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ABSTRACT
Multiple proof-of-principle experiments and successful field trials have
demonstrated that engineering photosynthesis is a viable strategy for
improving crop yields. Advances to engineering technologies have
accelerated efforts to improve photosynthesis, generating a large
volume of published literature: this Review therefore aims to highlight
the most promising results from the period February 2021 to January
2022. Recent research has demonstrated the importance of
understanding the impact of changing climates on photosynthesis to
ensure that proposed engineering strategies are resilient to climate
change. Encouragingly, there have been several reports of strategies
that have benefits at temperatures higher than current ambient
conditions. There has also been success in engineering synthetic
bypass pathways, providing support for the feasibility of a synthetic
biology approach. Continued developments in all areas of engineering
photosynthesis will be necessary for sustainably securing sufficient
crop yields for the future.

This article has an associated First Person interview with the first
author of the paper.
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Introduction
The growing global population and increasing demand for bioenergy
are predicted to result in future crop yields falling substantially behind
demand without significant improvements to productivity (Ray et al.,
2013). Future yield shortages will be further exacerbated by
increasing temperatures resulting from climate change, with large
losses for major crops such as maize, rice and soybean predicted
(Jägermeyr et al., 2021). International efforts are therefore underway
to improve crop yields, notably by targeting photosynthetic efficiency
(Ort et al., 2015; Kubis and Bar-Even, 2019; Batista-Silva et al.,
2020). Indeed, theoretical yield potential calculations have shown
that improving photosynthesis is the only viable option to achieve the
necessary yield improvements given the plateauing benefits of the
Green Revolution (Murchie et al., 2009; Zhu et al., 2010; Long et al.,
2015). Multiple strategies have been explored to this end, including
targeting light capture efficiency, optimising photosynthetic
enzymes, introducing a carbon-concentrating mechanism (CCM)
or alternative form of photosynthesis to C3 species, optimising
photorespiration, and engineering a smart canopy, with the aim of
attaining sustainable crop improvements.
Targeting light capture is a major strategy for engineering

photosynthesis. The light reactions of photosynthesis convert light

to chemical energy through the fixation of atmospheric carbon
dioxide: subsequent carboxylation of ribulose 1,5-bisphosphate
(RuBP) by the enzyme ribulose 1,5-bisphosphate carboxylase/
oxygenase (Rubisco) results in the generation of 3-
phosphoglycerate (3PGA), which can be integrated into the
Calvin–Benson–Bassham cycle and converted to organic sugars.
Light capture depends on light-harvesting complexes arranged
around reaction centres that form photosystems for the absorption
of specific wavelengths. Light harvesting therefore makes partial use
of the available solar spectrum. Moreover, only a fraction of the
theoretical maximum of 12% solar energy conversion efficiency is
achieved since plants are subjected to fluctuating light conditions
and tend to absorb more light than can be productively used
(Blankenship et al., 2011). In addition, although photoprotective
mechanisms prevent damage to the photosystems at saturating
light levels, slow downregulation of these processes can limit
photosynthetic efficiency (Kromdijk et al., 2016). These limitations
to photosynthesis could be overcome by (i) engineering pigments/
light-harvesting complexes to access a wider range of the solar
spectrum, for example as proposed by the PhotoRedesign consortium
(Hitchcock et al., 2021), and (ii) improving the efficiency of
protective mechanisms.

In addition, an alternative strategy is to target Rubisco itself.
Rubisco is an inefficient enzyme with a low catalytic rate and
low CO2 affinity (Flamholz et al., 2019) that is poor at distinguishing
CO2 fromO2, particularly at elevated temperatures (Sage andKubien,
2007). This promiscuity results in a competing oxygenation reaction
at the Rubisco active site, generating toxic 2-phosphoglycolate (2PG)
that must be recycled via the energetically costly photorespiratory
pathway (Zhu et al., 2010; Walker et al., 2016; Busch, 2020). Further
strategies to improve photosynthesis therefore include engineering
of Rubisco to increase its CO2 specificity, introducing a CCM, or
engineering a novel synthetic photorespiratory bypass. For example,
transgenic tobacco plants expressing the E. coli glycolate oxidation
pathway had increased photosynthesis and biomass compared with
wild type (South et al., 2019). Novel synthetic biology approaches
have also been proposed (Bar-Even et al., 2010; Schwander et al.,
2016; Miller et al., 2020), and their implementation is rapidly
becoming feasible with improving technologies (e.g. Scheffen et al.,
2021). This Review aims to highlight the most promising advances in
engineering photosynthesis in the period February 2021 to January
2022 (Table 1).

A year at the forefront of engineering photosynthesis
Discoveries
Engineering of photosynthesis relies on the development of
molecular and synthetic biology approaches that are guided by
detailed molecular knowledge. Advances in understanding the
fundamental processes in different organisms therefore represent
a significant contribution towards engineering photosynthesis.
Progress has been made in both fundamental mechanistic
understandings and technologies to implement engineering
strategies in the period February 2021 to January 2022.
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Cyanobacterial CCM engineering
C3 yields are predicted to be enhanced by up to 60% by introduction
of a cyanobacterial CCM into chloroplasts (McGrath and Long,
2014; Yin and Struik, 2017). All cyanobacterial CO2 fixation is
enhanced by protein complexes called carboxysomes that consist
of Rubisco, carbonic anhydrase (CA), a nucleating protein, and
often Rubisco activase (Rca) (reviewed in Turmo et al., 2017;
Hennacy and Jonikas, 2020). Inorganic HCO3

− transporters facilitate
CO2 concentration within the cell, resulting in elevated CO2

concentrations in the carboxysomes and improved Rubisco carbon

fixation (Fig. 1) (Price, 2011). Despite the recent reconstitution of a
minimal carboxysome in flowering plants (Long et al., 2018), a
functional plant CCM is yet to be demonstrated, suggesting
that additional molecular components are required. It is possible
that Rubisco requires chaperones for folding and activation in this
context (Long et al., 2018). Indeed, a new discovery is that Rca
components CbbQ and CbbO can increase overall carbon fixation
when engineered into the α-carboxysomes of Halothiobacillus
neapolitanus (Chen et al., 2022), although the dependence of
carboxysome-localised Rubisco on activase activity is hypothesised
to vary between organisms (Tsai et al., 2022). In addition to
optimising Rubisco activity, functionalisation of an engineered
chloroplast CCM will also require the elimination of native stromal
CA to allow for the accumulation of HCO3

− within carboxysomes
(Dean Price et al., 2011). Hines et al. recently demonstrated
the feasibility of this by knocking out the major stromal
isoforms β-CA1 and β-CA5 in tobacco. Mutant plants exhibited
no photosynthetic defects, instead showing developmental
perturbations that included low germination rates, accumulation of
necrotic lesions and early cessation of flowering (Hines et al., 2021).
The authors hypothesised that this was the result of disrupted
bicarbonate biosynthesis, the effects of which would be mitigated
by the exogenous expression of bicarbonate transporter(s) in
engineered CCMs (Hines et al., 2021). Generation of a fully
functional C3 CCM could therefore be a realistic prospect.

Synthetic biology approaches to optimising photorespiration
In the absence of a CCM, photosynthetic efficiency is limited by
photorespiration (Fig. 2A), which has the potential to be improved
for energy and carbon use efficiencies (Shen et al., 2019; South
et al., 2019). Building on the success of the introduction of a
synthetic alternative pathway (AP3) in tobacco to increase biomass
(Fig. 2B) (South et al., 2019), Cavanagh et al. tested whether AP3

Table 1. Summary of key developments in engineering photosynthesis in the period February 2021 to January 2022

Experiment Strategy Major contribution Limitations Reference

Incorporation of CbbQ and
CbbO into synthetic
α-carboxysomes

CCM engineering CbbQO improved carbon fixation Unlikely to be a universal
strategy; needs to be tested
in planta

Chen et al. (2022)

Δβ-ca1ca5 tobacco lines CCM engineering Reduced stromal CA had no impact on
photosynthetic efficiency

Transgenic plants had
developmental defects

Hines et al. (2021)

AP3 lines at elevated
temperatures

Photorespiratory
bypass

AP3 shown to improve thermostability
due to enhanced photorespiration

Needs to be tested in crop plants Cavanagh et al.
(2022)

BHAC expression in
Arabidopsis

Photorespiratory
bypass

BHAC lines generated OAA and have
potential for improving carbon and
nitrogen use efficiency

Transgenic plants had reduced
growth and higher CO2

compensation point

Roell et al. (2021)

ECGC pathway expression in
rice

Photorespiratory
bypass

Both full and partial ECGC pathway
improved yield

Needs to be tested in field trials Nayak et al. (2022)

In vitro construction of TaCo Photorespiratory
bypass

Engineering of a fully synthetic bypass
pathway

Needs to be tested in planta Scheffen et al.
(2021)

ictB expression in maize Single candidate
expression

Improved yield in field trials Yield variations seen in different
growing seasons and location

Koester et al. (2021)

RBCS and RCA
overexpression in rice

Rubisco
engineering

Enhanced photosynthesis at elevated
temperature

No improvements seen at
ambient temperature

Suganami et al.
(2021)

OsRBCS and ZmRCA
overexpression in rice

Rubisco
engineering

Enhanced photosynthesis at elevated
temperature

No improvements seen at
ambient temperature

Qu et al. (2021)

Measurement of Rubisco
deactivation kinetics in
cowpea

Rubisco
engineering

Rubisco deactivation is faster than
predicted, providing an engineering
opportunity

Needs to be tested in planta Taylor et al. (2022)

AP3, alternative pathway from South et al. (2019); BHAC, β-hydroxyaspartate cycle; CA, carbonic anhydrase; CbbO, Rubisco adaptor protein; CbbQ, AAA+-type
ATPase; CCM, carbon-concentrating mechanism; ECGC, E. coli glycolate catabolic; ictB, (previously annotated as) a possible bicarbonate transporter; OAA,
oxaloacetate; RBCS, RIBULOSE BISPHOSPHATE CARBOXYLASE/OXYGENASE SMALL SUBUNIT; RCA, RUBISCO ACTIVASE; TACO, tartronic-CoA cycle.

Fig. 1. Simplified cyanobacterial CMM. Hydrogen carbonate (HCO3
−)

transporters (orange) in the membrane of cyanobacteria import HCO3
− that is

concentrated in proteinaceous carboxysomes (blue). Rubisco catalyses the
carboxylation of ribulose 1,5-bisphosphate, generating 3-phosphoglycerate,
a Calvin–Benson–Bassham (CBB) cycle substrate. Some species require
Rubisco activase to activate Rubisco (red dashed arrow). 3PGA, 3-
phosphoglycerate; CA, carbonic anhydrase; Rca, Rubisco activase;
Rubisco, ribulose 1,5-bisphosphate carboxylase/oxygenase; RuBP, ribulose
1,5-bisphosphate.
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could confer improved thermal tolerance. Notably, higher
photosynthetic rates were found to be maintained in AP3 plants
under short-term temperature stress, resulting in transgenic plants
retaining 19% more biomass than wild-type plants under the same
conditions (Cavanagh et al., 2022). No increase in maximum
carboxylation or electron transport rate was observed in the
transgenic lines, consistent with the observed thermostability
being conferred by improved photorespiration (Cavanagh et al.,
2022). Alternative photorespiratory bypass strategies based on the
introduction of the β-hydroxyaspartate cycle (BHAC) into
Arabidopsis thaliana or the Escherichia coli glycolate catabolic
(ECGC) pathway into rice were met with more variable success
(Roell et al., 2021; Nayak et al., 2022) (Fig. 2C,D). The BHAC from
marine proteobacteria oxidises glycolate to glyoxylate, which is
then converted to oxaloacetate (OAA) via four enzymatic steps
without the loss of carbon or nitrogen (in contrast to native
photorespiration). Four BHAC enzymes were introduced into
Arabidopsis, targeted to the peroxisome, and shown to function in
planta to the extent that relevant metabolic intermediates could be
detected. However, transgenic plants had reduced growth compared
to wild type and BHAC was not found to improve the CO2

compensation point (Roell et al., 2021). Despite this, BHAC lines
have a potential use in engineering C4 photosynthesis (an alternative
CCM) as they accumulate key C4metabolite OAAwithout requiring
the establishment of phosphoenolpyruvate-dependent CO2 fixation

(Roell et al., 2021). Introduction of the ECGC pathway into rice
involved constitutive expression of five genes in rice chloroplasts
(Nayak et al., 2022). Transgenic plants expressing both the full (FB)
and partial (PB) ECGC pathway were found to maintain higher
CO2 assimilation rates and growth than wild type, which translated
into up to 46.7% and 67.0% yield increases in FB and PB plants,
respectively (Nayak et al., 2022). Introduction of orthogonal
metabolic pathways to bypass photorespiration therefore has real
potential for improving crop yields.

A significant advance in the period under review has been
the use of state-of-the-art enzyme engineering and directed
evolution methods to make the previously hypothetical tartronyl-
CoA (TaCo) photorespiratory bypass a reality (Fig. 2E). Theoretical
calculations suggested that interfacing TaCo with photorespiration
would increase the carbon efficiency of the Calvin–Benson–
Bassham cycle from 75 to 100%, while using 21% less ATP
and 29% less reducing equivalents than native photorespiration
(Scheffen et al., 2021). Tartronyl-CoA, formed by the carboxylation
of glycolyl-CoA, and the reactions of the TaCo pathway are
not known to occur in nature, so Scheffen et al. identified
Methylorubrum extorquens propionyl-CoA carboxylase MePCC
as a potential candidate for engineering TaCo. Structure-guided
rational design was used to engineer the substrate preference of
MePCC, resulting in a glycolyl-CoA carboxylase (GCC) that had a
15-fold increase in catalytic efficiency towards glycolyl-CoA.

Fig. 2. Integration of the Calvin–Benson–Bassham cycle with native photorespiration and different photorespiratory bypasses. (A) Rubisco
oxygenation generates 2-phosphoglycolate that is recycled via the native photorespiratory pathway (black). (B) Alternative pathway 3 (purple) (South et al.,
2019; Cavanagh et al., 2021) bypasses photorespiration by metabolising glycolate in the chloroplast. (C) The β-hydroxyaspartate cycle (orange) (Roell et al.,
2021) generates oxaloacetate from glycolate while conserving more carbon and nitrogen than native photorespiration. (D) E. coli glycolate catabolic pathway
(blue) (Nayak et al., 2022) generates 3-phosphoglycerate for Calvin–Benson–Bassham cycle metabolism without requiring catalytic steps in additional
compartments to the chloroplast. (E) Fully synthetic tartronyl-CoA pathway (green) (Scheffen et al., 2021) provides a more direct route for glycolate
assimilation than native photorespiration. Enzymes, stoichiometries and co-substrates have been omitted for clarity. 2PG, 2-phosphoglycolate; 3PGA,
3-phosphoglycerate; Asp, aspartate; CBB, Calvin–Benson–Bassham; OAA, oxaloacetate; RuBP, ribulose 1,5-bisphosphate.
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Directed evolution using a high-throughput approach based on a
novel microfluidics screen identified a GCC variant with catalytic
efficiency of 3.6×104 M−1 s−1 for glycolyl-CoA carboxylation and
reduced futile ATP hydrolysis. Tests in vitro found that reconstituted
TaCo could generate the physiologically relevant glycerate
stereoisomer, suggesting that TaCo has the potential to be
successfully implemented in planta (Scheffen et al., 2021).
Realisation of TaCo in plants remains to be achieved, but the
results so far have provided a clear proof-of-principle for the
engineering of fully synthetic pathways to improve photosynthesis.

Technological innovations and new resources
Efforts to engineer photosynthesis are limited by available
technologies, particularly for stable nuclear transformation of
large, multigene constructs (>10 genes) into nuclear genomes
(Ort et al., 2015) and for the transformation of chloroplast genomes
(Bock, 2015; Jackson et al., 2021). However, introduction of point
mutations to plastome-localised RbcL via a restriction enzyme-
based system has been re-demonstrated with a 40% editing
efficiency (Lin et al., 2021). Improvements have also been made
to an already established proteoliposome system for testing of
photoprotective strategies (Nicol and Croce, 2021).
Development of open access, online resources is crucial for

photosynthesis research and related engineering strategies (Zhu
et al., 2020). This is particularly important for comparing results
between labs. For example, Rubisco kinetics were found to vary
significantly depending on the lab and method, with kcat and Kc

found to vary >200% in vascular plants (Iñiguez et al., 2021). A
normalised Rubisco kinetic database and methods for correcting
empirical values have therefore been proposed and will be
invaluable for future Rubisco engineering (Iñiguez et al., 2021).
Recently published genome and transcriptome data for species with
high photosynthetic efficiencies will also help to inform future
research (Xi et al., 2021; Garassino et al., 2022 preprint), as will an
analysis of photosynthetic and morphological traits in widely used
indica rice (Acevedo-Siaca et al., 2021).
Implementation of future design strategies is also likely to require

novel promoters with well-defined characteristics (strength, tissue
specificity, etc.). A comprehensive analysis of all core promoters in
Arabidopsis, maize and sorghum revealed determinants of promoter
strength (Jores et al., 2021). This allowed for the design of synthetic
promoters with chosen characteristics and informed the generation
of a computational model to predict promoter strength (Jores
et al., 2021). This is likely to make an impact in the future of
photosynthetic engineering projects, as well as in other biological
engineering contexts.

New hypotheses
The results produced in the period February 2021 to January 2022
have informed or challenged previous hypotheses. For example,
Hines et al. demonstrated that loss of stromal CA activity does not
result in photosynthetic defects, contrary to the hypothesis that
removal of stromal CA would significantly reduce mesophyll
conductance and consequently photosynthesis (Tholen and Zhu,
2011). There has also historically been confusion as to the role of IctB
in cyanobacterial CCMs. IctB was originally identified as a
bicarbonate transporter (Bonfil et al., 1998) but was subsequently
shown not to contribute to bicarbonate transporter loss-of-function
lines (Shibata et al., 2002; Xu et al., 2008). If IctB is not a bicarbonate
transporter, previous suggestions that ictB expression in C3 species
enhances photosynthesis by facilitating a CCM (Lieman-Hurwitz
et al., 2003; Simkin et al., 2015; Gong et al., 2015; Hay et al., 2017)

must be overlooking an alternative function. ictB expression in a C4

species should therefore recapitulate the enhanced photosynthesis
phenotype of ictB expression in C3 plants (Koester et al., 2021). In
agreement with this, transgenic RbcS::ictB maize lines had a 3.49%
increase in yield compared to controls in field trials, with the
increased performance attributed to enhanced carbohydrate
production (Koester et al., 2021). Yield increase was associated
with an increase in photosystem II operating efficiency, suggesting
that enhanced photosynthesis was responsible for the improvements
(Koester et al., 2021). These results support the hypothesis that IctB is
not a CCM bicarbonate transporter: a complete understanding of how
CCMs operate therefore remains lacking.

It has long been hypothesised that overexpression of Rubisco
could enhance photosynthesis; however, Rubisco overexpression
has been associated with a decrease in Rubisco activation and lower
Rca:Rubisco ratio (Suzuki et al., 2009; Suganami et al., 2018). Two
groups therefore recently tested the effect of Rubisco and Rca co-
overexpression. Although the rate of CO2 assimilation in Rubisco/
Rca-overexpressing rice lines (RBCS-RCA-ox) was similar to wild
type under ambient conditions, CO2 assimilation was enhanced in
RBCS-RCA-ox lines at 32–36°C (Suganami et al., 2021). Similar
results were found with the co-overexpression of OsRBCS and
ZmRCA in rice, with a 26% increase in dry biomass found in
transgenic plants compared with wild type when grown at 40°C (Qu
et al., 2021). In addition, Rubisco reactivation on shade–sun
transitions is known to be slow (Sassenrath-Cole et al., 1994;
Tanaka et al., 2019), providing an opportunity for engineering.
Notably, a recent paper that determined in vitro and in vivo Rubisco
deactivation half-times in cowpea found faster Rubisco deactivation
than previously predicted from wheat values (Taylor et al., 2022).
Furthermore, the speed of Rubisco response to sun–shade
transitions differed more than Rubisco induction on shade–sun
transitions, leading the authors to hypothesise that Rubisco
deactivation could be a new target for engineering (Taylor et al.,
2022). The significance of this finding will likely be tested in
transgenic plants in the future.

Future prospects
Despite the bleak outlook on future crop security, engineering
photosynthesis is a promising approach for improvement, particularly
in the light of the recent success of synthetic biology approaches.
Given that photosynthesis is a complex trait, it is challenging to
predict which strategy will yield the best result: it therefore seems
astute to continue developing all avenues of photosynthetic research
to ensure a robust strategy for sustainably safeguarding yields in a
changing climate. Indeed, engineering strategies are not mutually
exclusive, and a combined approach may prove to be the most
effective.
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