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1.  INTRODUCTION

The novel Coronavirus Disease 2019 (COVID-19) recently gained 
attention as the virus continues to claim more lives globally. The  
disease hastily spread from Wuhan to further China provinces and 
other nations worldwide. Currently (as of August 10, 2020), more 
than 19.8 million cases have been confirmed with about 12.1 million  
recovered and 732,000 related deaths across the globe, as stated by 
the Johns Hopkins virus dashboard. At the beginning of the epi-
demic, elderly people were more susceptible to COVID-19 [1]. As 
the epidemic progressed, an increase in the number of cases among 

people between 45 and 64 years was recorded, as well as an upsurge 
in the number of cases among individuals, especially individuals 
between 18 and 44 years [2]. Reports also show that the cases are 
2.6 times higher on Black/African American and 2.8 times higher 
on Hispanic/Latino individuals. Furthermore, COVID-19 induced 
death is nine times lower on 0–4 years old children and 630 times 
higher on 85+ years old adults [3]. The various signs associated with 
COVID‐19 are fever, dry cough, short breath, and breathing diffi-
culties. COVID‐19 poses a severe threat to the health of individuals 
worldwide; on January 30, 2020, the World Health Organization 
declared a universal health emergence on COVID-19 [4,5].

On January 21, 2020, the COVID-19 index case was confirmed in 
the USA. Roughly a month after that (February 29, 2020), the first 
death was reported in Washington state. As of August 10, 2020, 
the USA has confirmed about 4.9 million cases and over 161,284 
related deaths. At least 229,073 of those cases occurred in New York 
City, 184,429 in New Jersey, 120,711 in Massachusetts, 193,998 in 
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A B S T R AC T
The novel Coronavirus Disease 2019 (COVID-19) remains a worldwide threat to community health, social stability, and 
economic development. Since the first case was recorded on December 29, 2019, in Wuhan of China, the disease has rapidly 
extended to other nations of the world to claim many lives, especially in the USA, the United Kingdom, and Western Europe. To 
stay ahead of the curve consequent of the continued increase in case and mortality, predictive tools are needed to guide adequate 
response. Therefore, this study aims to determine the best predictive models and investigate the impact of lockdown policy 
on the USA’ COVID-19 incidence and mortality. This study focuses on the statistical modelling of the USA daily COVID-19 
incidence and mortality cases based on some intuitive properties of the data such as overdispersion and autoregressive conditional 
heteroscedasticity. The impact of the lockdown policy on cases and mortality was assessed by comparing the USA incidence case 
with that of Sweden where there is no strict lockdown. Stochastic models based on negative binomial autoregressive conditional 
heteroscedasticity [NB INGARCH (p,q)], the negative binomial regression, the autoregressive integrated moving average model 
with exogenous variables (ARIMAX) and without exogenous variables (ARIMA) models of several orders are presented, to 
identify the best fitting model for the USA daily incidence cases. The performance of the optimal NB INGARCH model on 
daily incidence cases was compared with the optimal ARIMA model in terms of their Akaike Information Criteria (AIC). Also, 
the NB model, ARIMA model and without exogenous variables are formulated for USA daily COVID-19 death cases. It was 
observed that the incidence and mortality cases show statistically significant increasing trends over the study period. The USA 
daily COVID-19 incidence is autocorrelated, linear and contains a structural break but exhibits autoregressive conditional 
heteroscedasticity. Observed data are compared with the fitted data from the optimal models. The results further indicate that 
the NB INGARCH fits the observed incidence better than ARIMA while the NB models perform better than the optimal ARIMA 
and ARIMAX models for death counts in terms of AIC and root mean square error (RMSE). The results show a statistically 
significant relationship between the lockdown policy in the USA and incidence and death counts. This suggests the efficacy of 
the lockdown policy in the USA.
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Illinois, 118,092 in Pennsylvania, 96,191 in Michigan, and 545,787 
in California [6].

At the beginning of the COVID-19 pandemic, a model was devel-
oped by the National Institute of Allergy and Infectious Diseases to 
predict the total sum of mortality cases. Although the model was 
reviewed with updated data by March ending, some COVID-19 
models, including one from the Institute for Health Metrics and 
Evaluation (IHME), had predicted that despite some preventive 
measures such as stay-indoors and additional measures of social 
distance, 200,000 persons living in the USA might eventually die of 
this virus. As of April 7, model by IHME predicted 60,415 mortality 
cases in the USA due to COVID-19. The model anticipated that the 
daily mortality cases will peak on April 12 with 2212 related deaths 
on that day [7].

Lauer et al. [8] projected the span of the incubation time of 
COVID-19 and then presented its consequences for community 
health. Lauer et al. [8] argued that the median incubation period for  
2019-nCoV is approximately 5 days, this is similar to the incuba-
tion time of severe acute respiratory syndrome. If infection ensues 
at the beginning of monitoring, the authors also argued that in 
10,000 cases, 101 will show symptoms afterward 2 weeks of effective 
monitoring or seclusion. In another development, Jiang et al. [9]  
discussed some developments in research and production of 
deactivating antibodies used in the deterrence and cure of 2019-
nCoV infection and other human coronaviruses. Zhang et al. [2] 
applied the Bayesian technique to determine the dynamics of the 
net reproduction number of provinces in China. Fanelli and Piazza 
[10] analysed COVID-19 cases over China, Italy, and France using 
a simple susceptible-infected-recovered-deaths model. Makinde 
et al. [11] analysed daily COVID-19 mortality rates in African 
countries using a generalized estimating equation and showed 
that there are significant monotone trends in the daily COVID-19  
incidence and mortality counts of many countries in Africa as 
well as a positive weak linear relationship amid the daily reported 
COVID-19 cases and African countries’ population. Hafner [12] 
fitted spatial autoregressive models to the number of newly infected 
people in some countries by finding strong spillovers and distances 
between such that forecast error variances of many countries can 
be explained by structural innovations of other countries. However, 
this model did not consider the effect of over-dispersion of the 
number of newly infected people. Yue et al. [13] considered an early 
warning and risk identification for COVID-19 and suggested some 
solutions and recommendations, which include institutional coop-
eration, and to inform national and international policymakers.

Benvenuto et al. [14] formulated an Autoregressive Integrated 
Moving Average (ARIMA) model of order p, d, and q on the 
COVID-19 epidemic dataset. Similarly, Singh et al. [15] applied 
discreet wavelet decomposition and ARIMA model to COVID-19 
death cases in some countries. However, the ARIMA (p,d,q) model 
may not be appropriate for count data, especially when the data are 
over-dispersed. This study aims to determine the best fitting pre-
dictive models for the USA’ COVID-19 and investigate the impact 
of lockdown policy on the USA’ COVID-19 incidence and mor-
tality. The study targets the best fitting model for predictive and 
inferential purposes. Distributions of age and race for incidence 
and death cases are presented to identify race and age group with 
high vulnerability to COVID-19. Overdispersion of the COVID-19  
daily incidence cases in the USA is considered with the purpose of 
formulating a predictive model for the data. In particular, a negative 

binomial integer generalized autoregressive conditional heterosce-
dasticity models of orders p and q, and a negative binomial regres-
sion model are formulated for the USA’ daily COVID-19 incidence 
and death counts from January 21 to August 8, 2020. The nega-
tive binomial integer generalized autoregressive conditional het-
eroscedasticity models and a negative binomial regression model 
are considered to handle overdispersion and autoregressive con-
ditional heteroscedasticity exhibited by the USA’ daily COVID-19  
incidence and death counts. Also, the impact of lockdown policy in 
the USA is considered with Sweden where there is no strict lock-
down policy.

2.  MATERIALS AND METHODS

2.1.  Data

Data analysed in this study comprise of the USA daily count of 
COVID-19 reported from January 21 to August 8, 2020. The daily 
reported incidence cases in this study have been sourced from 
the Centre for Disease Control (CDC) and the European CDC 
(ECDC). Although the data do not include cases amid individuals 
sent back to the USA from China and Japan, it embraces together 
established and probable positive COVID-19 cases told to the CDC 
or verified at state and indigenous public health departments since 
January 21, 2020 [16,17].

2.2.  Models

2.2.1. � Negative binomial integer  
autoregressive conditional  
heteroscedasticity  
(NB INGARCH) model

It is important to investigate whether the data are random, linear, 
contain structural breaks and exhibit autoregressive conditional 
heteroscedasticity. The autoregressive models can only be applied 
on correlated (non-random) and linear data. The Ljung–Box test 
will be used to investigate if the COVID-19 incidence counts are 
random or autocorrelated. Tsay’s test for nonlinearity is used to 
investigate the nonlinearity of the COVID-19 incidence data. 
Teraesvirta’s neural network test investigates if the time series is 
linearity in the mean. Also, structural break tests help to investi-
gate whether there is a significant change in the COVID-19 inci-
dence cases while the Chow test will be applied to test if there are 
structural breaks in the data. McLeod–Li test may be applied to 
test the null hypothesis that the data do not exhibit autoregressive 
conditional heteroscedasticity effects. COVID-19 incidence counts 
are said to exhibit autoregressive conditional heteroscedasticity if 
mean incidence cases increase with time.

A predictive model such as negative binomial integer autoregressive 
conditional heteroscedasticity model is used on a time series that 
exhibit overdispersion and conditional heteroscedasticity. Suppose 
Xt is a daily COVID-19 incidence count which is distributed as a 
negative binomial with parameters μt and γ, where γ is an overdis-
persion parameter, which measures how close the mean of the series 
is to the variance. The parameter μt is the mean of the distribution 
of Xt at time t. Suppose Xt has a conditional heteroscedasticity effect,  
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a predictive model based on negative binomial integer autoregres-
sive conditional heteroscedasticity is formulated for daily USA 
COVID-19 incidence count. The negative binomial integer autore-
gressive conditional heteroscedasticity model is formulated to 
handle overdispersion and autoregressive conditional heteroscedas-
ticity of the incidence count. The negative binomial integer autore-
gressive conditional heteroscedasticity model of order p and q,  
denoted by NB INGARCH (p,q), is defined as
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where mt i t i t i t pE X X X- - - - -= ¼( | , , )1  is the mean at lag i, E denotes 
mathematical expectation, loge denotes natural logarithm, b1, b2, 
…, b p are coefficients of a series Xt at lags 1, 2, …, p, and j1, j2, 
…, j q are coefficients of mean at lag 1, 2, …, q, respectively. The 
coefficient of the NB INGARCH (p,q) model is estimated using 
conditional maximum likelihood estimation technique. Silva [18] 
has shown that the conditional maximum likelihood estimator of 
coefficients of NB INGARCH (p,q) model is consistent. The choice  
of p and q depends on the values that minimize the Akaike 
Information Criterion (AIC). The performance of the NB INGARCH 
(p,q) is compared with the performance of ARIMA (p,d,q) in terms 
of their AIC.

2.2.2. � The negative binomial  
regression model

Following some recent studies [19], a negative binomial regression 
model of the form log ( ( )e p pE Y = + + +¼+ +b b b b e0 1 1 2 2X X X  
may be formulated for the total number of death cases based on 
incidence cases. However, it is assumed that incidence precedes 
mortality. Also, daily incidence cases contain some outlying obser-
vations and its variability could be very high in many situations. 
Consequently, logarithmic transformation of the daily incidence 
cases is needed to reduce the variability of data. Hence, in this 
work, Negative Binomial (NB) regression model of the form:
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is formulated for the total number of new deaths, where Xt−i, i =  
1, 2, …, p, is the daily incidence cases at lag i, b i is the coeffi-
cient of Xt−i. The average incubation period for COVID-19 is 6 
days. However, the incubation period for COVID-19 can be up to  
2 weeks (14 days). The choice of p is taken to be the maximum 
length of the incubation period (14 days). The variable Xt−i is trans-
formed to reduce the variability of data, especially in data that 
include outlying observations.

2.2.3. � The autoregressive integrated  
moving average model with  
exogenous variables

Similar to Abiodun et al. [20] and Makinde and Abiodun [21], an 
ARIMA (p,d,q) model with exogenous variables can be formulated 
for the number of COVID-19 death cases. In fitting ARIMA (p,d,q) 

model with exogenous variables for the number of COVID-19 
death cases, the optimal ARIMA model is chosen as the one with 
least AIC in a class of ARIMA models of various values of p, d, 
and q, where the exogenous variable is the daily incidence cases at 
lags 0–14. The ARIMA (p,d,q) model with exogenous variables is 
formulated as
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for the USA’ COVID-19 death cases. The coefficients of the model 
are estimated using the maximum likelihood estimation technique. 
All computations are executed using R programming software.

2.2.4.  Wilcoxon rank-sum test

Wilcoxon rank-sum test can be used to check whether two inde-
pendent samples were selected from populations having the same 
distribution. The Wilcoxon rank-sum test with continuity correc-
tion is applied to test if incidence rates in the USA and Sweden 
are significantly different. For a fixed significance level a, the test 
statistic is computed by combining two samples and rank all obser-
vations from smallest to largest while keeping track of the sample 
to which each observation belongs. The Wilcoxon rank-sum test 
concludes that the two countries are not identical in terms of their 
COVID-19 incidence rate if the p-value of the test is less than the 
value of a.

3.  RESULTS AND DISCUSSION

3.1. � Analysis of the USA’ COVID-19 
Incidence Cases

The incidence of COVID-19 was computed from the preva-
lence and presented in Figure 1. It could be observed that there 
is an upward trend in COVID-19 incidence in the USA. Figure 2 
presents the distribution of race on the USA’ reported incidence 
and death cases. It is shown from Figure 2 that the race “White, 
non-Hispanic”, “Hispanic/Latino” and “Black, non-Hispanic” are 
more vulnerable to COVID-19 as of August 8, 2020.

Figure 3 presents the distribution of age groups on the USA’ 
reported cases. It is shown from the figure that the age groups 
18–44 and 50–64 are the most vulnerable to the COVID-19. The 
age groups 50 and above are at higher risk of COVID-19 mortality.

In investigating whether the data are random, linear, contain struc-
tural breaks and exhibit autoregressive conditional heteroscedas-
ticity, the Ljung–Box test confirms that the COVID-19 incidence 
counts are autocorrelated (p = 0.000). Tsay’s test for nonlinearity 
showed that the daily incidence cases are linear and follow some 
autoregressive (AR) process (p = 0.000). Also, Chow test (p = 0.000) 
confirms a structural break in the daily incidence cases. Teraesvirta’s 
neural network test showed that the daily incidence cases are linear-
ity in the mean. McLeod–Li test rejects the null hypothesis and con-
cludes that there is an autoregressive conditional heteroscedasticity 
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in the USA COVID-19 incidence data (Maximum p = 0.000) at a  
5% level of significance.

There is a significant upward trend in the COVID-19 daily inci-
dence of the USA from January 21 to April 11, 2020 (p = 0.000), 
a downward trend from April 12 to June 10, 2020 (p = 0.000), and 
an upward trend from June 11 to July 30, 2020 (p = 0.000). The 
first-order autocorrelation of daily reported incidence cases of the 
USA is positive (0.965). Low-order autocorrelation of COVID-19 
incidence [12] is predominantly positive with cycles of 2–5 days in 
the USA. There is the presence of short-term cycles in the number 

of incidence and death cases. The short-term cycles are between 2 
and 5 days in the USA.

It was observed that there are a few days with zero counts from 
January 21, 2020 to February 27, 2020 (Figure 1). Also, there are 
non-zero counts from February 28, 2020 to August 8, 2020. The 
NB-INGARCH (p,q) model for some values of p and q is formulated 
for the USA’ daily COVID-19 incidence count from January 21, 2020 
to August 8, 2020. Comparing the AIC values of NB-INGARCH  
(p,q) model for some values of p and q, NB-INGARCH (2,2) model 
has the least AIC values (AIC = 3543.522). The measure of disper-
sion of the data is shown in terms of the estimate of γ (0.2468). The 
closer the estimate of γ from 0, the more overdispersed is the data 
(that is, the greater is its variance than its mean). The mathematical 
expression for the predictive model for the incidence count is
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To demonstrate the performance of ARIMA (p,d,q) on the count 
data following [9], an ARIMA model of various orders were for-
mulated for the USA daily COVID-19 incidence cases. The optimal 
model was identified as ARIMA (1,1,1) model with drift based on 
the least AIC value. The AIC value of the optimal ARIMA model is 
3948.93 while the AIC value of the optimal NB INGARCH model 
is 3543.522+. Comparing the AIC values of ARIMA (1,1,1) model 
with drift and NB-INGARCH (2,2) model, it can be inferred that 
the NB-INGARCH (2,2) has better predictive power. Figure 4 pres-
ents a comparison between observed counts and fitted values from 
ARIMA (1,1,1) model with drift and NB-INGARCH (2,2) model. 
It can be observed from the figure that both optimal ARIMA and 
NB INGARCH models fit the data well. However, the optimal NB 
INGARCH model over-fits the first data point. Comparing the 
two models in terms of AIC, the optimal NB INGARCH model 
achieves lower AIC value than the optimal ARIMA model. Hence, 
the NB INGARCH model exercised superior performance over the 
ARIMA model.

Figure 1 | The plot of counts of COVID-19 (A) incidence and (B) death 
cases in the USA.

A

B

Figure 2 | Race distribution of COVID-19 (A) incidence and (B) death 
cases in the USA. 

A

B

Figure 3 | Age groups distribution of COVID-19 (A) incidence and  
(B) deaths in the USA.

B

A
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Figure 4 | Comparison between observed counts, fitted values from 
optimal NB INGARCH (2,2) model and fitted values from optimal 
ARIMA (1,1,1) model with drift.

Table 1 | Estimates of coefficients of the NB model for the number of COVID-19 death cases

Predictor variables Estimate Std. error z-value Pr (>|z|) Confidence interval

t −0.016 0.0009 −17.089 <2.22 × 10−16*** (−0.0178, −0.0142)
log(Xt + 1) 0.3070 0.1028 2.987 0.0028** (0.1056, 0.5085)
log(Xt−2 + 1) −0.3849 0.1312 −2.933 0.0034** (−0.6421, −0.1277)
log(Xt−6 + 1) 0.2714 0.1210 2.243 0.0249* (0.0343, 0.5086)
log(Xt−7 + 1) 0.4269 0.1244 3.431 0.0006*** (0.1830, 0.6708)
log(Xt−9 + 1) −0.370 0.1258 −2.942 0.0033** (−0.6166, −0.1235)
log(Xt−12 + 1) 0.2735 0.0974 2.809 0.0050** (0.0827, 0.4643)
log(Xt−13 + 1) 0.3468 0.0859 4.039 5.37 × 10−5*** (0.1785, 0.5151)

Significant codes: ***0.001; **0.01; *0.05 [Dispersion parameter for negative binomial (7.7651) family taken to be 1]. 
Null deviance: 687894.68 on 187 degrees of freedom. Residual deviance: 227.69 on 179 degrees of freedom. AIC, Akaike 
information criterion: 2220.

3.2. � Analysis of the USA’ COVID-19  
Death Cases

There is a significant upward trend in the COVID-19 daily death 
cases of the USA from January 21 to April 16, 2020 (p = 0.000), 
a significant downward trend from April 17 to June 20, 2020  
(p = 0.000) and significant upward trend from June 21 to August 8, 
2020 (p = 0.000).

The need for the logarithmic transformation of Xt in Equation (2) 
can be observed from the variability of Xt. The variance of Xt is 

470,035,583. This is shown in the boxplot in Figure 5A. The vari-
ance of the natural logarithm of (Xt + 1) is 16.4609. The value 1 is 
added to Xt before taking the natural logarithm because there are 
days with no reported cases. This is shown in the second boxplot 
in Figure 5B.

The NB model in Equation (2) was formulated for the number of 
COVID-19 death cases as a function of the number of reported 
cases at some lag values. The AIC value for the model [Equation (2)]  
is 2223.842. The model with the least AIC (AIC = 2218.944) 
excludes the number of reported cases at lags 1, 3, 8, 10, 11, and 14. 
The coefficient of natural logarithms of the number of COVID-19 
reported cases at lags 4 and 5 predicting the total number of new 
deaths is not statistically significant at a 5% level of significance. 
Table 1 shows the estimates of coefficients of NB regression model 
for the number of COVID-19 death cases in the USA. Suppose 
Wt−i denote loge(Xt−i + 1), the number of death cases in the USA 
increases by a factor of 1.3594, 1.3118, 1.5326, 1.3145, and 1.4145 
for a 1-unit increase in Wt at lags 0, 6, 7, 12, and 13 respectively 
when other variables are held constant. The number of death cases 
in the USA increases by a factor of 0.9841, 0.6805, and 0.6907 for a 
1-unit decrease in t and Wt at lags 2 and 9 respectively when other 
variables are held constant. 

It is important to investigate whether the residuals of the fitted 
model are random [21]. The Ljung–Box test is used. The Ljung–
Box test shows that the residuals of the fitted NB model are random 
(p = 0.6600). Also, an ARIMA (p,d,q) model with exogenous vari-
ables is formulated for the number of COVID-19 death cases. The 
optimal model is ARIMA (3,1,3). The Ljung–Box test is used to 
check if the residuals of this model are random. The Ljung–Box test 
implies that the residuals of the fitted ARIMA model with exoge-
nous variables are random (p = 0.9288).

It is also possible to fit ARIMA model without exogenous vari-
ables. The optimal ARIMA model without exogenous variables is 
ARIMA (3,1,2). The use of exogenous variables is better in formu-
lating ARIMA model for the USA COVID-19 death cases because 
the AIC value and RMSE of the optimal ARIMA model with exog-
enous variables are 2911.15 and 311.3858 while the AIC value and 
RMSE of the optimal ARIMA model without exogenous variables 
are 2946.83 and 368.4422, respectively (Table 2). Figure 6 shows 
the comparison between observed counts and fitted values from 
Negative Binomial (NB) regression model, optimal ARIMA (3,1,3) 
model with exogenous variables (denoted by ARIMAX) and opti-
mal ARIMA (3,1,2) model. The NB model performs better than the 
optimal ARIMA and ARIMAX models in terms of AIC and RMSE. 

Figure 5 | Boxplot of (A) COVID-19 incidence cases and (B) the natural 
logarithm of COVID-19 incidence cases in the USA.

A B
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Also, the NB model fits the observed death counts well. Figure 7 
presents the comparison of predicted incidence and death cases 
from August 9 to October 8, 2020 with the observed from ECDC.

3.3. � Examining the Effect of Lockdown  
on the Incidence Cases in the USA

To account for the efficiency of lockdown policy in the USA, the 
incidence rate in Sweden [17], where there is no strict lockdown, 

is compared with that of the USA (Figure 8). The incidence rate 
is calculated as the ratio of incidence to the country’s population 
multiply by 100. The population of the USA is taken as 329,064,917 
while that of Sweden is 10,230,185 [17]. It can be seen from the 
figure that there are upward trends in the daily incidence rate of 
Sweden from February 1 to June 30, 2020 (p = 0.000), and a down-
ward trend from July 1 to August 8, 2020 (p = 0.3453). It can also be 
seen that there are upward trends in the daily death rate of Sweden 
from February 1 to April 25, 2020 (p = 0.000) and downward trend 
from April 26 to August 8, 2020 (p = 0.000). The mean daily inci-
dence rate from the first incidence in Sweden is 0.00424 while 
that of the USA is 14.378. The mean daily death rate from the first 
incidence in Sweden is 0.00035 while that of the USA is 0.00024. 
Wilcoxon rank-sum test was used to investigate if there is a statis-
tically significant difference between daily incidence rates in the 
two countries. The test shows that there is a statistically significant 
difference between the daily incidence rates in the two countries 
 (p = 0.000). The Wilcoxon rank-sum test further shows that there 
is no statistically significant difference between the daily death 
rates in the two countries from the day of the first incidence to 
August 8, 2020 (p = 0.8922). The lockdown policies in the USA 
were relaxed at different dates by each state. All the states relaxed 
the lockdown policies before June 7 except New Jersey, which 
relaxed the lockdown policies on June 9. Figure 8 presents the plots 
of daily incidence rates and death rates in the USA and Sweden 
from January 21 to June 7, 2020, accounting for efficiency of lock-
down policy. It is shown in the figure that daily incidence rates are 
higher in the USA than in Sweden between March 22 and June 3, 
2020, and lower daily incidence rates in the USA than in Sweden in 
other days. The daily death rates are higher in Sweden than in the 
USA most of the days from January 21 to June 7, 2020.

Consequentially, lockdown policies in the USA, which aimed at 
reducing the incidence rates seem to yield profound results. It is 

Figure 6 | Comparison between observed counts, fitted values from NB, 
optimal ARIMAX and optimal ARIMA models.

Figure 7 | Comparison of predicted values with observed values from 
August 9 to October 8, 2020.

Table 2 | Estimates of coefficients of the optimal ARIMA model with 
exogenous variables for the number of death cases in the USA

Predictor jt−1 jt−2 jt−3 ẗ-1 ẗ-2 ẗ-3 –Xt

Estimate 0.759 −0.385 −0.442 −1.549 1.219 −0.309 0.023
S.E 0.104 0.127 0.092 0.111 0.166 0.109 0.006

Predictor Xt−1 Xt−2 Xt−3 Xt−4 Xt−5 Xt−6 Xt−7
Estimate −0.015 −0.003 −0.015 −0.016 0.008 −0.004 0.008
S.E 0.006 0.007 0.006 0.007 0.007 0.007 0.007

Predictor Xt−8 Xt−9 Xt−10 Xt−11 Xt−12 Xt−13 Xt−14
Estimate 0.022 −0.003 0.003 0.023 −0.003 0.001 0.01
S.E 0.007 0.007 0.007 0.007 0.007 0.007 0.007

Figure 8 | Comparison of incidence rates and death rates in the USA and 
Sweden, accounting for efficiency of lockdown policy.
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observed that higher incidence rates are recorded in Sweden in 
some of the days under study compared to the USA. However, sev-
eral factors can contribute to this. The populations of both coun-
tries differ, with a higher population in the USA. Jiang and Luo [22] 
observed a positive relationship between country’s population and 
incidence cases. Makinde et al. [11] identified population as a driver 
of spread of COVID-19. Due to the large population in the USA, the 
impact of lockdown seems less significant on the transmission in 
the USA when compared to that of Sweden. However, this analysis 
does not capture how different incidence and mortality numbers 
would have been, had the lockdown in the USA started early.

Comparing the daily incidence rates and death rates of the USA 
before and after June 7, it was found that the mean daily inci-
dences before and after relaxing lockdown policies are 0.0042 and 
46.6032, respectively. The Wilcoxon rank-sum test shows that the 
daily incidence rates before relaxing lockdown policies are lower 
than the daily incidence rates after relaxing lockdown policies  
(p = 0.000). This implies that the incidence rates grow exponentially 
after the lockdown policies were relaxed in the USA. Similarly, the 
death rates in the USA grow since June 7, indicating the effective-
ness of the USA lockdown policies.

Recent work by counterfactual simulations [23] suggests that if 
non-pharmaceutical interventions (stay at home, social distancing, 
use of a mask), had been implemented just between 1 and 2 weeks 
earlier, a substantial number of incidence cases and mortality cases 
could have been prevented. Specifically [23], nationwide, 61.6% 
(between 54.6% and 67.7% at 95% confidence interval) of reported 
infections and 55.0% (between 46.1% and 62.2% at 95% confidence 
interval) of reported mortality cases as of May 3, 2020, could have 
been circumvented if the same control measures had been imple-
mented just 1 week earlier.

4.  CONCLUSION

In this study, the negative binomial integer autoregressive condi-
tional heteroscedasticity models of various orders are presented for 
the USA daily COVID-19 incidence count from January 21 to August 
8, 2020, to find an optimum model from a class of models. This is 
to find the best fitting model for predictive and inferential purposes. 
The incidence count was found to be autocorrelated, linear, and had 
a structural break. Also, the data exhibits autoregressive conditional 
heteroscedasticity. The optimal NB INGARCH model was found to 
be the best model based on its comparison with the observed data 
and lower AIC and RMSE, which indicates that the model fits the 
data reasonably well. In literature, ARIMA model of order p, d, and q 
was used on COVID-19 data. However, appropriateness of ARIMA 
for modelling over-dispersed count data is questionable.

A negative binomial model, an ARIMA model with exogenous 
variables and without exogenous variables were formulated for 
COVID-19 death cases in the USA. The three models fit the data 
well. In terms of AIC, the negative binomial model performed 
better than others. The inclusion of time index in the negative 
binomial model was aimed at improving the model. The ARIMA 
model with exogenous variables performs well than when exoge-
nous variables were excluded. The NB INGARCH (5,3) model was 
identified to be the optimal model for fitting number of incidence 
cases while negative binomial model as the optimal model for fit-
ting number of death cases.

Comparing the daily incidence and death rates in the USA with 
Sweden, the daily death rates in the USA are lower than that of 
Sweden in some days, while consistently lower in many days. It can 
be inferred that the effectiveness of lockdown in the USA was pro-
found over the study period.
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