there are other mechanisms responsible for

the suppressed viral loads in EC/VCs. Identifying novel mechanisms involved in HIV control is para-

mount to HIV research and the cure agenda.

C-X-C chemokine receptor 4 (CXCR4) and C-C chemokine receptor 5 (CCR5) serve as co-receptor

for X4-tropic and R5-tropic HIV-1 entry into CD4 +T cells, respectively, and CCR5 is essential for sex-

ual transmission of HIV (Feng et al., 1996). The presence of the CCR5 delta 32 (D32CCR5) allele con-

fers protection against seroconversion, with homozygotes being completely resistant to infection via

mucosal routes (Liu et al., 1996; Samson et al., 1996). There is, however, no evidence that

D32CCR5 � is associated with EC/VC phenotype. Conflicting results have been obtained regarding

the susceptibility of EC/VC CD4 +T cells to HIV infection in vitro. Activated CD4 +T cells from EC/

VCs have been shown to be susceptible to both R5- and X4-tropic HIV (Blankson et al., 2007;

Lamine et al., 2007) but opposite results have also been reported, with CD4 +T cells of EC/VCs

being resistant to HIV (Chen et al., 2011; Sáez-Cirión et al., 2011; Walker et al., 2015; Julg et al.,

2010).

Previously we had observed that three of roughly a dozen ECs tested had CD4 +T cells with

intrinsic resistance to R5 virus, due to increased chemokine gene expression (Walker et al., 2015).

To extend those findings and to determine whether R5 resistance is a consequence of a transcrip-

tional mechanism and if there is a hereditary basis associated with the phenotype, we analyzed the

in vitro susceptibility to HIV of purified CD4 +T cells from 131 EC/VCs, along with normal, healthy

donors. Here we report that a subset of EC/VCs have resistance to HIV, specific to R5-tropic virus.

For these subjects, however, the resistance phenotype was due to lower levels of CCR5, at both the

RNA and protein levels, and was likely due to reduced active transcription of ccr5, despite highly

accessible chromatin. The fact that CD4 +T cells from multiple family members of an index VC had a

similar phenotype and also down-regulation of ccr5 suggests that the phenotype is hereditary in

nature.

Results

Clinical characteristics of EC/VC cohort
The total number of EC/VCs studied was 131, with a majority coming from the UCSF SCOPE cohort.

Forty-four percent (58/131) were ECs, with 56% (73/131) being VCs (See Supplementary file 1). The

year of initial HIV diagnosis or likely exposure ranged from 1980 to 2014, and subjects were 48 ± 12

years old (mean ±SD, range of 19 to 79 years), the majority being men (78.62%). CD4 +T cell count

at time of enrollment was 689 ± 358 (mean ±SD). Most had never received ART except under the cir-

cumstances of pregnancy or malignancy (Supplementary file 1). Although occasional viral blips

were observed, none of the EC/VCs ever lost virologic control necessitating ART. A number of sub-

jects (54/125) had documented protective HLA alleles, being 32.06% HLA-B*57:03, 25.95% HLA-

B*57:01, 22.9% Cw*08:02, 10.69% B*14:02, 4.58% HLA-B*27:05, and 3.05% B*52:01.

In vitro CD4 +T cell intrinsic resistance specifically to R5-tropic virus in a
subset of HIV +EC/VCs
To determine whether T cells of EC/VCs were resistant to X4- or R5-tropic virus in vitro, we activated

CD4 +T cells from 131 EC/VC and 35 Ctrl, and then infected them overnight using single cycle HIV

encoding YFP and pseudotyped with either X4, R5, or VSV G glycoprotein and analyzed cells by flow

cytometry 72 hr later. We observed relative resistance to R5-tropic HIV in CD4 +T cells from EC/VCs

(% cells eYFP+: EC/VC 0.99 ± 0.79) compared to Ctrl (1.22 ± 0.66; p=0.01; Figure 1—figure supple-

ment 1A, left panel). In contrast, we saw equal susceptibility to X4-tropic HIV (Ctrl 3.08 ± 1.32; EC/

VCs 3.33 ± 1.91) and VSV G pseudoviral particles among the groups (Ctrl 34.8 ± 9.36; EC/VCs

30.66 ± 11.22; Figure 1—figure supplement 1B). Post-hoc analysis identified 16% of EC/VCs (21 of

131 analyzed, termed ECr/VCr) with resistance specific to R5-tropic HIV, compared to remaining EC/

VC subjects and healthy Ctrl, with no resistance observed (% cells YFP+: Ctrl 1.22 ± 0.66; EC/VC

1.2 ± 0.77; ECr/VCr 0.2 ± 0.07; p<0.0001; Figure 1—figure supplement 1A, right panel), pointing

to an early block of infection in a subset of EC/VCs. These data confirmed that the phenotype was
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specific to EC/VC, not observed in Ctrl. To confirm the R5 resistance phenotype, we then selected

ECr/VCr samples for further study, based upon % eYFP +cells being lower than any value in Ctrl

group. We retested these ECr/VCr samples prospectively in at least triplicate, using two R5-tropic

envelopes, in comparison to a subset of EC/VC (n = 38, selected based upon sample availability and

representativeness of the population from the initial test) and Ctrl (n = 35). Our results redemons-

trated R5 resistance, as manifested as a 5-fold reduction in CD4 +T cell susceptibility to YU2-pseu-

dotyped virus, on average, in ECr/VCr compared to remaining EC/VC and Ctrl (Figure 1A, % cells

eYFP+: Ctrl 1.05 ± 0.81; EC/VC 1.09 ± 0.75; ECr/VCr 0.20 ± 0.16; p<0.0001). Similar results were

Figure 1. CD4 +T cell resistance to infection in prospective single cycle assay, specific to R5-tropic viruses in a subset of EC/VCs. (A) Five-fold

resistance to R5-tropic viruses in 16% of EC/VC (ECr/VCr) infected using replication defective HIV-cycT1-IRES-eYFP (CIY) with R5-tropic envelopes YU2

and ADA. A > 95% power was determined based on comparisons of means using PASS statistical software between ECr/VCr and all other groups (Ctrl

and EC/VC). (B) Equivalent susceptibility to both X4-tropic (NL4-3) and VSV G pseudoviral particles in ECr/VCr. A and B are pooled results from

different experiments with samples tested at least in triplicate (Ctrl n = 35, EC/VC n = 38, representative from the initial population (Figure 1—figure

supplement 1) and selected based upon specimen availability, and ECr/VCr (n = 21). (C) Comparable levels of chemokines (MIP-1a and MIP-1b) in cell

culture supernatants from activated CD4 +T cells, measured by ELISA. (D) CD4 +T cells from Ctrl were exposed to cell culture supernatants from

activated T cells of Ctrl and EC/VC with or without the resistance phenotype, in the presence of HIV particles pseudotyped with YU2 or VSV G. C and D

are pooled results from different experiments with n = 10 (Ctrl and EC/VCs) and n = 21 (ECr/VCr). Shown are individual values with Means ± Standard

Deviation (SD). Data were analyzed by using the Kruskal-Wallis test and Dunn’s multiple-comparison test. *p<0.05; ****p<0.0001.

DOI: https://doi.org/10.7554/eLife.44360.002

The following figure supplements are available for figure 1:

Figure supplement 1. Initial testing showing CD4 +T cell resistance to infection in single-cycle pseudotyping assay, specific to R5-tropic viruses, in a

subset of EC/VCs.

DOI: https://doi.org/10.7554/eLife.44360.003

Figure supplement 2. CD4 +T cell resistance to infection in single-cycle pseudotyping assays in 21 ECr/VCr and multi-cycle infection in a subset of

ECr/VCr, Ctrl and EC/VC.

DOI: https://doi.org/10.7554/eLife.44360.004
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observed using ADA-pseudotyped virus (% cells YFP+: Ctrl 1.27 ± 0.5; EC/VC 1.13 ± 0.75; ECr/VCr

0.34 ± 0.16; p<0.0001, Figure 1A). Similar to the post-hoc analysis, in this prospective testing we

observed equal susceptibility to X4-tropic and VSV-G-pseudotyped HIV particles in activated

CD4 +T cells from ECr/VCr compared to EC/VC without the phenotype and Ctrl (Figure 1B). In mul-

tiple cases, based upon sample and subject availability, we retested ECr/VCr CD4 +T cells isolated

from independent, separate blood draws and observed consistent results (i.e., R5 resistance was

seen repeatedly, not just on a single blood draw). Taken together, these data identify a subset of

EC/VCs with intrinsic, reproducible resistance specific to R5-tropic virus in T cells, a phenotype only

observed in EC/VC. From the 21 EC/VCs with the resistance phenotype, 43% were ECs (9/21) and

57% VCs (12/21). Figure 1—figure supplement 2A shows virus infectivity data for all 21 ECr/VCr,

with Figure 1—figure supplement 2B demonstrating absence of correlation between R5 and X4

and R5 and VSV G susceptibility.

We next analyzed whether any clinical characteristics (VL, CD4 +T cell count, and age) were asso-

ciated with the R5 resistance phenotype in the EC/VC population. Comparable VLs and CD4 +T cell

counts were observed in both groups (Figure 1—figure supplement 1C). However, ECr/VCr were

significantly younger than EC/VC (43 ± 14 vs 49 ± 12 years; p=0.047; Figure 1—figure supplement

1C). Analyzed by gender, most of the subjects in both groups were men (EC/VC 78% or 85/109%

and 86% or 18/21 in ECr/VCr).

To investigate whether this resistance was associated with increased levels of chemokines or

other soluble factors, which could block viral entry by competitively binding to the chemokine co-

receptor CCR5 (Paxton et al., 1996; Saha et al., 1998), chemokine levels were quantified in cell cul-

ture supernatants from activated CD4 +T cells. We selected samples from each group (Ctrl and EC/

VCs based upon specimen availability and representative from the initial testing) and compared with

ECr/VCr (n = 21). oup (Ctrl and EC/VCs basing on sample availability and representativeness from

the initCD4 +T cells from ECr/VCr, however, had decreased levels of secreted MIP-1a and MIP-1b,

compared to the other groups (Figure 1C), which was statistically significant compared to Ctrl (MIP-

1a: Ctrl 16 ± 9.42 vs ECr/VCr 7.24 ± 5.21 ng/ml; p=0.048 and MIP-1b: ECr/VCr 4.52 ± 2.61 vs Ctrl

9.12 ± 4.73 ng/ml; p=0.01). Additionally, we performed media transfer experiments to explore

whether other factors elaborated by activated CD4 +T cells were responsible to the resistance phe-

notype in this ECr/VCr subset. Our results revealed comparable T cell susceptibility to infection in

ECr/VCr and EC/VCs without the phenotype (Figure 1D), suggesting that the culture supernatants

did not contain soluble factors that could confer resistance to R5-tropic virus in the ECr/VCrs.

Previous reports have suggested that expression of HLA-B*27/HLA-B*57 and other specific HLA

alleles can account for some of the controller phenotype. We examined whether the presence of

protective HLA alleles was associated with viral control in ECr/VCr subset. Of the 16% of ECr/VCr

with the R5 resistance phenotype, only five individuals (5/19 or 26.3%) had documented protective

alleles, with four of them being HLA-B*57 positive and only one HLA-B*27. Analyzing the remaining

EC/VC, the percentage was higher, with 46% (49/106) of them having protective HLA alleles.

Although this difference in frequency of protective alleles was not significant (p=0.086) due to the

low number of ECr/VCr, these data confirm that protective alleles were not more frequent in ECr/

VCr.

We next investigated whether the ECr/VCr CD4 +T cells were also relatively resistant to replica-

tion-competent virus. Activated CD4 +T cells from EC/VC, ECr/VCr (based upon prior experiments)

and Ctrl (n = 2 per group, tested in triplicate, selected based upon cell availability) were infected

with X4- and R5-tropic viruses, at low MOI. Viruses were prepared in 293 T cells by co-transfection

with VSV G expression plasmid to facilitate the first round of replication. Replication of NL4-3 (X4)

and BaL (R5) was quantified using TZMbl cells as a reporter, measuring firefly luciferase activity over

a period of 3 weeks. We observed significantly reduced replication of BaL in ECr/VCr, compared to

EC/VC and Ctrl over the 21 days analyzed (Mean ±SD Area Under Curve [AUC] R5: Ctrl

177828 ± 53736; EC/VC 125548 ± 31577; ECr/VCr 62006 ± 4179; Figure 1—figure supplement 2C,

right panel). The absence of differences in viral replication at day three post-infection may be

explained by the addition of VSV G as described above. Infection using NL4-3 also showed signifi-

cant resistance in all EC/VC (AUCs: Ctrl 19679 ± 12897; EC/VC 5880 ± 1319; ECr/VCr 2125 ± 60.1,

Figure 1—figure supplement 2C, left panel). The fact that EC/VC (with or without the R5-resistance

phenotype) had reduced infectivity, with virtual absence of X4 replication in ECr/VCr, suggests a

more complex mechanism of virologic resistance that should be further explored.
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RNA-Seq identifies several genes down-regulated in EC/VC with R5-
tropic resistance
To further investigate the mechanism of R5-tropic resistance in early infection, we next performed

RNA-Seq to identify genes that were significantly up- or down-regulated in activated CD4 +T cells

from ECr/VCr compared to Ctrl. We examined RNA levels in activated T cells because those are the

cells in which we observed the R5 resistance phenotype (unactivated T cells are extremely difficult to

infect). Several of the differentially expressed genes were located on chromosome 3 (chr 3), includ-

ing ccr1, ccr2, and ccr5, which were significantly down-regulated in ECr/VCr (corrected p val-

ues=0.005). To quantify mRNA levels of these genes in ECr/VCr, we performed RT-qPCR in ECr/VCr,

and compared results to remaining EC/VCs and Ctrl. These data confirmed a 7-fold decreased

expression in ccr2 mRNA levels, on average, in T cells of ECr/VCr (0.13 ± 0.09) compared to those of

EC/VC without the resistance phenotype (0.89 ± 0.41; p<0.0001) and Ctrl (0.91 ± 0.72; p<0.0001;

Figure 2A). Similarly, we observed down-regulation of ccr5 RNA in T cells of ECr/VCr

(0.076 ± 0.047; 9-fold decrease on average) compared to those of the other groups (EC/VC

0.79 ± 0.63 and Ctrl 0.68 ± 0.63; p<0.0001, Figure 2A).

Figure 2. Decreased mRNA levels of several chromosomal three genes in ECr/VCrs. (A) Decreased ccr2/ccr5 RNA levels in activated CD4 +T cells from

EC/VCs with the resistance phenotype, with comparable cxcr4 and cd4 RNA levels in all groups. Shown are individual values with Means ± SD. Pooled

results from different experiments are shown with representative samples per group, n = 19 (Ctrl), n = 8 (EC/VC) and n = 21 (ECr/VCr) per group. (B)

Positive correlation between ccr2 and ccr5 RNA levels in activated CD4 +T cells. ccr5 RNA levels positively correlated with % of YFP +infected cells by

single cycle assay using R5-tropic viruses but not with cd4 or cxcr4 (Figure 2—figure supplement 1A). (C) Decreased RNA levels in multiple

chromosomal 3p21 genes in T cells of HIV +infected individuals (Figure 2—figure supplement 1C). Statistical analysis performed using Kruskal-Wallis

test and Dunn’s multiple-comparison test. r value calculated using the non-parametric Spearman correlation test. Graphs show individual values with

Means ± SD. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.

DOI: https://doi.org/10.7554/eLife.44360.005

The following figure supplement is available for figure 2:

Figure supplement 1. Correlations and fold-change in RNA levels in ECr/VCr.

DOI: https://doi.org/10.7554/eLife.44360.006
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Conversely, we did not observe significant differences between groups in cxcr4 and cd4 RNA lev-

els (Figure 2A). Interestingly, ccr5 RNA highly correlated with ccr2 RNA levels (r = 0.88; p<0.0001,

Figure 2B), suggesting a common regulatory mechanism for both genes in all subjects. Moreover,

ccr5 mRNA levels were positively correlated with transduction by R5-tropic virus (r = 0.71; p<0.0001,

Figure 2B), indicating that subjects whose CD4 +T cells were more resistant to R5-tropic virus had

lower ccr5 mRNA expression. However, there was no correlation between ccr2 and cd4 or cxcr4

RNA levels, nor between ccr5 and cd4 or cxcr4 RNA levels (Figure 2—figure supplement 1A).

Because several genes near ccr2/ccr5 appeared to be down-regulated, we analyzed levels of

gene expression both centromeric and telomeric of that region. We observed down-regulation in

several genes in that locus of 3p21, including fyco1, cxcr6, ccr1, and ccr3 in all HIV +infected groups

(EC/VC, and ECr/VCr) compared to Ctrl, although only EC/VC and ECr/VCr groups reached statisti-

cal significance compared to Ctrl (Figure 2C). Taken together, these data point towards RNA down-

regulation involving a region of approximately 500 Kb, surrounding ccr2/ccr5 in EC/VC (Figure 2—

figure supplement 1C), with a more profound decrease of ccr2/ccr5 specifically in ECr/VCr, not

observed in the remaining EC/VCs.

LOC102724291 is a poorly characterized long non-coding RNA (lncRNA) of unknown function,

present on chr3, antisense to ccr5 and ccr2. To ascertain if loc102724291 was involved in ccr2/ccr5

RNA down-regulation, we quantified its expression in CD4 +T cells by RT-qPCR. Comparable levels

were observed between ECr/VCr and EC/VCs without the phenotype using a primer pair within

exons 1 and 2. We did observe, however, lower lncRNA levels using a primer pair within exon 3,

within intron 2 of ccr5 (Figure 2—figure supplement 1D), in CD4 +T cells of ECr/VCr compared to

other groups. The absence of a negative correlation between ccr2 or ccr5 and loc102724291 makes

it unlikely that an antisense effect from this lncRNA is responsible for the down-regulation of ccr2/

ccr5 in ECr/VCr and is more consistent with loc102724291 also being down-regulated by a more

global mechanism, similar to other genes in the region.

Lower CCR2 and CCR5 surface expression in EC/VC with the resistance
phenotype
We confirmed the activation status of CD4 +T cells by analyzing CD69 and CD25 up-regulation by

flow cytometry, cell-surface markers of early and late cell activation, respectively, after CD4 +T cell

activation with aCD3/CD28 for three days. Results showed a strong late activation of CD4 +T cells in

all groups, with comparable CD25 levels in ECr/VCr and remaining EC/VC and Ctrl groups

(Figure 3A). However, we observed lower levels of CD69 (%+) in activated CD4 +T cells from ECr/

VCr (22.26 ± 6.54) compared to EC/VC without the resistance phenotype (30.59 ± 5.15; p=0.011)

and Ctrl (32.12 ± 4.15; p=0.0003; Figure 3A).

It is important to note that we infected the T cells 72 hr after activation, not at 24 hr, and that the

resistance phenotype was specific to R5 virus, with equal susceptibility to X4- and VSV G-pseudo-

typed particles. In fact, positive correlations were observed between ccr5 mRNA or cell surface

expression levels and % CD69 +cells, confirming that lower ccr5 expression, but not cxcr4, was

observed in CD4 +T cells with lower levels of the early activation marker (Figure 2—figure supple-

ment 1B). In select samples we also analyzed the percentage of memory T cells after anti-CD3/

CD28 co-stimulation. Results showed a high percentage of CD45RO + memory T cells of between

60–80%, and low percentage of naı̈ve CD45RA + T cells (~10%), with no differences between groups

(Figure 3B). These data, taken together, confirm efficient activation of CD4 +T cells in all subject

groups studied, with a high percentage of memory T cells after activation.

To determine whether the resistance phenotype was associated with an alteration in the expres-

sion of CCR2 and CCR5, cell surface levels were quantified by flow cytometry in activated CD4 +T

cells. Our results revealed lower surface expression of CCR2 in ECr/VCr (15.5 ± 10.17 %+) compared

to other EC/VCs (22.99 ± 11.04; p=0.021) and Ctrl (23.64 ± 9.13; p=0.023; Figure 3C, CD3/28 panel.

Figure 3—figure supplement 1 shows individual flow cytometric histograms, comparing cell surface

expression of Ctrl and all 21 ECr/VCr). Similarly, differences in CCR5 expression also reached signifi-

cance, being lower in ECr/VCr (21.39 ± 13.65) than in other EC/VC (37.99 ± 12.3; p=0.005) or Ctrl

(36.08 ± 10.29; p=0.003; Figure 3C, CD3/28 panel. Figure 3—figure supplement 2 shows individual

flow cytometric histograms comparing cell surface expression between Ctrl and all 21 ECr/VCr). Sim-

ilar results were observed analyzing the data as MFI, with lower CCR2 and CCR5 in ECr/VCr com-

pared to the other groups (Figure 3E). Interestingly, we observed a positive correlation between
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CCR2 and CCR5 surface expression (r = 0.35; p=0.029; Figure 3F). We next investigated whether

there were differences in surface expression levels in non-stimulated (NS) CD4 +T cells. Similarly,

CCR2 and CCR5 expression levels in NS CD4 +T cells were significantly lower in ECr/VCr, compared

to EC/VC without the resistance phenotype (Figure 3C). Since most CCR5 +CD4+T cells show an

Figure 3. Lower proliferative responses and CCR2 and CCR5 cell surface levels in activated CD4 +T cells from ECr/VCrs. (A) Reduced CD69, but not

CD25 levels in activated CD4 +T cells from ECr/VCrs. Graph shows representative data N = 13 (Ctrl), n = 9 (EC/VC) and n = 21 (ECr/VCr). (B)

Comparable frequencies of naı̈ve CD45RA + and memory CD45RO + T cells after anti-CD3/CD28 activation between groups (n = 2 per group). (C)

CCR5 and CCR2 cell surface levels measured by flow cytometry are reduced in freshly thawed (NS, non-stimulated) and activated CD4 +T cells (anti-

CD3/28) from ECr/VCr. (D) Percentages of CCR5 +in effector memory (EM) and central memory (CM) compartments of activated CD4 +T cells (n = 2

per group). (E) Reduced CCR2 and CCR5 cell surface levels, expressed as MFI, in activated (anti-CD3/28) CD4 +T cells from ECr/VCr. Data in D-E shown

pooled results from different experiments with n = 10 (Ctrl and EC/VC) and n = 19 (ECr/VCr). (F) Positive correlation between CCR2 and CCR5 cell

surface levels. (G) Positive correlation observed between ccr2/ccr5 RNA levels and cell surface expression. Values obtained using the non-parametric

Spearman correlation test. *p<0.05.

DOI: https://doi.org/10.7554/eLife.44360.007

The following figure supplements are available for figure 3:

Figure supplement 1. Flow cytometric histograms showing CCR2 +T cells in all 21 ECr/VCr, compared to 10 Ctrl, with isotype control staining in blue

(open histograms).

DOI: https://doi.org/10.7554/eLife.44360.008

Figure supplement 2. Flow cytometric histograms showing CCR5 +T cells in all 21 ECr/VCr, compared to 10 Ctrl, with isotype control staining in blue

(open histograms).

DOI: https://doi.org/10.7554/eLife.44360.009
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effector memory phenotype (EM, defined as CD45RO+/CD27-), and these T cells may be more eas-

ily infected by R5-tropic virus, we investigated whether CCR5 levels were lower in Effector Memory

(EM) from ECr/VCr. Our results, however, demonstrated lower CCR5 expression in both EM and

central memory T cells (CM, defined as CD45RO+/CD27+; Figure 3D) in ECr/VCr, compared to Ctrl

and EC/VC. In addition, percentages of EM trended higher in ECr/VCr T cells compared to other

groups, suggesting that the R5-resistance phenotype is not due to a lower percentage of EM T cells.

We then investigated whether activated CD4 +T cells from individuals with lower ccr2/ccr5 RNA

levels also had lower surface expression of both CCR2 and CCR5. We saw a positive correlation

between CCR2 protein expression and ccr2 RNA levels (r = 0.45; p=0.02, Figure 3G). Similar results

were observed with CCR5 (r = 0.36; p=0.01), suggesting that down-regulation of ccr5 RNA was

responsible for lower cell surface expression and consequent resistance to R5 virus in ECr/VCr

CD4 +T cells.

Increased susceptibility to R5-tropic virus infection in activated CD4 +T
cells after overexpression of CCR5
To confirm that the R5-tropic resistance in ECr/VCr CD4 +T cells was due to down-regulation of

CCR5, activated CD4 +T cells from ECr/VCr, EC/VC, and Ctrl were infected with R5-tropic pseudo-

typed HIV particles after cell transduction using pan-tropic pseudotyped viral particles encoding

both CCR5 and eYFP. First, we observed an increase in the percentage of CCR5 +cells in ECr/VCr

transduced with pHIV-CCR5-IRES-YFP (VSV G) (8.09 ± 3.86%), compared to vector encoding YFP

alone (3.16 ± 1.14%; p=0.032, Figure 4A). These CD4 +T cells were more susceptible than those of

Ctrl to subsequent infection using two different R5-tropic viruses (YU2: Ctrl 1.15 ± 0.05% vs ECr/VCr

2.74 ± 1.11%; p=0.009; ADA: Ctrl 0.70 ± 0.04% vs ECr/VCr 1.79 ± 1.3%; p=0.008).

Also, and more interestingly, higher susceptibility was observed in ECr/VCr than EC/VC (for YU2:

EC/VC 1.56 ± 0.39% vs ECr/VCr 2.47 ± 0.51%; p=0.03, Figure 4A). We did not, however, observe

any differences when we used VSV G-pseudotyped viral particles, confirming that the observed R5-

resistance phenotype in ECr/VCr was in fact due to decreased cell surface expression of CCR5.

To determine whether this R5-resistance phenotype was observed in other circulating mononu-

clear cells, macrophages derived from monocytes (MDMs) were infected using pseudotyped lentivi-

ral particles and analyzed by flow cytometry (Figure 4B). We observed comparable R5 susceptibility

in MDMs from ECr/VCr and remaining EC/VCs. We next analyzed ccr5 and ccr2 RNA expression lev-

els in MDMs from EC/VCs, and equivalent levels were present in all groups (Figure 4C). Similarly,

the percentages of CCR5 +and CCR2 +in CD14+cells were comparable between groups

(Figure 4D), suggesting that the R5-tropic resistance phenotype and ccr2/ccr5 down-regulation

observed in a subset of EC/VCs were specific to activated CD4 +T cells.

Other investigators have attempted to determine with limited success whether EC/VC CD4 +T

cells are resistant to infection in vitro. To ascertain whether the conflicting results are a consequence

of varying experimental conditions or clinical characteristics of the EC/VCs, we activated CD4 +T

cells using PHA or PMA/ionomycin from a representative number of samples from different groups,

and T cells then infected with pseudotyped viral particles. We observed comparable CD4 +T cell

susceptibility to X4- and VSV G-pseudotyped particles in EC/VCs (Figure 5A).

Additionally, we did not observe significant differences in R5-tropic virus susceptibility of EC/VC

CD4 +T cells after PMA/ionomycin stimulation (Figure 5B), although T cell susceptibility trended

lower in ECr/VCr compared to Ctrl and EC/VCs after PHA stimulation. Next, we analyzed ccr2 and

ccr5 transcript levels by qPCR in the same samples after both experimental conditions and results

were comparable between groups (Figure 5C). Similarly, no differences were found in CCR5 cell sur-

face expression between groups after both non-specific stimulations (Figure 5D). Our data thus sug-

gest that the R5-tropic resistance phenotype in ECr/VCr is limited to CD4 +T cells activated by anti-

CD3/CD28 co-stimulation, which in vitro is the most physiological method of stimulation, short of

using cognate antigen and antigen presenting cells.

Frequencies of D32CCR5 and promoter polymorphism in EC/VC with
resistant phenotype
In order to exclude the possibility that the observed R5-tropic resistance in ECr/VCr was due to the

ccr5 promoter polymorphism �2459 A/G (Hladik et al., 2005; Joshi et al., 2017), we analyzed the
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frequency of those genotypes in our populations. 76.5% of the Ctrls were A/G heterozygotes, with

absence of the polymorphism in 23.5% of the Ctrl population. Interestingly, we only found A/G

homozygotes in EC/VC population (8.51%). When analyzed as presence vs. absence of the polymor-

phism, we identified a lower frequency of homo +heterozygotes in EC/VCs (60.64%) compared to

Ctrl (p=0.03). Although a significantly lower frequency was also observed in ECr/VCr (52.38%;

p=0.04) compared to Ctrl, we did not observe a significant difference between ECr/VCr and remain-

ing EC/VC (p=0.41). Thus, the presence of this known promoter polymorphism does not contribute

to the R5 resistance phenotype in the ECr/VCr population.

By PCR and agarose gel electrophoresis we also analyzed the frequencies of D32CCR5 in our

cohort (Samson et al., 1996; Rappaport et al., 1997), with 14.8% of the Ctrl (4 of 27) being

D32CCR5 heterozygotes. We did observe a higher frequency of D32CCR5 heterozygotes in ECr/VCr

(33.33% or 7/21) compared to remaining EC/VCs (18.42%, 14/76; p=0.027), suggesting that the

presence of this variant contributes in part to the R5 resistance phenotype observed in ECr/VCr

subset.

ATAC-Seq identifies open chromatin regions in ECr/VCr
Given the reduced ccr2/ccr5 RNA levels observed in ECr/VCr, we decided to examine whether there

were differences in chromatin accessibility in this region of chromosome 3, inclusive of ccr2 and ccr5

Figure 4. Resistance to R5-tropic viruses is due to down-regulation of CCR5 in ECr/VCr. (A) Overexpression of CCR5 in CD4 +T cells using a lentiviral

vector (YFP-CCR5). Increased susceptibility to R5-tropic virus after overexpression of CCR5 in EC/VCs with R5 resistance, as measured by YFP+/

mRFP +double positive cells (n = 5 per group). (B) Comparable susceptibility to infection specific to R5-tropic virus in MDMs from ECr/VCr, EC/VCs and

Ctrl (n = 6 per group; samples tested in duplicate for YU2). (C–D) Similar ccr2/ccr5 mRNA (C) and cell surface protein levels (D) in MDMs from EC/VCs

(n = 3 per group). Shown in all cases are individual values with Means ± SD, analyzed using U-Mann Whitney test. *p<0.05; **p<0.01.

DOI: https://doi.org/10.7554/eLife.44360.010
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(chr3:45,920,704–46,497,303). DNA libraries were prepared in activated CD4 +T cells from ECr/VCr

(n = 4 replicates) and compared to Ctrl samples (n = 4 replicates) and Assay for Transposase Accessi-

ble Chromatin with high-throughput sequencing (ATAC-Seq) was performed to quantify differences

in open chromatin. Our results identified 64 peaks enriched in ECr/VCr compared to Ctrl

(Figure 6A), consistent with ~500 kb of highly accessible chromatin in this region of 3p21 in ECr/VCr

patients. We explored a small region including ccr2 and ccr5 (chr3:46,392,331–46,418,348), and we

identified more open chromatin in the ccr2- and ccr5-promoter regions in ECr/VCr compared to Ctrl

(Figure 6A).

We also examined chromatin accessibility both upstream and downstream of this ~500 kb region.

The coverage matrices of clusters 1 and 2 (upstream) showed a slight increase in ECr/VCr compared

to Ctrl whereas there were no observable differences in the downstream ATAC-Seq peaks (Fig-

ure 6—figure supplement 1). These results suggest that the increase in chromatin accessibility is

relatively specific to the ~500 kb region encompassing ccr2 and ccr5 in ECr/VCr.

In order to confirm the increased chromatin accessibility in ECr/VCr, we analyzed by ChIP ccr2

and ccr5 DNA levels using Tri-Methyl Histone H3 (Lys4) antibody (H3K4Me3) and qPCR (Figure 6B).

We saw a trend towards greater H3K4Me3 levels in ECr/VCr compared to EC/VC and Ctrl, although

differences were not significant (ccr5: p=0.42 and p=0.12, respectively). These data, taken together,

demonstrate that the down-regulation of ccr2/ccr5 mRNA levels is accompanied by an increase in

open chromatin in ECr/VCr in a specific region of 3p21.

Figure 5. Resistance specific to R5-tropic virus is dependent upon T cell activation method. (A) Comparable CD4 +T cell susceptibility to X4- and VSV

G or (B) R5- pseudotyped particles in all groups after PMA plus ionomycin or PHA stimulation. Decreased susceptibility to R5-tropic infection in ECr/VCr

compared to Ctrl and remaining EC/VCs after PHA stimulation was not significant. Shown are Means ± SD. (C) Comparable ccr2 and ccr5 mRNA

expression levels between experimental groups after PMA plus ionomycin or PHA treatment. (D) Comparable frequency of CCR5 +cells between

samples after PMA plus ionomycin or PHA stimulation in activated cells, analyzed as the MFI (n = 8 per experimental group).

DOI: https://doi.org/10.7554/eLife.44360.011

Gonzalo-Gil et al. eLife 2019;8:e44360. DOI: https://doi.org/10.7554/eLife.44360 10 of 27

Research article Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.44360.011
https://doi.org/10.7554/eLife.44360


CCR5 transcriptional down-regulation in ECr/VCr
To determine whether the down-regulation of ccr2/ccr5 RNA in ECr/VCr was attributable to a

decrease in active transcription, we performed ChIP in activated CD4 +T cells using antibodies

against Rpb1 CTD, the carboxy terminal domain of the large subunit of RNA polymerase II, followed

by qPCR. We observed lower ccr5 DNA levels in chromatin samples from ECr/VCr (0.069 ± 0.02)

compared to those of EC/VCs without the resistance phenotype (0.36 ± 0.21; p=0.02) and Ctrl

(0.27 ± 0.13; p=0.03; Figure 6C). We also observed comparable results with ccr2, with decreased

DNA levels in chromatin samples from ECr/VCr (0.09 ± 0.01) compared to remaining EC/VCs

Figure 6. Increased chromatin accessibility and lower active transcription in activated CD4 +T cells from ECr/VCr. (A) Left panel: ATAC-Seq coverage

profiles of region of chr 3p21 (45,920,704-46,497,303) of ECr/VCr CD4 +T cells, compared to those of Ctrl (n = 4 replicates per group). Heat map

showing gene TSS aligned, with a window of �250 bp to +250 bp, calculated as a normalized coverage around each TSS. Matrix was divided it into two

clusters, based upon Ctrl data. At top is average coverage profile for each of the clusters (cluster one in red and cluster two in green). Right panel:

ATAC-Seq peaks of chr 3p21 (46,392,331-46,418,348) of ECr/VCr vs Ctrl visualized using Integrated Genome Browser (IGB), see also Figure 6—figure

supplement 1. Green arrows highlight increased peaks near the TSS of both genes, ccr2/ccr5, in ECr/VCr relative to Ctrl. (B–C) ChIP-qPCR, using either

Tri-Methyl-Histone H3 (Lys4) (B) or Rpb1 (C) antibodies, with ccr2 and ccr5 DNA quantified by qPCR. Data normalized by the % total input DNA. Shown

are Means ± SD (n = 4 and n = 5 per group in B and C, respectively), with statistical analysis performed using Kruskal-Wallis with Dunn’s multiple-

comparison test. *p<0.05. (D) Quantitation of mRNA half-lives of indicated genes in activated CD4 +T cells, using Act D as a transcription inhibitor. T

cells were incubated with Act D and harvested (from time 0 to 8 hr). RNA was extracted, and RNA levels quantified by RT-qPCR and half-life calculated

using GraphPad PRISM software.

DOI: https://doi.org/10.7554/eLife.44360.012

The following figure supplement is available for figure 6:

Figure supplement 1. ATAC-Seq identifies comparable peaks between samples in other regions around chr 3p21.

DOI: https://doi.org/10.7554/eLife.44360.013
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(0.36 ± 0.21; p=0.04) and Ctrl (0.22 ± 0.07; p=0.02). These data are consistent with reduced tran-

scriptional initiation or activity of ccr2/ccr5 in ECr/VCrs compared to remaining EC/VCs and Ctrl.

We next determined whether the differences in ccr2/ccr5 RNA levels were a result of changes in

RNA stability. Activated CD4 +T cells were incubated in presence of Actinomycin D for varying

lengths of time, RNA isolated, RT-qPCR performed, and RNA half-life calculated from the decay

curves for ECr/VCr, Ctrl, and remaining EC/VC populations. We observed comparable half-lives of

ccr2, ccr5, and gapdh RNAs in CD4 +T cells from ECr/VCr, Ctrl, and remaining EC/VC groups

(Figure 6D), indicating that the down-regulation of ccr2/ccr5 RNA in ECr/VCr was likely a result of

differences in transcriptional initiation, rather than due to changes in RNA stability, consistent with

the Rpb1 ChIP results above.

Down-regulation of ccr2/ccr5 RNA levels in family members of an index
VC with R5-tropic resistance
To determine whether there is a hereditary basis associated with R5 resistance, we recruited family

members of an index VCr and investigated whether the associated CD4 +T cells had the same in

vitro phenotype. Activated CD4 +T cells from several ATL2 family members were infected with pseu-

dotyped viral particles of varying tropisms, and viral susceptibility analyzed by flow cytometry. We

observed resistance specific to R5-tropic virus in the T cells of two of three ATL2 family members

analyzed, with full susceptibility to X4- and VSV G-pseudotyped HIV (Figure 7A and B).

This included the mother and daughter, but not the son. Other family members were not avail-

able for testing. Of note, by self-report all family members were HIV seronegative and we were not

allowed to do further testing. The percentage of infected cells using R5-tropic virus was significantly

lower in activated CD4 +T cells of ATL2 and some family members (ATL2 +FMr 0.51 ± 0.24) com-

pared to those of Ctrl (1.58 ± 0.66; p=0.0015), EC/VC (1.42 ± 0.72; p=0.007), and the family member

without the phenotype, FMnr (1.05 ± 0.1; p=0.04).

We next asked whether the observed phenotype seen in family members was associated with

down-regulation of ccr2 and ccr5 RNA and other genes. RNA-Seq data identified 315 genes signifi-

cantly differentially expressed between ATL-2 and ATL-2 FMr, compared to Ctrl and ATL-2 FMnr. A

complete list of the genes is included in Supplementary file 2. More than half (51%, 160/315) were

significantly down-regulated in activated CD4 +T cells from ATL2 and FMr compared to Ctrl and

FMnr, including ccr2 and ccr5 and several genes in 3p21. RT-qPCR confirmed down-regulation in

ccr2/ccr5 RNA levels in activated CD4 +T cells from ATL2 and FM with R5-resistance phenotype

(ccr2: FMnr 0.24 ± 0.01 vs ATL2 +FMr 0.05 ± 0.02; p=0.03 and ccr5: FMnr 0.17 ± 0.005 vs

ATL2 +FMr 0.03 ± 0.01; p=0.05, Figure 7C). By flow cytometry, we also measured CCR2 and CCR5

cell surface expression in non-stimulated and stimulated CD4 +T cells in EC/VC family members with

and without the R5 resistance phenotype (Figure 7D). The expression of CCR5 in activated CD4 +T

cells from those family members with the resistant phenotype was significantly reduced (%

CCR5 +FMnr 12.33 ± 1.55 vs FMr 7.48 ± 2.57; p=0.02). These data point towards a hereditary basis

of R5-tropic resistance, at least for the ATL2 pedigree, and that the observed CCR2/CCR5 down-

regulation is genetic in nature.

Discussion
Here we studied CD4 +T cells purified from PBMCs of 131 EC/VCs and identified a subset of HIV

EC/VCs whose T cells were relatively resistant to infection by R5-tropic pseudotyped viral particles,

in single cycle, cell-based in vitro assays. This R5-resistance phenotype was associated with transcrip-

tional down-regulation of both ccr2 and ccr5. This same phenotype was observed in family members

of an index VC with R5 resistance, and it was also associated with ccr5 RNA and protein down-regu-

lation, providing strong evidence for a hereditary basis of the phenotype.

The in vitro R5 resistance phenotype was most strongly observed after CD4 +T cell co-stimula-

tion. In agreement with our results, prior studies have demonstrated that PHA-activated CD4 +T

cells from ECs were susceptible to both R5- and X4-tropic HIV infection (Blankson et al., 2007;

Bailey et al., 2006; Sáez-Cirión et al., 2010). Other groups have demonstrated that anti-CD3-acti-

vated CD4 +T cells from ECs were resistant to HIV infection, independent of co-receptor usage

(Chen et al., 2011; Sáez-Cirión et al., 2011; Paxton et al., 1996; Saha et al., 1998; Yu and Lichter-

feld, 2011). Only one prior report, from our group, observed T cell resistance specific to R5-tropic
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virus (Walker et al., 2015), and the current results are consistent with those data. Our prior study,

however, suggested the mechanism was mediated by increased chemokine produced and secreted

by activated CD4 +T cells, which would then confer resistance by sterically interfering with Env bind-

ing to co-receptor (Saha et al., 1998).

In the experiments here, performed on a much larger scale compared to our initial report, chemo-

kine RNA and protein levels were actually decreased in CD4 +T cells of EC/VCs with the R5 resis-

tance phenotype, suggesting that another mechanism was operational. It should be pointed out that

there was some overlap in subjects between the two studies. Despite repeated testing, we did not

confirm increased chemokine expression in EC11, but instead down-regulation of both ccr2 and ccr5

RNA. Of note, this sample was obtained at a later time point, perhaps explaining the observed dif-

ferences. We also included VCs in the current report, and they were excluded from the previous

study. Prior investigations have suggested that CD4 +T cells from ECs retain the ability to proliferate

and produce IL-2 in response to HIV (Emu et al., 2005) and are highly activated (Bello et al., 2009).

EC/VCs with the R5-tropic resistant phenotype expressed significantly lower levels of the early acti-

vation marker CD69. There were no differences, however, in levels of the late activation marker

CD25, which is when the T cells were infected. In addition, those T cells remained fully susceptible

Figure 7. Pedigree analysis of an Index VC with R5 resistance phenotype. (A) Resistance specific to R5-tropic virus, with equivalent susceptibility to X4-

and VSV G, in activated CD4 +T cells from 2 of 3 analyzed ATL2 VC family members. Shown are pooled results from different experiments, with

samples tested at least in triplicate. Statistical differences between ECr/VCr and other groups (Ctrl, EC/VC, and ATL2 FMnr) are also shown (**). (B)

Pedigree analysis of ATL2 EC. Red are individuals with the R5 resistance phenotype (ATL2 FMr); grey represents full susceptibility to infection (ATL2

FMnr); black not available for testing. (C) Decreased ccr2/ccr5 RNA levels in activated CD4 +T cells from family members with R5 resistance. Samples

were tested in duplicate. (D) Decreased CCR2 and CCR5 surface expression in resting (NS) and activated CD4 +T cells in family members with the

resistance phenotype. Samples were tested at least in duplicate; shown are individual values with Mean ±SD. Statistical analysis was performed by using

the U-Mann Whitney test or Kruskal-Wallis with Dunn’s multiple-comparison test. *p<0.05; **p<0.01. FMr: family member with R5 resistance. FMnr:

family member without R5 resistance.

DOI: https://doi.org/10.7554/eLife.44360.014
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to VSV G- and X4 Env-pseudotyped HIV, thus the significance of the subtly lower CD69 levels in the

T cells of the ECr/VCr subset is not known.

Of interest was the fact that we observed the R5 resistance phenotype only in activated CD4 +T

cells and not MDMs. The observed phenotype correlates with ccr2/ccr5 RNA down-regulation in

CD4 +T cells, whereas in MDMs there was no down-regulation of those two co-receptor genes,

demonstrating a strong correlation between resistance to R5 tropic viruses and down-regulation of

ccr2/ccr5. It is known that there are large differences in the transcriptional profiles between T cells

and MDMs (Woelk et al., 2004; Xue et al., 2014), and even in T cells different activation protocols

result in altered gene expression patterns (Marrack et al., 2000; Xu et al., 2013). Thus, it is quite

conceivable that non-specific T cell stimulation leads to production of transcription factors not pres-

ent after co-stimulation, resulting in altered RNA and cell-surface levels of CCR5.

The presence of the homozygous CCR5D32 mutation confers protection against mucosal HIV

infection (Liu et al., 1996; Samson et al., 1996), and heterozygotes have slower disease progression

(Rappaport et al., 1997; Rodés et al., 2004). That the frequency of CCR5D32 � was significantly

higher in EC/VCs with the R5-resistance phenotype compared to other ECs suggests heterozygosity

could contribute in part to the R5 resistance phenotype, likely by inactivating one ccr5 allele and

decreasing cell surface expression. Here, we also observed that both ccr2 and CCR5 mRNA and cell

surface protein levels were down-regulated in ECr/VCrs, supporting the idea that the R5 resistance

phenotype is mediated by a transcriptional mechanism. It is unlikely that CCR5D32 affects mRNA lev-

els since nonsense-mediated decay of RNA is not operational if the stop codon is present in the last

exon, as it is here. In addition, several lines of evidence presented here favor a transcriptional mech-

anism for the RNA down-regulation of ccr2/ccr5. There was no difference in the half-lives of these

RNAs in activated T cells, and ChIP-qPCR data using anti-Rpb1 demonstrated decreased levels of

active transcription on ccr2/ccr5 in ECr/VCrs. Rpb1 is the largest subunit of RNA polymerase II and

its presence on DNA correlates strongly with active transcription (Shin et al., 2016; Brookes and

Pombo, 2009; Phatnani and Greenleaf, 2006).

Two decades ago, the cis- and trans-acting sequences and factors influencing ccr5 transcription

were studied, and a promoter upstream of ccr5 was localized and dissected by functional assays

(Liu et al., 1998; Mummidi et al., 1997). Given the lack of upstream sequence conservation and dis-

tance of >10 kb, it is highly unlikely that those DNA sequences and transcription factors would also

modulate ccr2 expression. In addition, we observed decreased RNA levels of multiple genes

spanning ~500 kb of 3p21, both centromeric and telomeric to ccr2/ccr5, consistent with a more

global and coordinate down-regulation of multiple chemokines and their receptors in the activated

CD4 +T cells from ECr/VCr.

ATAC-Seq is an established method for quantifying chromatin accessibility in different cell popu-

lations (Corces et al., 2016). Previous reports have suggested that histone modifications upstream

of coding regions play a role in transcriptional regulation (Bernstein et al., 2002). In general,

H3K4Me3 is associated with open chromatin, specifically marking the promoters of active genes,

and correlates with higher levels of transcripts (Heintzman et al., 2007; Bernstein et al., 2005). In

our study, however, we observe CD4 +T cells from ECr/VCr have more open chromatin over ~500

Kb region in chr3, including ccr2 and ccr5, which surprisingly was associated with lower transcription

of both genes. It had also been shown that levels of DNA methylation in the ccr5 locus correlated

inversely with CCR5 levels on T cells (Gornalusse et al., 2015), which is also a typical transcriptional

control mechanism. The fact that CD4 +T cells of ECr/VCr have decreased transcriptional initiation/

transcript levels of ccr2/ccr5 and yet more open chromatin suggests that there is a dissociation

between chromatin access and transcription of these genes, for inapparent reasons.

Interestingly, two of the three family members of an Index VCr had CD4 +T cells with a similar R5

resistance phenotype, with associated down regulation of CCR5 RNA and protein levels. The fact

that it was multi-generational and in both sexes is highly suggestive but is not definitive evidence

that the phenotype is autosomal dominant. Additional family studies will be necessary to determine

whether the R5 tropic resistance phenotype has hereditary dominance. Autosomal dominant inheri-

tance would be consistent with altered cell signaling or DNA binding factor, acting in a trans-domi-

nant fashion and negatively influencing transcription of both ccr2/ccr5 alleles (Liu et al., 1998).

Precedents include naturally-occurring dominantly suppressive variants of human stat5 (Crotti et al.,

2007; Yamashita et al., 2003), those of human stat6 that are amino terminus truncated for the SH2

domain (Mikita et al., 1996; Patel et al., 1998), or an alternatively spliced form of human stat3 that
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functioned as a dominant negative regulator of transcription (Zammarchi et al., 2011). The JAK/

STAT signaling pathway is important for expression of multiple chemokines and their receptors,

including ccr5, and becomes activated after T cell co-stimulation (Shuai and Liu, 2003; Wong and

Fish, 1998; Zi et al., 2017). It is an open question whether T cell co-stimulation leads to the produc-

tion of a dominant-negative transcription factor in the ECr/VCr subset, resulting in reduced ccr2/ccr5

or more global transcriptional down-regulation.

LOC102724291 is transcribed antisense to ccr5 and it has been suggested that loc102724291

may contribute to virus set-point (McLaren et al., 2015). Our results revealed a down-regulation in

loc102724291 RNA levels in activated T cells in ECr/VCr, with no correlation between ccr2 and ccr5

gene expression, making it unlikely that it is modulating the expression of those genes. Without

invoking a more global mechanism of transcriptional control, it is difficult to understand how

loc102724291 would be capable of inhibiting transcription of other genes in that chromosome

region. Instead, it appears that lncRNA may be similarly down-regulated to other genes in the

region.

In conclusion, our data suggest that the R5-tropic resistance phenotype seen in a subset of EC/

VCs is associated with transcriptional down-regulation of ccr5, which appears to be heritable, across

multiple generations. That the chromatin of this region of 3p21 appears to be more accessible yet

multiple genes are down-regulated implies a complex but coordinate mode of transcriptional regula-

tion. Because these ECs are able to persistently suppress viral replication, further investigation into

the mechanisms underlying these findings should inform the HIV cure effort.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Antibody anti-CD3 mouse
Monoclonal
Antibody
(OKT3),
PerCP-Cyanine5.5

eBioscience Cat # 45-0037-42;
RRID: AB_10548513

Dilution (1:100)

Antibody anti-CD4 mouse
Monoclonal
Antibody (RPA-T4), APC

eBioscience Cat # 17-0049-42;
RRID: AB_1272048

Dilution (1:100)

Antibody anti-CD14 mouse
Monoclonal
Antibody (61D3),
FITC

eBioscience Cat # 11-0149-42;
RRID: AB_10597597

Dilution (1:100)

Antibody anti-CD8a
mouse
Monoclonal
Antibody
(HIT8a), PE

eBioscience Cat # 12-0089-42;
RRID: AB_10804039

Dilution (1:100)

Antibody CD3 mouse
Monoclonal
Antibody
(OKT3), Functional
Grade

eBioscience Cat # 16-0037-81;
RRID: AB_468854

10 mg/ml

Antibody CD28 mouse
Monoclonal
Antibody
(CD28.2),
Functional
Grade

eBioscience Cat # 16-0289-81;
RRID: AB_468926

4 mg/ml

Antibody CD25 mouse
Monoclonal
Antibody (BC96),
PE

eBioscience Cat # 12-0259-42;
RRID: AB_1659682

Dilution (1:200)

Continued on next page
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Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Antibody CD69 mouse
Monoclonal
Antibody
(FN50), FITC

eBioscience Cat # 11-0699-42;
RRID: AB_10853975

Dilution (1:200)

Antibody CD45RA mouse
Monoclonal
Antibody
(HI100), FITC

eBioscience Cat # 11-0458-42;
RRID: AB_11219672

Dilution (1:100)

Antibody CD45RO, mouse
Monoclonal
PE-Cyanine5,
clone: UCHL1

eBioscience Cat # 15597726;
Gene ID: 5788

Dilution (1:100)

Antibody PE anti-human
CD195 (CCR5)
rat Monoclonal
Antibody

Biolegend Cat # 313707;
RRID: AB_345307

Dilution (1:100)

Antibody APC anti-human
CD192 (CCR2)
mouse Monoclonal
Antibody

Biolegend Cat # 357207;
AB_2562238

Dilution (1:100)

Antibody anti-Rpb1 CTD
mouse Monoclonal

Cell Signaling Cat # 2629; 4H8 ChIP (1:50)

Antibody Tri-Methyl-Histone
H3-Lysine 4
(H3Lys4)
rabbit Monoclonal

Cell Signaling Cat # 9727 ChIP (1:50)

Peptide,
recombinant
protein

Recombinant
Human IL-2

E. coli-derived
human IL-2 protein

R and D: P60568

Recombinant
DNA reagent

HIV-cycT1-IRES-
YFP (HIV-CIY)

this paper Sutton lab plasmid

Recombinant
DNA reagent

pSM-ADA Env this paper Sutton lab plasmid

Recombinant
DNA reagent

pSRa-YU2 Env this paper Heinrich Gottlinger,
UMass Medical Cener

plasmid

Recombinant
DNA reagent

pSRa-NL4-3 Env this paper Heinrich Gottlinger,
UMass Medical Cener

plasmid

Recombinant
DNA reagent

pME-VSV G this paper Sutton lab plasmid

Recombinant
DNA reagent

pCCL3L1 Origene NM_021006.4,
NP_066286

plasmid

Recombinant
DNA reagent

pCCL4 this paper generated by
PCR using
pcDNA3/1 + CAT plasmid;
Sutton lab

plasmid

Recombinant
DNA reagent

Vpx-myc-his Ned Landau
laboratory,
NYU Medical Center

plasmid

Recombinant
DNA reagent

pMDL-Chp6 Ned Landau
laboratory,
NYU Medical Center

plasmid

Cell line
(H. Sapiens)

HEK 293T ATCC Cat# CRL-3216,
RRID:CVCL_0063

Cell line
(H. Sapiens)

GHOST.Hi5 NIH AIDS
Reagent Program

NIH-ARP
Cat# 3944–343,
RRID:CVCL_1E17

Continued on next page
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Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Cell line (H. Sapiens) GHOST.CXCR4 NIH AIDS
Reagent Program

NIH-ARP
Cat# 3685–448,
RRID:CVCL_S492

Cell line (H. Sapiens) TZM-bl cells NIH AIDS
Reagent Program

NIH-ARP
Cat# 8129–442,
RRID:CVCL_B478

Commercial
assay or kit

RNeasy Mini Kit Qiagen ID: 74104

Commercial
assay or kit

Mouse
MIP-1 alpha
(CCL3) ELISA

Invitrogen LS885601322

Commercial
assay or kit

Human CCL4
(MIP-1 beta) ELISA

Invitrogen Invitrogen 88703476

Commercial
assay or kit

High-Capacity
cDNA Reverse
Transcription Ki

ThermoFisher ID: 4368814

Commercial
assay or kit

DNeasy blood
and tissue kit

Qiagen Cat No./ID: 69504

Commercial
assay or kit

SimpleChIP
enzymatic
ChIP kit
agarose beads

Cell Signaling Cat #9002

Commercial
assay or kit

MinElute
Reaction
Cleanup kit

Qiagen Cat No./ID: 28204

Commercial
assay or kit

Transposase mixture Illumina Nextera DNA
library prep kit;
FC-131–1024

Chemical
compound, drug

Phorbol 12-
myristate 13-acetate

Sigma PubChem CID: 27924

Chemical
compound, drug

Ionomycin
calcium salt

Sigma I3909

Chemical
compound, drug

Actinomycin D Sigma. From
Streptomyces sp

Cat # A1410

Chemical
compound, drug

Digitonin Promega G944A

Other Power SYBR
Green PCR
Master Mix

ThermoFisher Cat # 4367659 Commercial reagent

Other NEBnext
PCR master mix

New England
BioLabs

Cat # M0541S Commercial reagent

Software,
algorithm

CummeRbund R package
version 2.24.0

DOI: 10.18129/B9.bioc.cummeRbund

Software,
algorithm

Illumina’s
CASAVA 1.8.2

Illumina Ref. 15011197

Software,
algorithm

GraphPad Prism GraphPad Prism
(https://graphpad.com)

RRID:SCR_015807

Software,
algorithm

FlowJo https://www.flowjo.
com/solutions/flowjo

RRID:SCR_008520

Study subjects
131 HIV +EC/VC subjects were recruited from Yale New Haven Hospital and other HIV clinics in

USA. Inclusion criteria for EC/VCs were HIV seropositivity and plasma VL < 50 (ECs) or 50 < VL <

2000 (VCs) for at least 6–12 months in the absence of ART, except in some special circumstances, as

specified (Supplementary file 1). Occasional viral blips were allowed but not virologic escape or
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clear trends in viremia. Exclusion criteria included contraindication to peripheral phlebotomy and

inability to provide informed consent. Clinical characteristics recorded included gender, age,

CD4 +T cell count, VL, and year of HIV diagnosis. Also, HIV acquisition risk factor, major comorbid-

ities, and protective HLA alleles data were collected, if known. The study was approved by both the

Yale IRB (Yale New Haven Hospital and other Yale-affiliated HIV clinics in Connecticut), and the local

IRBs (the SCOPE cohort from UCSF, the Ragon Institute of MGH, MIT and Harvard, and from Veter-

ans Medical Center HIV clinics from Atlanta and Dallas) and informed, written consent was obtained

from all subjects.

Anonymized, leukocyte-enriched fractions of peripheral blood from 35 normal, healthy donors

were obtained and used as controls. Three family members (FM) of an Index VC (Atl2) were enrolled

and whole blood obtained by peripheral phlebotomy. Based upon self-report, all FM included in the

study were HIV seronegative. CFAR relies on self-reporting with respect to HIV-uninfected cases.

Our IRB protocol did not allow us to perform HIV testing on FM because of privacy concerns.

Peripheral blood mononuclear cell collection and CD4 +T cell
purification
Mononuclear cells were obtained after Ficoll-Paque PLUS (GE Healthcare Life Sciences, Piscataway,

NJ) centrifugation of leukocyte-enriched fractions of whole blood. CD4 +T cells were purified by

positive selection, using anti-CD4 magnetic microbeads (Miltenyi Biotech, San Diego, CA) following

the manufacturers’ recommendations. The purity of the CD4 +T cells was confirmed by flow cyto-

metric analysis using anti-human CD3-PerCP-Cyanine5.5 (clone OKT3; eBioscience, San Diego, CA)

and CD4-APC (clone RPA-T4; eBioscience) antibodies. Antibodies against human CD14 and CD8

were included to confirm absence of contaminating monocytes and CD8 +T cells (anti human CD14-

FITC, clone 61D3; anti-human CD8a-PE, clone HIT8a; eBioscience). Purity of CD4 +T cells was >95%.

The remaining cells were predominantly CD4-low monocytes with <1% contaminating CD8 +T cells.

T cells were resuspended in staining buffer (2% FBS in PBS) on ice for 30 min, washed, and then

placed in IC fixation buffer (eBioscience) on ice for 10 min. Cells were washed, resuspended in stain-

ing buffer, and analyzed by flow cytometry (LSRII, BD; Franklin Lakes, NJ). Data were analyzed using

FlowJo software (version 10.1 Ashland, OR).

CD4 +T cell activation and staining
CD4 +T cells were activated for 72 hr, using tissue culture plates pre-coated with 1 mg/mL anti-CD3

(clone OKT3; eBioscience) in the presence of 2 mg/mL soluble anti-CD28 (clone 28.2; eBioscience)

and 100IU/mL IL-2 (recombinant, R and D Systems, Minneapolis, MN). To check activation status,

activated CD4 +T cells were analyzed by light microscopy to confirm refractility and aggregation.

The percentage of activated cells was calculated by flow cytometry as above, using anti-human

CD25-PE (clone BC96) and CD69-FITC (clone FN50; eBioscience) antibodies. Percentage of naı̈ve

and memory CD4 +T cells was analyzed using anti-human CD45RA-FITC (clone HI100) and CD45RO-

PeCy5 (clone UCHL1; eBioscience), respectively. To differentiate CM from EM T cells, activated

CD4 +T cells were stained with CD45RO-PeCy5 and CD27-FITC (clone M-T271; BD) and analyzed by

flow cytometry. To assess CCR2 and CCR5 cell surface levels, non-activated and activated CD4 +T

cells were stained for 30 min with fluorescently labeled antibodies against human CD195-PE (CCR5;

clone HEK/1/85a; Biolegend, San Diego, CA) or CD195-APC (clone 3A9; BD), and CD192-APC

(CCR2; clone K036C2; Biolegend). PE-rat IgG2a, k (clone RTK2758) and APC-mouse IgG2a, k (clone

MOPC-173) antibodies were used as isotype controls (Biolegend). Cells were fixed, resuspended in

2% FBS in PBS, and analyzed by flow cytometry as percentage of positive cells and as MFI.

Alternatively, T cells were activated using 1 mg/ml phytohaemagglutinin (PHA; Sigma-Aldrich, St.

Louis, MO), or 10 ng/ml PMA (Sigma) plus 500 ng/ml ionomycin (Sigma) for 72 or 48 hr, respectively,

in the presence of 100IU/ml IL-2.

Cell transfection, virus production and single cycle HIV infection
Pseudotyped lentiviral particles were produced by transient transfection of 293 T cells using the cal-

cium phosphate method and the following plasmids: HIV-cycT1-IRES-YFP (HIV-CIY) as packaging/

transfer vector, pSM-ADA Env and pSRa-YU2 Env (both R5-tropic), and pSRa-NL4-3 Env (X4-tropic),

with pME-VSV G (pan-tropic control). Viral particles were harvested 72 hr after transfection and
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frozen after confirming the efficiency of the transfection by flow cytometry and fluorescence micro-

scope observation. Vector supernatants were tested on GHOST HI5 (R5-tropic) or GHOST CXCR4

(X4-tropic) cells by end-point dilution and also by flow cytometry, with a range of infectivity between

2.5 � 105 U/ml to 3.0 � 106 U/ml. VSV G pseudotyped particles were used as positive control, with

an infectivity of ~2.5�107 U/ml. For normalization purposes, for each pseudotyped virus the same

amount of IU was used to infect activated CD4 +T cells in the same total volume and plate format

by spinoculation at 1800 rpm for 30 min, and at 72 hr percentage of YFP+T cells was quantified by

flow cytometry.

HIV replication-competent assay
1 � 105 activated CD4 +T cells (anti-CD3/CD28) were infected in triplicate with 0.001 ml of pNL-BaL

or 0.01 ml of HIV-NL4-3DR1, in the presence of IL-2ample l of PBS and lysis in 201 CD28)U using

Luciferase assay.se to infect TzmBL cells . Both of these viruses were prepared by plasmid co-trans-

fection of 293 T cells with pME VSV G, to facilitate initial rounds of viral replication. On alternate

days post-infection (from day 1 to 21), supernatant was removed, centrifuged, and used to infect

10,000 TZM-bl cells (obtained from the NIH AIDS Reagent Program). Reporter cells were harvested

72 hr post-infection, washed with 0.5 ml of ost-infection, akes, NJ). PBS and lysed in 0.2 ml of lysis

buffer (25 mM Tris-phosphate (pH 7.8), 2 mM DTT, 2 mM 1,2-diaminocyclohexane-N,N,N´,N´-tetra-

acetic acid, 10% glycerol, and 1% Triton X-100). FFLUC assay was performed by incubating 0.1 ml of

lysate with 0.1 ml of assay buffer (25 mM Gly-Gly, 15 mM potasium phosphate pH 7.8, 15 mM mag-

nesium sulfate, 4 mM EGTA, 2 mM ATP and 1 mM DTT) and 0.015 ml Luciferin solution (0.2 mM,

Sigma). Bioluminescence was immediately measured in a Gen5 (BioTek) Instrument (Winooski, VT).

Enzyme-linked immunosorbent assays and conditioned media transfer
CD4 +T cells were activated for 3 days with anti-CD3/CD28 in presence of IL-2 and culture superna-

tants were harvested and frozen at �80 degrees. Human MIP-1a (CCL3) and MIP-1b (CCL4) instant

ELISA kits (eBioscience) were used to measure chemokine levels in culture supernatants, according

to the manufacturer’s instructions. Media transfer experiments were performed to investigate

whether soluble factors were responsible for the inhibition of HIV replication. Activated CD4 +T cells

from healthy controls were incubated in presence of supernatant from activated CD4 +T cells from

EC/VCs and Ctrl and T cells were then infected with different pseudotyped HIV particles. As control,

we included supernatants from 293 T cells transfected with the following plasmids: (i) pCCL3L1

encoding MIP1a (Origene, Rockville, MD); (ii) pCCL4 encoding MIP1b (generated by PCR-amplifying

the ccl4 coding sequence from human cDNA and ligating the product into pcDNA3/1 + CAT plas-

mid). After 30 min of incubation with culture supernatant, cells were infected with pseudotyped HIV

particles. T cells were harvested after three days and infectivity was analyzed by flow cytometry for

YFP conferred by virus infection.

RNA-Seq
High quality RNA was isolated from 1 � 106 activated CD4 +T cells (aCD3/CD28) using the RNeasy

Mini kit (Qiagen, Germantown, MD). RNA integrity was verified by running an Agilent Bioanalyzer

gel. For the RNAseq library preparation, mRNA was purified from total RNA with oligo-dT beads

and sheared by incubation at 94 degrees. Following first-strand synthesis with random primers, sec-

ond strand synthesis was performed with dUTP for generating strand-specific sequencing libraries.

The cDNA library was then end-repaired, and A-tailed, adapters ligated, and second-strand diges-

tion was performed by U-DNA-Glycosylase. Indexed libraries that meet appropriate cut-offs were

quantified by qRT-PCR and insert size distribution determined with the LabChip GX or Agilent Bioa-

nalyzer. Samples were sequenced using 75 bp single or paired-end sequencing on an Illumina HiSeq

2500 according to Illumina protocols. Signal intensities were converted to individual base calls dur-

ing a run using the system’s Real Time Analysis software. Multiplexing and alignment to the human

genome was performed using Illumina’s CASAVA 1.8.2 software. DNA sequence data generated

were stored in FASTQ format and quality control was performed using FastQC version 0.10.1. Qual-

ity-filtered reads (low quality reads <20 were removed) were aligned to sequences of the human

genome (hg19) downloaded from Illumina’s iGenome resource (Illumina, San Diego, CA), as previ-

ously described (Garber et al., 2011). Reads were analyzed using Cuffdiff (Trapnell et al., 2012) in
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order to allow estimation of differential gene expression using functions of the R package

‘cummeRbund’.

Reverse transcription and real time quantitative PCR
RNA levels of ccr2, ccr5, cxcr4, cd4, ccr1, ccr3, fyco1, cxcr6 and loc102724297 were measured by

real time quantitative PCR (RT-qPCR). Total RNA was extracted from activated CD4 +T cells using

the RNeasy mini kit (Qiagen). A260/280 was determined to confirm the RNA was of high quality, and 1

mg was used for first-strand complementary DNA synthesis using High Capacity cDNA Transcription

Kit (Life Technologies; Warrington, UK). Quantitative RT-PCR was performed on an Applied Biosys-

tems 7500 Fast Real-Time PCR System using Power SYBR Green PCR Master Mix (Life Technologies)

and the following primers:

ccr5-F:5’-AAAAAGAAGGTCTTCATTACACC-3’ and ccr5-R:5’-CTGTGCCTCTTCTTCTCATTTCG-3’;
ccr2-F:5’-CACATCTCGTTCTCGGTTTATC-3’ and ccr2-R:5’-AGGGAGCACCGTAATCATAATC-3’;
cd4-F:5’-TGCCTCAGTATGCTGGCTCT-3’ and cd4-R:5’-GAGACCTTTGCCTCCTTGTTC-3’;
cxcr4-F:5’-CTACACCGAGGAAATGGGCT-3’ and cxcr4-R:5’-CCACAATGCCAGTTAAGAAGA-3’;
fyco1-F:5’-CGCCTCACTTGCTTGGTAG 3’ and fyco1-R:5’-CTGTGTGGTAGTCCTCCTCC-3’;
cxcr6-F:5’-GACTATGGGTTCAGCAGTTTCA-3’andcxcr6-R:5’-GGCTCTGCAACTTATGGTAGAAG-3’;
ccr1-F:5’-ACTATGACACGACCACAGAGT-3’ and ccr1-R:5’-CAACCAGGCCAATGACAAATA-3’;
ccr3-F:5’-GTCATCATGGCGGTGTTTTTC-3’ and ccr3-R:5’-CAGTGGGAGTAGGCGATCAC-3’;
loce1-2 F:5’-CTCACCAGTGTTCGCAGAAA-3’ and loce1-2 R:5’-TCATGTAGGTGCAGGCAGAC-3’;
loce3-F:5’-GCATCTCACTGGAGAGGGTTT-3’andloce3-R:5’-TTTGCAGAGAGATGAGTCTTAGC-3’;
gapdh-F:5’-TTGCCATCAATGACCCCTT-3’ and gapdh-R:5’-CTCCACGACGTACTCAGCG-3’.

For relative quantification, we compared the amount of target to the values obtained for gapdh

as a normalization control. Data obtained were compared to a standard curve generated by serial

dilution of a template complementary DNA and expressed as target gene:gapdh ratios.

Overexpression of CCR5 in activated CD4+ T cells and single-cycle
assay
To confirm that the R5-resistance to infection in EC/VC was due to down-regulation of CCR5, we

overexpressed CCR5 in EC/VC T cells with R5-tropic resistance in comparison to those of EC/VC

without the phenotype and Ctrl, and those T cells were then infected with HIV pseudotyped particles

to determine whether they now had increased susceptibility to R5 virus. CD4+ T cells activated by

anti-CD3/CD28 co-stimulation were first transduced with VSV G-pseudotyped HIV vector encoding

both CCR5 and YFP (pHIV-CCR5-IRES-YFP) or YFP alone (HIV-IRES-YFP). T cells were then infected

with an HIV vector encoding mRFP and pseudotyped with either R5 Envelopes or VSV G. After 72

hr, cells were analyzed by flow cytometry to quantify the percentage of double positive cells (YFP+/

mRFP+), normalized to HIV-IRES-YFP transduction results.

CCR5D32 and promoter polymorphism detection by PCR
Genomic DNA extracted from mononuclear cells was purified using DNeasy blood and tissue kit

(Qiagen). CCR5 genotype (D32 vs. WT) was determined by agarose gel electrophoresis following

PCR using the following primers: CCR5 D32 F:5’-ATAGGTACCTGGCTGTCGTCCAT-30; CCR5 D32

R:50-GATAGTCATCTTGGGGCTGGT-30 (de Roda Husman et al., 1997). Promoter polymorphism A/

G �2459CCR5 was performed by restriction fragment length polymorphism analysis as previously

described (McDermott et al., 1998), using the following primers CCR5 2459 F:5’-CCGTGAGCCCA

TAGTTAAAACTC-3’; CCR5 2459 R:5’-CACAGGGCTTTTCAACAGTAAGG-3’. PCR products were

electrophoresed on a 2% agarose gel and genotypes were determined by visual inspection of ethi-

dium bromide stained banding pattern.

Measurement of mRNA stability
CD4 +T cells activated by anti-CD3/CD28 co-stimulation were treated with 5 mg/ml Actinomycin D

(Sigma) for varying lengths of time. ccr2, ccr5, and gapdh mRNA levels were quantified at each time

point by RT-qPCR using SYBR Green. mRNA decay and half-lives were calculated using a time-point

standard curve.
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ATAC-Seq
ATAC-Seq was performed as previously described (Buenrostro et al., 2015), with some modifica-

tions. CD4 +T cells were activated with anti-CD3/CD28 in presence of IL-2 for 3 days. 50,000 cells

were lysed and transpositions were performed using transposase mixture (Nextera DNA library prep

kit, Illumina), supplemented with 0.01% digitonin (Promega; Madison, WI). Transposition reactions

were incubated for 30 min at 37˚C in a ThermoMixer (Eppendorf) with agitation at 300 rpm. DNA

was purified using the MinElute Reaction Cleanup kit (Qiagen), and libraries amplified using NEBnext

PCR master mix with the following primers:

Ad1_noMX:AATGATACGGCGACCACCGAGATCTACACTCGTCGGCAGCGTCAGATGTG;
Ad2.1_TAAGGCGA:CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTCTCGTGGGC
TCGGAGATGT;
Ad2.2_CGTACTAG:CAAGCAGAAGACGGCATACGAGATCTAGTACGGTCTCGTGGGC
TCGGAGATGT;
Ad2.3_AGGCAGAA:CAAGCAGAAGACGGCATACGAGATTTCTGCCTGTCTCGTGGGC
TCGGAGATGT;
Ad2.4_TCCTGAGC:CAAGCAGAAGACGGCATACGAGATGCTCAGGAGTCTCGTGGGC
TCGGAGATGT;
Ad2.5_GGACTCCT:CAAGCAGAAGACGGCATACGAGATAGGAGTCCGTCTCGTGGGC
TCGGAGATGT;
Ad2.6_TAGGCATG:CAAGCAGAAGACGGCATACGAGATCATGCCTAGTCTCGTGGGC
TCGGAGATGT.

Libraries were quantified using RT-qPCR prior to sequencing. All Fast-ATAC libraries were

paired-end sequenced, 75 bp using a HiSeq2500 instrument. Quality of FASTQ files was performed

using FASTX trimmer. More than 50 million reads were mapped, with <10% mapped, on average, to

the mitochondrial genome. The reads were aligned to the hg19 (UCSC) version using Burrows-

Wheeler Aligner (BWA-MEM). Peaks were called using MACS2 (Zhang et al., 2008) peak-caller, and

the reads from input DNA sample were used as control. Visualization of the peaks was done using R

Software.

Chromatin immunoprecipitation-qPCR
Chromatin immunoprecipitation (ChIP) was performed using SimpleChIP enzymatic ChIP kit agarose

beads (Cell Signaling) according to the manufacturer’s protocol. Three million CD4 +T cells were

activated for 3 days with anti-CD3/CD28. Cells were fixed, and chromatin was sonicated after diges-

tion with micrococcal nuclease. IP was performed with anti-Rpb1 CTD (4H8; Cell Signaling, #2629) or

anti-Tri-Methyl-Histone H3-Lysine 4 (H3Lys4) mouse monoclonal antibody (Cell Signaling, #9727),

with Histone H3 XP and rabbit IgG serving as positive and negative controls, respectively. DNA was

purified by spin column, measured, and amplified by RT-qPCR to quantify ccr2 and ccr5 DNA. Pri-

mers for gapdh were used as a control.

Generation of human monocyte-derived macrophages and infectivity assays
Mononuclear cells were obtained via peripheral phlebotomy and Ficoll-Paque density gradient cen-

trifugation. Monocytes were purified using anti-human CD14 +microbeads (Miltenyi). Cell purity was

confirmed by flow cytometry using anti-CD14-FITC antibody (eBoscience). To differentiate mono-

cytes to macrophages, monocytes were cultured for 7 days in RPMI 1640 supplemented with 10%

FBS and 10 ng/ml M-CSF (eBioscience), adding fresh growth factor every 2 days. CCR2 and CCR5

cell surface expression was assessed by FACS analysis. Macrophages were then infected using HIV-

CIY prepared with Vpx-myc-his and pMDL-Chp6 (kind gifts of Ned Landau, NYU Medical Center),

pseudotyped with either R5 Envelope or VSV G. Macrophages were analyzed by flow cytometry

after 72 hr to determine infection efficiency.

Cell lines
HEK 293 T cells were originally obtained from ATCC and authenticated by transfection testing in

vitro, their gross morphology, resistance to 1 mg/ml G418, susceptibility to first generation adenovi-

ral vectors, and growth characteristics. GHOST.Hi5 and GHOST.CXCR4 cells were obtained from the

NIH AIDS Reagent Program. Their identity was authenticated by gross morphology, growth
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characteristics, expression of eGFP after infection with HIV of the appropriate tropism, confirmation

of CCR5 (GHOST.Hi5) and CXCR4 (GHOST.CXCR4) cell surface expression by flow cytometry, and

also testing for CD4 expression (both lines). TZM-bl cells were also obtained from the NIH AIDS

Reagent Program and authenticated by gross morphology and growth characteristics, cell surface

expression of both co-receptors and CD4 by flow cytometry, and susceptibility in vitro to HIV, with

readout being both FFLUC activity in infected cell lysates and lacZ expression in fixed cells, the latter

using X-Gal. All cell lines were tested to confirm absence of mycoplasma contamination.

Statistics
Correlations between mRNA and cell surface expression levels, and percentage of infected CD4 +T

cells were assessed by Spearman´s test. Statistical differences between groups were determined

using Mann-Whitney U test for two independent samples or one-way ANOVA using Kruskal-Wallis

non-parametric test, as required. Frequencies of HLA alleles and presence of polymorphisms were

compared between groups using Chi-Square analysis. Power calculations for sample comparisons

were determined based on the comparisons of means/proportions using PASS statistical software.

Analysis was performed using GraphPad PRISM (version 7.01; CA, USA), Minitab Statistical (version

17) and/or R Softwares. P values for pairwise tests, or multiplicity-adjusted post-tests of selected

pairs, are reported in the Figure Legends. p<0.05 was considered significant.
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Sáez-Cirión A, Shin SY, Versmisse P, Barré-Sinoussi F, Pancino G. 2010. Ex vivo T cell-based HIV suppression
assay to evaluate HIV-specific CD8+ T-cell responses. Nature Protocols 5:1033–1041. DOI: https://doi.org/10.
1038/nprot.2010.73, PMID: 20539279
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