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Abstract

In Caenorhabditis elegans, cellular proteostasis is likely essential for longevity. Autophagy has been shown to be essential for lifespan extension 
of daf-2 insulin/IGF mutants. Therefore, it can be hypothesized that daf-2 mutants achieve this phenotype by increasing protein turnover. 
However, such a mechanism would exert a substantial energy cost. By using classical 35S pulse-chase labeling, we observed that protein 
synthesis and degradation rates are decreased in young adults of the daf-2 insulin/IGF mutants. Although reduction of protein turnover may 
be energetically favorable, it may lead to accumulation and aggregation of damaged proteins. As this has been shown not to be the case in 
daf-2 mutants, another mechanism must exist to maintain proteostasis in this strain. We observed that proteins isolated from daf-2 mutants 
are more soluble in acidic conditions due to increased levels of trehalose. This suggests that trehalose may decrease the potential for protein 
aggregation and increases proteostasis in the daf-2 mutants. We postulate that daf-2 mutants save energy by decreasing protein turnover rates 
and instead stabilize their proteome by trehalose.
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Progressively declining rates of protein synthesis and degradation 
with age have been observed in many species from yeast to mam-
mals, including nematodes (1,2). These declining protein turnover 
rates are accompanied by increased accumulation and aggregation of 
biochemically altered and misfolded proteins (3), which are in turn 
linked to the development of age-related pathologies and suggested 
to contribute to the aging process (4). The autophagic–lysosomal 
and ubiquitin–proteasome system are primarily responsible for the 
proteolytic clearance of aberrant proteins and their age-associated 
impairment has been suggested to be the main cause of the progres-
sive loss of proteostasis (5–7). Interventions that promote longevity 
such as dietary restriction and reduced insulin/IGF-1 signaling (IIS) 
are therefore thought to stimulate proteolytic turnover of proteins 
(and whole organelles), thereby delaying the accumulation of cel-
lular damage and slowing-down aging (8,9). Consistent with this 

notion, dietary restriction was found to stimulate macroautophagy 
(10,11) and proteasome function (12,13), and to increase turnover 
of proteins in aging rats (14) and liver mitochondria in mice (15).

In Caenorhabditis elegans, dietary restriction and reduced IIS 
lead to increased activation of macroautophagy as observed by 
a GFP-tagged reporter protein that localizes to the autophago-
somal membrane upon autophagic induction (16,17). Although 
autophagic activation is required for increased longevity in these 
animals, whether bulk protein degradation is also increased under 
these conditions has not been tested to date. On the other hand, 
inhibition of overall protein synthesis rates is now a well-estab-
lished manner to increase longevity from yeast to mice, but it is 
difficult to reconcile with the turnover paradigm (18,19). Moreover, 
we have shown that protein synthesis rates are strongly decreased in 
young adults of the IIS receptor mutant daf-2 (20).
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Using a classical pulse-chase approach, we assessed the effect 
of aging on overall protein synthesis and bulk degradation in 
long-lived insulin/IGF-1-like signaling (IIS) mutants of C elegans. 
As expected, we found a strong age-dependent decline in protein 
turnover rates in normal-lived C elegans. Counter to the turnover 
paradigm, long-lived IIS mutants display very low protein synthesis 
and degradation levels throughout life. Instead, we found that their 
proteins are much more soluble in trichloroacetic acid (TCA) and 
that this solubility depends on the presence of trehalose, suggesting 
that this carbohydrate may support the maintenance of proteosta-
sis in these animals.

Our work thus implies that enhanced proteostasis in the long-
lived IIS mutant is obtained by stabilizing the proteome with protect-
ants such as trehalose, rather than by enhancing protein turnover 
rates to minimize damage accumulation.

Materials and Methods

Caenorhabditis elegans Strains and Culturing
The following strains were used: glp-4(bn2ts)I; daf-2(e1370)III, 
glp-4(bn2ts)I; daf-2(m577)III, and glp-4(bn2ts)I; daf-16(mgDf50)
I; daf-2(e1370ts)III. The temperature-sensitive glp-4(bn2) back-
ground mutation disrupts normal postembryonic proliferation of 
the germ line resulting in sterile adults without eggs (21). This pre-
vents the loss of 35S-labeled protein due to egg laying. Synchronized 
cohorts of worms were grown as described previously (22). Worms 
were grown on Escherichia coli K12-seeded nutrient agar plates 
until third larval stage (L3) at 16°C and then shifted to 24°C for the 
remainder of the experiment. As development of the daf-2 mutant 
is slightly slower than that of the control strain, L1 plates of the 
long-lived mutants were initiated approximately 8-hour upfront. 
Hence, both strains reached adulthood simultaneously and could 
be sampled together. At fourth larval stage, worms were transferred 
into Fernbach flasks containing 250-mL S-basal at densities not 
exceeding 1,500 worms/mL and shaken at 120 rounds per min-
ute. Frozen E coli K12 cells were added twice daily to the culture 
medium to maintain the desired OD550 level of 1.8 (approximately 
3 × 109 cells/mL).

35S Protein Assays
35S-labeled bacteria were obtained by growing E coli K12 overnight 
at 37°C in low-sulfate medium (44 mM Na2HPO4, 22 mM KH2PO4, 
85 mM NaCl, 20 mM NH4Cl, 1.25 mg/L thiamine, 0.1% (w/v) glu-
cose, 2 mM MgCl2) (23) supplemented with lysogeny broth medium 
(1% final concentration) and 5  µCi/mL [35S]sulfate (PerkinElmer, 
Waltman, MA). These quantities were carefully chosen as they 
optimize the balance between bacterial growth and efficient label 
incorporation. Bacterial concentrations were determined by measur-
ing optical density at 550 nm. During pulse labeling, 35S bacteria (at 
1.8 OD550) were fed to worms cultured in 10-mL S-basal in tissue 
culture flasks (approximately 1,000 worms/mL). The rate of pro-
tein synthesis was calculated as the upward slope of the 35S signal 
obtained from worm protein extracts from six samples taken over 
a 6-hour time period. For measuring protein degradation, worms 
were pulse labeled by feeding 35S bacteria overnight, cleansed from 
radioactive bacteria (cfr. sampling procedure below) and chased in 
liquid culture containing nonradioactive K12 (OD550  =  1.8). The 
protein degradation rate was calculated as the downward slope of 
log-transformed protein radioactivity from five samples taken over a 
48-hour chase period. To prevent reincorporation of excreted 35S, the 

chase medium was refreshed twice daily. During the sampling pro-
cedure, worms were washed five times over a period of 15 minutes 
in S-buffer supplemented with nonradioactive E coli K12 to purge 
the intestine from undigested 35S-labeled bacteria. Negative controls 
were produced by incubating worms in 35S bacteria for less than 
1 min. To isolate proteins, worms were first boiled for 15 minutes 
in 50% Tris–sodium dodecyl sulfate buffer (25 mM Tris, 250 mM 
NaCl, 5% sodium dodecyl sulfate, pH 7.4), and debris was pelleted 
by centrifugation for 5 minutes at 20,000 rcf. To precipitate pro-
teins in the supernatant, TCA (final concentration 9.3%) was added 
to the supernatant and allowed to incubate at room temperature 
for 1 hour. Precipitated proteins were centrifuged at 20,000 rcf for 
5 minutes and washed once with 1 mL of 10% TCA. The protein 
pellet (TCA insoluble fraction) was dissolved in 150  µL 350 mM 
NaOH for at least 1 hour at room temperature. To quantify 35S, 
100 µl of TCA supernantant (sTCA fraction) or dissolved protein 
pellet (pTCA fraction) was added to 5-mL Ultima Gold LSC-cocktail 
(PerkinElmer, Waltman, MA) for liquid scintillation counting in a 
Tri-Carb 2800TR Liquid Scintillation Counter (PerlinElmer). 
Counts per minute were normalized to total protein concentration 
as determined with a BCA Protein Assay Kit (Thermo Scientific, 
Rockford, IL).

Determination of Free and Bound Amino Acid 
Content
Determination of amino acid concentrations by high-performance 
liquid chromatography (HPLC) was performed as described before 
(24). Free amino acids were extracted by treating worm homoge-
nates with 15% TCA and taking the supernatant. Bound amino 
acids were released by acid hydrolysis in 12 M HCl containing 
0.1% phenol and 0.1% Na2SO3 for 24 hours at 105°C followed 
by neutralization of the mixture. All amino acids were derivatized 
with o-phthaldialdehyde in the injector of the Agilent 1100 system 
HPLC (Agilent Technologies, Switzerland) and quantified by fluo-
rometry (ex 340 nm/em 450 nm). Free and bound amino acid con-
tent was normalized to the total amount of protein (TCA-soluble 
and TCA-insoluble fraction) in each sample determined with a 
BCA Protein Assay Kit (Thermo Scientific).

Trehalose and Glutathione Quantification
Worms were grown to second day of adulthood on standard agar 
plates seeded with E coli K12. The glp-4(bn2ts) and daf-2(e1370ts) 
mutations required a temperature switch from 16°C to 24°C at 
the L3 stage. Young adult worms were washed in S-basal and were 
frozen immediately. Samples were thawed and homogenized by 
bead beating as described in ref. (22). Trehalose was measured in 
microplates using a trehalose assay kit according to the manufac-
turer’s instructions (Megazyme, Wicklow, Ireland) (25). Glutathione 
was measured in microplates using a standard glutathione assay 
kit (Oxford Biomedical Research) according to the manufacturer’s 
instructions.

Regression Analysis
Regression analysis was performed to assess whether rates of protein 
degradation and synthesis change with age using the mixed linear 
regression model (LMM) PROC MIXED in SAS 9.2 (SAS Institute 
Inc., Cary, NC, 2002–2003).

Trehalose and protein stability data were assessed for normal dis-
tribution using Shapiro and Levene tests. Significance was assessed by 
using analysis of variance and Tukey’s honest significance post hoc test.

1554 Journals of Gerontology: BIOLOGICAL SCIENCES, 2016, Vol. 71, No. 12



Results

Reduced IIS Reduces Protein Synthesis and 
Degradation in Young Worms
Increased protein turnover has been suggested to be beneficial 
for the animal because this process removes and replaces dam-
aged proteins, thereby delaying progressive damage accumula-
tion that causes aging (26). Protein synthesis and degradation 
rates were determined by pulse-chasing worms that were fed with 
35S-radiolabeled bacteria. We compared the normal-lived reference 
strain glp-4 daf-16;daf-2 with the long-lived glp-4;daf-2 strain. 
The glp-4 mutant background, causing sterility, was used in both 
strains to avoid purging of radioactive signal by egg laying. Under 
the conditions used, the glp-4 mutation does not affect lifespan. As 
the DAF-16 protein is necessary and sufficient to cause the lifespan-
extending effect of daf-2 mutants, the daf-2;daf-16 double mutation 
was used in the reference strain. Similar mutant backgrounds have 
been previously used by us and others (20,27–29). We found that 
the overall rate of protein synthesis declines rapidly with age in the 
reference strain (slope = −13.5 ± 2.5; p < .001; LMM) (Figure 1A). 
Surprisingly, the rate of protein synthesis in young adult (day 2) IIS 
mutants is approximately five times lower compared to the age-
matched control population (p < .0001, LMM), and this low level 
of 35S incorporation remains unchanged during the experiment 
(slope = −0.5 ± 1.35; p = .72; LMM). We showed earlier that young 
daf-2 mutants that do not carry the glp-4 background mutation 
and mutants carrying the less pleiotropic daf-2(m577) allele also 
show reduced protein synthesis levels (20).

Protein degradation rates were quantified by pulsing worms 
overnight with 35S radioactive K12 bacteria, followed by a chase 
in fresh culture medium supplemented with nonradioactive K12. 
During the chase, samples were taken at regular time intervals. The 
rate at which 35S label was lost from the TCA-precipitated (pTCA) 
protein was taken as a measure for protein degradation rate. Protein 
degradation rates in the reference strain mirrored the pattern found 
for protein synthesis: protein degradation strongly decreases with 
age (Figure 1B). Despite the genetic evidence that autophagy (16) 
and the ubiquitin–proteasome system (30) are indispensible for 
lifespan extension in IIS mutants, we found that both young daf-
2(e1370) and daf-2(m577) mutants retain 35S much longer in the 
pTCA protein fraction compared to controls. This low level of pro-
tein degradation remains fairly constant over adult age (daf-2(e1370) 
slope  =  −0.97 ± 2.74; p  =  .72; daf-2(m577) slope  =  −1.1 ± 0.86; 
p = .16; LMM).

The daf-2 Proteome Shows Increased Resistance to 
TCA-Mediated Precipitation
After TCA precipitation in the pulse-chase experiments, both TCA-
precipitated protein (pTCA) and the TCA-soluble fraction (sTCA) 
were collected. We found that the 35S activity in the sTCA fraction 
was much higher in the long-lived daf-2(e1370) mutant compared to 
the reference strain, irrespective of age (Figure 2A). A similar trend 
was also observed for the daf-2(m577) mutant allele, albeit with 
only borderline statistical significance. The positive signal obtained 
for the sTCA fraction using a bicinchoninic acid (BCA) protein 
quantitation assay suggests that the increase in sTCA 35S activity in 
daf-2 nematodes was proteinaceous in nature (Figure 2B). In earlier 
studies we found that the thiol-containing tripeptide glutathione is 
maintained at higher levels in middle-aged and old, but not in young 
daf-2 mutants compared to wild type (31). Therefore, we verified 
whether the high 35S levels in the sTCA of the young daf-2 worms 
used in our experiment could be due to elevated glutathione levels. 
We did not find elevated glutathione levels in young daf-2 worms, 
confirming our earlier findings (Supplementary Figure 1).

Next, we reasoned that intracellular recycling of amino acids (eg, 
by autophagy or proteasomal activity) may be upregulated in daf-2 
mutants, resulting in high protein turnover rates that may not be read-
ily detected by classical pulse-chase experiments because of reuse of 
internal unlabeled amino acids. We therefore wondered if the rise in 
sTCA proteinaceous content was the result of increased standing levels 
of free amino acids in daf-2 worms. To test this hypothesis, we deter-
mined amino acid content in the sTCA fraction by HPLC separation 
of o-phthaldialdehyde-derivatized amino acids followed by fluorometric 
detection. However, we found no significant overall change in the stand-
ing levels of free amino acids between the control and long-lived worms 
(shaded bars in Figure 2C). Hydrochloric acid hydrolysis was used to 
break peptide bonds and release the amino acid constituents of proteins 
and peptides present in the sTCA fraction. The amount of bound amino 
acids (ie, amino acids released from peptides or proteins in the sTCA 
fraction) was significantly elevated in daf-2 mutants (hatched bars in 
Figure 2C), further supporting increased abundance of proteins in the 
sTCA fraction. Other precipitation methods, such as ammonium acetate 
and polyethylene glycol, gave similar results, further confirming precipi-
tation resistance of glp-4;daf-2 proteins (Supplementary Figure 2A and 
B). We therefore conclude that the observed increase in sTCA 35S activity 
in the daf-2(e1370) mutant is the result from peptides and proteins that 
resist precipitation in the presence of TCA.

Increased daf-2 TCA Resistance Is Mediated by tps-1 
and tps-2
IIS mutants are characterized by elevated levels of the glucose disac-
charide trehalose that result from the increased expression of the 
trehalose-6-phosphate synthase genes tps-1 and tps-2 (29,32–36). 
Besides its role in carbohydrate storage and transport, trehalose also 
acts as a cytoprotectant against cold, heat, dehydration, hypoxic, 
and oxidative insult in invertebrates, most likely by stabilizing the 
proteome and lipid membranes (25,37,38). High trehalose levels 
contribute to daf-2 longevity as RNAi knockdown of tps-1 and tps-
2 shortens daf-2 lifespan significantly (36).

To test whether trehalose can protect proteins from TCA-
mediated precipitation, we designed an in vitro approach in which 
different trehalose concentrations were added to worm homogen-
ates. Addition of 5 mM trehalose results in a significant decrease 
in protein precipitation in 10% TCA, but higher trehalose concen-
trations had no additional effect (Figure 3A). To confirm that the 
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Figure  1. (A) Relative rate of 35S incorporation in worm proteins with age 
after feeding 35S-labeled bacteria to controls (glp-4 daf-16; daf-2(e1370)) and 
the insulin/IGF-1 receptor mutant glp-4; daf-2(e1370). (B) Relative rate of 35S 
removal in the trichloroacetic acid–precipitated protein fraction over age. *p 
< .05, **p < .005, ***p < .0005 (linear regression model). Averages ± SEM are 
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sTCA fraction is a valid measure for protein stabilization, we added 
glycerol, a common cosolvent for the storage of proteins, inhibit-
ing their aggregation (39) and produced in C elegans upon osmotic 
stress (40,41). As predicted, this compound resulted in a strongly 
increased sTCA fraction (Figure 3A). Dimethyl sulfoxide can extend 
C elegans lifespan independently of IIS signaling, and it ameliorates 
paralysis induced by amyloid-β aggregation (42), suggesting that 
Dimethyl sulfoxide could improve protein homeostasis. Indeed, 
adding dimethyl sulfoxide to worm homogenates also significantly 
increased the sTCA fraction to levels comparable with trehalose 
treatment (Figure 3A).

Adding trehalose to the nutrient agar culture medium (5 mM 
final concentration) also results in a modestly increased solubility of 
glp-4 daf-16;daf-2 worm proteins after homogenization and expo-
sure to 10% TCA, which is likely the result of a small but significant 
trehalose uptake by the worms (Figure 3B). In the long-lived glp-
4;daf-2, no additional effect in protein solubility is seen upon adding 
trehalose to the culture medium and, likewise, worm trehalose levels 
remained unchanged under these conditions (Figure 3B).

To test whether the high resistance to TCA-mediated protein pre-
cipitation in the glp-4;daf-2 mutant is dependent on its high intrinsic 
trehalose levels, we measured sTCA protein content upon treating 
the worms with tps-1 or tps-2 RNAi. Both tps-1 and tps-2 RNAi 
resulted in a strong decrease in worm trehalose levels, mirrored by 
decreased protein solubility in the presence of 10% TCA (Figure 3C). 
As tps RNAi in glp-4;daf-2 worms leads to comparable levels in both 
trehalose and protein solubility as in the reference strain, protein 
stability in daf-2 worms is mainly determined by trehalose levels.

Discussion

Protein Turnover Decreases Over Age
Classical pulse-chase labeling showed that protein synthesis as well as 
degradation rates drastically decrease over age in the C elegans refer-
ence strain used in this study. Age-related decreases in protein synthe-
sis rates have been known for long and were described for nematodes 
(43,44) as well as many other species (1). The reason for this decline 
is still unclear but a decrease in translation efficiency or ribosome 
abundance may be involved (26,45). We observed that the decrease in 
protein synthesis rates was paralleled by a similar decrease in protein 
degradation rates. This may point to age-related deterioration of the 
lysosomal and/or proteasomal system. Indeed, three lysosomal pro-
tease activities decline 2.5- to 10-fold with age in C elegans (46). Also, 
impairment of the ubiquitin–proteasome system was reported in the 
dorsorectal neurons of aged C elegans worms although ageing did 
not affect the ubiquitin–proteasome system in the body wall muscle 
cells (47). It is often assumed that the age-related reduction in protein 
turnover is causal to increased protein damage and aggregation that 
is observed in old individuals (1,2,26,48).
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daf-2 Mutants Show Very Low Protein Turnover at 
Young Adult Age
If protein damage and aggregation, both hallmarks of aging, can be 
cleared by increased protein turnover, it is expected that long-lived 
daf-2 mutants display increased turnover rates. However, our results 
do not support this prediction. On the contrary, young adult daf-
2 mutants show severely reduced protein synthesis and degradation 
rates compared to the reference strain. Food intake in daf-2(e1370) 
worms is lower than in the control strain, especially after three days 
of adulthood (29), which should result in decreased label uptake. This 
could be interpreted as a confounding variable, but it is important 
to note that this is not the case. On the contrary, low food intake 
(hence, low intake of aminoacids) may be a prime mechanism to 
reduce protein synthesis rates (eg, via target of rapamycin nutrient 
sensing). Hypothetical forced feeding of daf-2(e1370) mutants would 
equalize label intake but it would likely change daf-2 physiology 
and protein metabolism. Alternatively, feeding daf-2(e1370) with 
more intensely labeled E coli to compensate for the difference in 
label uptake would make any quantitative comparison between both 
strains illegitimate. Our pulse-chase experiments confirm the results 
of earlier proteomic studies describing global downregulation of pro-
tein synthesis machinery including ribosomal subunits, tRNA syn-
thetases, s-adenosyl methionine synthase-I, vigilin, and RACK-1 in 
IIS mutants (20,49). Conversely, when protein synthesis is downregu-
lated by genetic intervention, lifespan of C elegans is also increased 
(50–54), which seems to be in accordance with our results. Thus, daf-
2 mutants do not maintain overall increased protein turnover rates 
to support their longevity. On the contrary, recent evidence suggests 
that translation in daf-2 is actively repressed by the long noncoding 
RNA tts-1 (55). Also, it should be noted that DAF-2 is part of an 
insulin/IGF-like pathway, known for its growth-promoting proper-
ties. Hence, it would not be surprising if mutation in this pathway 
causes a downregulation of the protein synthesis machinery.

daf-2 Proteins Are More Resistant to TCA 
Precipitation
The daf-2 mutants showed a higher retention of 35S radiolabel in 
the TCA-soluble protein fraction (sTCA) compared to the control. 
We reasoned that this signal may represent increased levels of free 
amino acids that may point at efficient internal recycling of proteins 
in daf-2 mutants. Label reutilization is a blind spot in radioisotope 
pulse-chase studies, and there are no straightforward solutions to 
this artifact (15). Furthermore, the possibility of high internal recy-
cling is supported by the observation that autophagic activity in C 
elegans daf-2 mutants is a prerequisite for their longevity (16,17,56). 
Also, increased proteasomal activity may underlie an elevated free 
aminoacid pool in daf-2 animals (57). However, we found that 
RNAi inhibition of proteasomal subunits did not lower the elevated 
35S sTCA signal in the daf-2 mutants (data not shown). Moreover, 
HPLC showed that sTCA fraction of daf-2 mutants contained higher 
protein levels, not free amino acids, compared to the control. The 
resistance of the daf-2 proteome to precipitation with TCA, ammo-
nium acetate, or polyethylene glycol, suggests increased protein sta-
bility. Hence, protein stability rather than protein turnover may be 
key to daf-2 longevity. This view is in line with the finding that the 
daf-2 proteome is less prone to aggregation (58). Protein stabiliza-
tion or protection is governed by chemical or molecular chaperones 
(eg, trehalose, glycerol, sucrose, proline, heat shock proteins). Small 
heat shock proteins may sequester surplus proteins and help to main-
tain protein balance in daf-2 (59). Because it was found earlier that 
trehalose (34,35) and trehalose synthase (29) levels are increased in 

IIS mutants and that their lifespan extension is partially dependent 
on the trehalose synthase genes tps-1 and tps-2 (36), we extended 
our functional analysis to this protective disaccharide.

Trehalose Stabilizes the Worm Proteome
It was shown earlier that addition of trehalose extends lifespan of 
wild-type but not daf-2 mutant worms and that lifespan extension 
in daf-2 worms is partially dependent on trehalose synthesis (36). We 
found that trehalose, added directly to worm homogenates, can act 
as an in vitro stabilizing agent for the worm proteome, thus making 
it more resistant to TCA precipitation. Similar effects were obtained 
with other stabilizers such as dimethyl sulfoxide, an organosulfur 
compound, and glycerol, a polyol of which the concentration is 
not increased in daf-2 (35). Control worms, cultured on trehalose-
enriched medium, showed significant uptake of this disaccharide 
resulting in a concurrent increase in sTCA protein content. Additional 
trehalose uptake and proteome stabilization was not observed in daf-
2 mutants, suggesting that these animals reach maximal proteome 
stability via endogenous trehalose synthesis. This stability can be 
decreased by knocking down the trehalose synthase genes tps-1 and 
tps-2, confirming that the stabilization is trehalose specific.

Finally, the hypertrehalosemic response to IIS disruption may be 
evolutionary conserved in ecdysosoa as increased trehalose levels have 
been found in the hemolymph of Drosophila insulin-like peptide mutant 
lines (60). Also, trehalose levels and protein degradation rates may 
be interlinked although the molecular basis of this connection is still 
unclear. Blocking the proteasome specifically causes a buildup of treha-
lose in Saccharomyces cerevisiae (61). Whether this response also occurs 
in C elegans is currently unknown. On the other hand, in mammalian 
cell cultures, addition of trehalose induces autophagy (62). However, as 
we have shown that the protein degradation rate is very low in daf-2, it 
seems unlikely that C elegans would show a similar response.

In conclusion, we found that long-lived daf-2 mutants do not spend 
much of their energy resources on protein turnover but rather invest 
in the protection of their proteome by trehalose (and possibly other 
compounds). With this strategy, they seem to phenocopy the physi-
ological characteristics of the dauer diapause stage (63), which is not 
entirely surprising as the IIS pathway is involved in dauer formation. It 
is still enigmatic why the lifespan extension of daf-2, a mutant showing 
low overall protein turnover, is strongly dependent on the autophagic 
pathway. Possibly, very low or local autophagic activity is crucial to 
extend lifespan in daf-2. Alternatively, other functions of bec-1, such as 
endosome-to-Golgi retrograde transport, may be required to support 
long life, rather than autophagy. It may also be considered that long-
lived daf-2 worms or dietary-restricted worms are more susceptible 
to the deleterious consequences of inactivation of autophagy, leading 
to a shortened lifespan. Adding to the confusing relationship between 
autophagy and lifespan is the finding that RNAi knockdown of several 
autophagy genes in adult wild-type worms and daf-2 mutants extends 
lifespan in a daf-16 and sir-2.1 independent way (64).
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