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Synthesizing controlled 
microstructures of porous media 
using generative adversarial 
networks and reinforcement 
learning
Phong C. H. Nguyen1, Nikolaos N. Vlassis2, Bahador Bahmani2, WaiChing Sun2, 
H. S. Udaykumar3 & Stephen S. Baek1,4*

For material modeling and discovery, synthetic microstructures play a critical role as digital twins. 
They provide stochastic samples upon which direct numerical simulations can be conducted to 
populate material databases. A large ensemble of simulation data on synthetic microstructures 
may provide supplemental data to inform and refine macroscopic material models, which might not 
be feasible from physical experiments alone. However, synthesizing realistic microstructures with 
realistic microstructural attributes is highly challenging. Thus, it is often oversimplified via rough 
approximations that may yield an inaccurate representation of the physical world. Here, we propose 
a novel deep learning method that can synthesize realistic three-dimensional microstructures with 
controlled structural properties using the combination of generative adversarial networks (GAN) 
and actor-critic (AC) reinforcement learning. The GAN-AC combination enables the generation of 
microstructures that not only resemble the appearances of real specimens but also yield user-defined 
physical quantities of interest (QoI). Our validation experiments confirm that the properties of 
synthetic microstructures generated by the GAN-AC framework are within a 5% error margin with 
respect to the target values. The scientific contribution of this paper resides in the novel design of the 
GAN-AC microstructure generator and the mathematical and algorithmic foundations therein. The 
proposed method will have a broad and substantive impact on the materials community by providing 
lenses for analyzing structure-property-performance linkages and for implementing the notion of 
‘materials-by-design’.

Developing digital twins of multi-phase microstructures is increasingly important in materials modeling and 
characterization1–3. While physical experiments on real specimens may provide valuable ground-truth data 
for calibration and validation of material models, the process of acquiring and experimenting with physical 
specimens is often costly and laborious. In addition, the distribution of physical properties in nature-obtained 
specimens cannot be controlled easily, which forces materials scientists to rely on a numerous “cut-and-try” 
experiments. Furthermore, the discrepancies in microstructural heterogeneity4 and the limited reproducibility of 
experiments5 raise a fundamental question on the practicality of relying solely on experimental data to calibrate 
high-fidelity models6.

Instead, direct numerical simulations (DNS) can serve as a valuable complement to lab experiments. In DNS, 
computational experiments are conducted on microstructures inferred from microscopic imagery, such as micro 
computed tomography (μCT)7 or generated from 2D scanning electron microscopy (SEM)8. However, the route 
of using DNS to obtain structure-property-performance (SPP) relationships is still hindered by the constraints 
placed by image acquisition. Typically, only a limited number of images spanning a limited sample size is available 
from images. The images may also pertain to specific formulations, as parameterized by the size distributions of 
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particles, defects such as voids and cracks, and other important morphological features. Hence, from a material 
design point of view, it would be desirable to cover a large and diverse collection of microstructures, spanning 
a broad regime of the configuration space. However, in reality, it is practically impossible to obtain such diverse 
samples, as there is no viable way to control the micro-morphology but to “cut-and-try”.

To overcome these limitations placed by available imaged datasets, there has been an increasing in the number 
of research activities involving stochastic microstructure reconstruction in the materials research community9. 
“Synthetic” microstructures can be generated from a large variety of approaches, including N-point correlation 
functions10, shape descriptors11, ellipsoid packing12, or Gaussian random fields13,14 with different sets of advan-
tages and limitations. High-order N-point correlation functions may theoretically generate microstructures with 
consistent statistics attributes; nevertheless, the high computational costs of those approaches are intractable. 
Meanwhile, Gaussian autocorrelation is often limited to the case where the Gaussian stochastic process can 
be completely characterized by their second-order statistics; as a result, constructing microstructures as non-
Gaussian fields may lead to more realistic reconstructed microstructures15. However, such a task is challenging 
in practice as it requires all the joint probability density functions to be determined or estimated. In brief, DNS 
performed on idealized synthetic images may not lead to inferred effective mechanical properties that are physi-
cally realistic and hence may only be valid for simple trend analyses8.

Machine learning (ML) based approaches have rapidly emerged as promising alternatives to overcome the 
limitations of traditional microstructure reconstruction methods16–18. In particular, convolutional neural net-
works (CNN) based deep learning (DL) approaches have been mostly investigated19. For example, Lubbers, Look-
man, and Barros20, and Li and colleagues21 utilized high-dimensional features encoded in a pre-trained CNNs 
to develop numerical representations of microstructure morphology. They employed the VGG network22, a type 
of CNN that is popularly utilized in computer vision applications, had been pre-trained using a generic image 
classification dataset. The authors discovered that the neural activations in response to a microstructural image 
input yielded accurate and detailed characterization of the complex morphology of microstructures (i.e. “neural 
style”) and, thus, could serve as a texture vector corresponding to a given microstructure image. Furthermore, by 
employing the optimization-based texture synthesis formulation of Gatys et al.23, in which the objective of the 
optimization is to create a synthetic image yielding a texture vector similar to that of a real microstructure, they 
demonstrated that a CNN could be used to generate realistic synthetic microstructures. However, a significant 
drawback of such an approach is that the resultant synthetic microstructures can span only small variations in 
the texture space, as they are bounded to look similar to the reference image. Further, the user has no control 
over the material properties of generated microstructures, and the practical limitations of “cut-and-try” experi-
ments still persist.

Recently, generative adversarial networks (GAN) based approaches for synthetic microstructure reconstruc-
tion have been drawing attention from the materials community. GAN is based on the competition between 
two neural network agents, namely generator and discriminator. In the context of synthetic microstructure 
reconstruction, the generator is a CNN that produces a synthetic microstructure image from a given stochastic 
noise, and the discriminator is another CNN that distinguishes if a microstructure image is synthetic or real. In 
principle, through the adversarial competition, the two randomly-initialized networks may eventually converge 
to a Nash equilibrium, in which synthetic microstructures generated by the generator are indistinguishable from 
real microstructures. Base on this idea, Chun et al.24 proposed a GAN architecture to parameterize the generator 
inputs so that the morphology of generated 2D microstructures could be controlled parametrically. The authors 
demonstrated that the GAN-based synthetic microstructures were more realistic and contained fewer artifacts 
compared to the outcomes of other CNN-based methods. However, many physical phenomena, including the 
microstructure deformation, the dynamic of fluid flow within a porous media, or the anisotropic material prop-
erties, cannot be adequately modeled by 2D microstructure images alone, rendering a need for the development 
of GAN to produce 3D synthetic microstructures25.

In the broader context of machine learning, there are 3D GAN solutions readily available to produce 3D 
models of common objects such as chairs, tables, and airplanes26–28. However, compared to these common objects, 
3D material microstructures contain more complex geometric and topological structures not only globally but 
also locally. In contrast to the fact that the global configuration or ‘style’ of geometry is predominantly the most 
important result, for the design of materials, not only the global morphology of the microstructure but also 
the local patterns that comprise the global morphology become critical. Therefore, unlike the common object 
GANs, microstructure GANs must be able to parameterize both local and global geometric and topological 
configurations.

There are a few approaches that were proposed to overcome the above issues of microstructure 3D GAN. 
For instance, Mosser et al.29 stabilized the training of 3D GAN by introducing the Gaussian noise at the input 
of the discriminator and applying label-switching which can weaken the discriminator during the early stages. 
In another work, Hsu et al.30 tried to address the above issues by applying Wasserstein GAN (WGAN) in which 
the Wasserstein loss function31 was used to train the discriminator. The Wasserstein distance (WD) has good 
training properties as it is more sensible than other common distance function applied for GAN loss, including 
the Total Variation (TV) distance, the Kullback-Leibler (KL) divergence, and Jensen-Shannon (JS) divergence31. 
Therefore, WD allows GAN to learn the probability distribution of complex shapes more efficiently. Moreover, the 
training of WGAN is also more stable as even at training completion of the discriminator, loss still can be provide 
to the generator; thus, the effort for balancing the generator and discriminator training is no longer required31. 
Kench and Cooper25 overcome the difficulty in training microstructure 3D GAN differently by employing a 
discriminator that takes 2D microstructures images sliced from 3D synthetic model as the input instead of the 
fully 3D ones. The method has shown successes in producing high-quality 3D synthetic microstructures of dif-
ferent types of isotropic materials.



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9034  | https://doi.org/10.1038/s41598-022-12845-7

www.nature.com/scientificreports/

Despite of few achievements, previous works on 3D GAN microstructures are short in several aspects. First, 
the output 3D microstructures are not scalable beyond their fixed size by designed architecture30. Few works has 
proposed the employment of fully convolution architectures to overcome the scalability problems29,32. However, 
as mentioned by Kench and Cooper25, during the training, the spatial dimension of the input latent vector is set 
to 1; therefore, there is no kernel overlap at the first layer of the generator network. As a result, the quality of the 
output synthetic microstructures is questioned due to distortion. The author proposed expanding the spatial 
dimension of input latent space during training, as similar to the approach by Chun et al.24, so as the correlation 
between latent variables at different spatial locations can be properly modeled. Nevertheless, due to the training 
strategy, the approach by Kench and Cooper is only applicable for isotropic materials. Moreover, in most previous 
works, the quantitative linkages between the GAN parameters and physical properties are remained unknown. 
As a result, solving the inverse microstructure design problem, i.e. tuning of GAN morphology parameters that 
yields synthetic microstructures with realistic effective mechanical properties, is still a time-consuming task and 
difficult to accomplish manually. There are a few existing gradient-free optimization approaches to overcome such 
limitations of the GAN-based generative design methods33. However, the efficiency and the robustness of these 
gradient-free optimization approaches are often limited by the complexity of the design space34,35. Alternatively, 
conditional generative networks, which formulates the design constraints as additional inputs to the network, 
could also be considered as a viable option to address the limitations of the previous GAN approaches36–38. How-
ever, the critical drawback of conditional generative networks is that it does not guarantee the design constraints, 
as there is no feedback loop for ensuring the constrained properties.

This research extends our prior GAN-based approach24 for 3D microstructures along with the introduction 
of Actor-Critic (AC) reinforcement learning to tune the morphology parameters. We first make a substantive 
extension to the GAN method of Chun et al.24 to enable the generation of realistic 3D microstructures with 
arbitrary size and introduce several solutions to overcome the instability in the training of 3D GAN. Conse-
quently, we augment the GAN model using the AC reinforcement learning model to create a new capacity to 
produce microstructures with desired target properties. The proposed method is validated on μCT scans of 
Bentheim sandstone, upon which we demonstrate that the GAN-AC framework is capable of generating visu-
ally and physically realistic microstructures. In addition, we also compare our GAN-AC framework with the 
Bayesian optimization (BO) to demonstrate its practical benefits over other conventional gradient-free design 
optimization approaches.

Methods
Overview.  As illustrated in Fig.  1, the goal of the proposed method is to generate a microstructure that 
yields targeted physical properties provided by the user. In our design framework, an AI design assistant, i.e. the 
actor network, tunes the input parameters for the 3D GAN, in an attempt to achieve targeted physical proper-
ties. Consequently, the 3D GAN generates a 3D synthetic microstructure accordingly and OpenPNM, an open-
source package for pore-network modeling39, performs analysis and evaluates the physical quantities of interest 
(QoI) of the synthetic 3D microstructure. The computed QoI are combined with targeted ones to be utilized by 
the critic network to evaluate how successful the actor’s action was in conforming to the targeted design goal. 
Finally, the actor network modifies its behavior, i.e. parameter tuning policy, based on the critic’s feedback, and 

Figure 1.   An overview of the proposed GAN-AC-based method. Initially, targeted QoI are provided by users. 
Consequently, the AI design assistant (the actor) starts to interact with the design environment by tuning input 
morphology parameters of the 3D-GAN generator for synthetic microstructure reconstruction. The properties 
of synthetic microstructures are estimated by DNS and sent to the value estimator (the critic) along with the 
targeted one to evaluate how good the design decision made the actor is. Based on the evaluation result, the 
actor’s policy will be refined to make better design decisions in the subsequent iteration. The training of the 
GAN-AC framework is completed with two steps: (1) train the 3D-GAN generator and (2) train the AC model. 
After training, the actor is retained for inference, while the critic is discarded.
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the iteration continues until the actor becomes capable of generating microstructures with physical properties 
close to the target.

Training of the proposed algorithm is accomplished in two stages. In the first stage, the 3D-GAN is trained 
on samples of real microstructure images. As will be discussed later, the generator network learns to generate 
synthetic microstructure images and the discriminator network learns to distinguish real microstructure images 
from synthetic microstructure images. After a number of iterations, when these networks reach to the stage 
when the discriminator network is no longer able to distinguish between synthetic and real microstructure, the 
training process is complete. Consequently, the discriminator network is discarded while the generator network 
is retained to be used for synthetic microstructure reconstruction.

In the second training stage, the AC model is trained to solve the inverse microstructure design problem. 
Over a number of training episodes, the actor learns and refines its policy to generate morphology parameters 
for the 3D-GAN generator based on given targeted properties, while the critic learns to assess the quality of syn-
thetic microstructures more accurately. Once trained, the critic network is discarded at the time of deployment.

Synthetic microstructure generation using GAN.  GAN has demonstrated abilities in generating 
more realistic microstructures compared to other CNN-based approaches24. Generally, GAN is trained via an 
adversarial competition (minimax game) of two neural networks, namely the generator G and the discriminator 
D . During the training process, the generator G learns to generate realistic images to deceive the discriminator 
and the discriminator D attempts to distinguish real images from generated images. The training objective, i.e. 
the loss function, can be written as follows:

Here, Pdata denotes the distribution of the real images and z is the input parameter given to the generator. In 
principle, G and D should converge to a Nash equilibrium, in which the discriminator D is no longer capable 
of distinguishing real images from generated images. However, in practice, termination criteria are empirically 
determined for different problems.

Chun et al.24 advanced the above idea of GAN into a spatially parameterized GAN architecture for generat-
ing 2D synthetic microstructure images. Despite of their successes with 2D microstructure images, it is not 
straightforward to extend the architecture to 3D microstructures, mainly due to the morphological complexity 
of 3D microstructures compared to 2D. First, the 3D convolution layers has a significantly larger number of 
weights (i.e. network parameters to train) than the 2D version, which consequently increases the dimensionality 
of the optimization problem as well as the computational burden. In addition, the heavier network forces the 
use of a smaller batch size, which results in a longer training time and unstable convergence due to inaccurate 
approximation of the gradients. Furthermore, because 3D microstructures are much more sophisticated, 3D 
GAN requires a deeper architecture (i.e. more layers) for an increased expressiveness, worsening the numerical 
complexity even further.

As a result, in the current work, we introduce adjustments to the GAN architecture by Chun et al.24, to address 
these issues when extending the method for 3D (Fig. 2). First, the number of convolutional blocks in both the 
generator, G , and the discriminator, D , is reduced from five to four to reduce the complexity of the architecture 
and thereby to enhance the computational efficiency. In addition, for the first three convolutional blocks, we 
added a stride-1 convolutional layer after each half-stride (stride-2 for the discriminator) convolution layer to 
enhance the expressiveness of the 3D-GAN. Moreover, batch normalization layers are added at the end of the first 
three building blocks in both the generator and the discriminator networks, beside the use of leaky ReLU layers 
to avoid vanishing/exploding gradients and enhance the stability of the training process. Finally, kernels of size 
3× 3× 3 are used for all convolutional layers. With the new proposed architecture, each block of the generator 
network scales the dimension of the incoming tensor by a factor of 2, resulting in 128× 128× 128 voxels as the 
final output for a given 8× 8× 8 input tensor. Meanwhile, the discriminator is a ‘mirror image’ of the generator 
and produces a 8× 8× 8 output tensor from a given 128× 128× 128 microstructure image.

Similar to the original architecture24, our generator interfaces with two types of input parameters, namely 
the global morphology parameters, � ∈ R

15 , and the local stochasticity parameters, ρ ∈ R
30 , defined at each loca-

tion of an 8× 8× 8 grid, resulting in a 8× 8× 8× (15+ 30) input tensor. During the training time, � , is kept 
constant across all 8× 8× 8 grid locations of the input tensor, while ρ , randomly varies across different grid 
locations. Since the input 8× 8× 8 grid is associated with 8× 8× 8 overlapping regions in the output image 
(receptive fields), the microstructure morphology within each output region is controlled by the first 15 global 
morphology parameters, and the consequent 30, randomly varying local stochasticity parameters. This setting 
promotes the GAN to generate the same morphology or “style” across all output regions according to � , while 
the local details could vary according to the randomly varying ρ.

In terms of training, ADAM40 optimizer with the learning rate of 0.0002 are used and all of data is normal-
ized from [-1,1]. Furthermore, unlike the traditional GAN loss function, we evaluate Eq. (1) at each voxel and 
average them over the spatial dimension. Hence, the new loss function is defined as:

where, Dj,i,k refers to discriminator’s prediction at voxel location (j, i, k). The application of the loss function as 
in Eq. (2) incentivizes the discriminator and the generator to scrutinize the details of microstructural patterns.

(1)min
G
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D
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[
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Inverse synthetic microstructure reconstruction using actor‑critic reinforcement learn-
ing.  The inverse synthetic microstructure reconstruction task can be modeled as a reinforcement learning 
problem, whereby agents learn to take optimal actions to maximize long-term expected reward from given states 
of the environment. In the case of inverse synthetic microstructure reconstruction, the agents’ action is a series 
of adjustments in design parameters with the target of achieving desired QoI. Additionally, a given state of the 
environment should include information on the current design parameters, the current and the targeted QoI. 
Generally, the environment is modeled as a Markov decision process (MDP), denoted as M = �S ,A,P ,R� . 
Here, S is the set of states st that the agent can experience and A is the set of actions at that the agent can take 
during its interaction with the environment. P : S ×A → S is a function which returns the probability over 
the state space, describing the likelihood of transition from the current state st to the future state st+1 under an 
action at . Finally, R : S ×A → R is a reward function that defines rewards the agent can receive from the state 
st transitioning under a particular action at . In the current microstructure reconstruction framework, the state st 
consists of the current global morphology parameters of the generator, �t , the properties of the current synthetic 
microstructure, Dt(�t) , and the targeted properties, D∗ . Also, the action at determines the adjustment values 
��t that are added to tune the material generator. The consequent state of the environment caused by action at 
under state st is st+1 = (�t +��t , Dt+1(�t +��t), D

∗) . The reward function gives the total difference between 
targeted and synthetic normalized properties:

In Eq. (3), D and D∗ are normalized QoI of synthetic and targeted microstructures with values varying 
between 0 and 1. Initially, relations between the states, the actor’s policy, and the critic are unknown. The goal of 
the reinforcement learning is to deduce those relations through repeated trial-and-error such that the optimal 
morphology parameters that yields the most realistic effective properties can be estimated.

The AC model we employ in this paper is comprised of two components. The ‘actor’ determines the action 
at to interact with the environment based on the observed state st via the policy function πθ (a|s) . The ‘critic,’ on 
the other hand, estimates the value function with given action (Q-value), Qπ (st , at) . Both actor and critic are 
modeled with deep neural networks. The objective is to learn an optimal policy which maximizes the cumulative 

(3)rt(at , st) =
∑

(D− D∗)

Figure 2.   An overview of the 3D GAN architecture.
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reward, particularly in this case, minimizing the difference between synthetic QoI and the targeted ones, which 
can be written as:

where dπ (s) is the stationary distribution of Markov chain for πθ . The problem of finding the optimal policy can 
be solved by utilizing policy gradient algorithm:

The AC algorithm is a well-known RL framework derived from a temporal different version of policy gradi-
ent where the strengths of both policy-based and value-based approaches are leveraged41. In the AC method, 
the two networks, πθ (s) and Qw(a, s) , are updated simultaneously during each training episode. While the actor 
adjusts parameters to find the optimal policy using Eq. (5), the critic adjust its parameters to minimize the dif-
ference between the function approximator Qw(a, s) and the true action-value function Qπ (s, a)42, such that the 
following is minimized.

(4)J(θ) =
∑

s∈S

dπ (s)
∑

a∈A

πθ (a|s)Q
π (s, a)

(5)∇θ J(θ) ∝
∑

s∈S

dπ (s)
∑

a∈A

Qπ (s, a)∇θπθ (a|s)

(6)Es∼dπ ,a∼πθ

[

(Qw(a, s)− Qπ (s, a))2
]
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As studied in the work of Konda and Tsitsiklis41, the AC method tends to converge more smoothly and have 
better training performance for a system with a large state space.

In addition, since the synthesized microstructures are controlled with continuous morphology variables, a 
deterministic policy gradient (DPG) algorithm42,43 is applied. Particularly, in DPG, the actor decides the action 
to interact with the environment by a deterministic policy, such a = µ(s) . As a result, the performance objective 
and the update scheme for both actor and critic are as follows:

Further, in this work, an off-policy AC method, which employs two different sets of actor-critic networks 
(behavior and target), is used. In off-policy AC, behavior networks take the role of exploration while the target 
ones take the role of learning to find the optimal morphology parameters. The application of off-policy AC 
brings two main advantages: (1) full trajectories are not required and the “experience replay” can be performed, 
and (2) the action sampling follows a behavior policy which is different from the target policy, providing better 
exploration. The training and inference processes are described clearly in Algorithms 1 and 2. In addition, the 
architecture of the proposed properties-driven morphology control utilizing AC algorithm is as in Fig. 3 and 
Gym44 is utilized for implementation. During training, the number of training episodes is set to 1000 with each 
episode containing 32 design iterations. Also, a total of 32,000 “experiences” can be saved in the replay buffer. 
A mini-batch size of 64 is used to update both actor and critic network using the ADAM optimizer40. Once the 
training is complete, the ‘target actor’ and ‘target critic’ are used for inference.Moreover, as similar to the training 
settings, the maximum of 32 design iterations are also set for the inference described in Algorithm 2.

Results and discussion
Datasets.  To test our microstructure reconstruction framework, we used a micro computed tomography (CT) 
scans data of Bentheim sandstones (BM_B1) provided by our colleague (Prof. Teng-fong Wong) as the training/
validation data. The voxel size of the original data was 704× 678× 500 , from which 256× 256× 256 sub-vol-
umes were sampled at random positions and then coarsen into 128× 128× 128 . The resolution of the coarsened 
data is 8 micron per voxel and the size of representative elementary volume is 1024µm× 1024µm× 1024µm.

(7)J(θ) =

∫

S

ρµ(s)Q(s,µθ (s))ds

(8)δt = [rt + γQw(st+1, at+1)− Qw(st , at)]
2

(9)wt+1 = wt + αwδt∇wQw(st , at)

(10)θt+1 = θt + αθ∇aQw(st , at)∇θµθ (s)|a=µθ (s)
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Evaluation metrics.  We use the following statistical, geometric, and topological attributes of the generated 
images and the real microstructures to measure whether the synthetic microstructures possess topological and 
physical properties consistent with the real specimen.

Kullback–Leibler divergence (KLD)45 is a statistical distance that can be used to measure how the distribu-
tion of syntehtic data y ∼ Pg differs from that of real data x ∼ Pr:

where Pr(x) and Pg (x) are derived empirically using e.g., Kernel Density Estimation:

(11)KLD(P||Q) = Ex∼Pr

[

log
Pr(x)

Pg (x)

]

,

Figure 3.   A schematic overview of the morphology control via an AC model. The design problem is formulated 
as a sequential process, adjusting global parameters at each step so that the synthetic microstructure transforms 
the morphology as desired. During the training process, actor network repeatedly gives design decisions based 
on its policy to interact with the environment. Physical properties of synthetic microstructures are computed 
in the environment and given as feedback to both actor network and critic network. The critic network then 
evaluates how successful the actor network’s action was in conforming the targeted properties. Finally, the 
actor network utilizes the evaluation from the critic network to adjust its policy in order to generate synthetic 
microstructures with physical properties closer to the targeted ones. Once the training is finished, the critic 
network is discarded and only the actor network is retained to perform the design task.



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9034  | https://doi.org/10.1038/s41598-022-12845-7

www.nature.com/scientificreports/

where K(x, x′; h) ∝ −
||x − x′||2

2h2
 is the Gaussian kernel function and xi ∈ {x1, x2, . . . , xN } is a sample in the data 

set.
Mean Maximum Discrepancy (MMD)46 measures the disimillarity between two probability distributions 

using samples drawn independently from each distribution. Given a finite set of synthetic microstructures 
x = {x1, x2, . . . , xm} ∼ Pr and a finite set of real microstructures y = {y1, y2, . . . , yn} ∼ Pg , the MMD of the 
two sets is defined as:

Earth Mover’s Distance (EMD)31 is the minimum mass displacement to transform one distribution into the 
other, which is also known as the Wasserstein distance:

where f : RD → R is a Lipschitz continuous function, called the Wasserstein critic. In practice, f can be modeled 
as a neural network with clipped weights to have bounded derivatives, which is trained to derive high values at 
real samples and low values at generated samples, i.e. maximize:

Pore space measurements The pore space metrics measures the size and the tortuosity of the pore space 
and include the total porosity (ratio between the size of the void space and total volume) the specific surface area 
(the total area divided by the total volume). The total porosity is computed by the total number of void voxels 
in the cubic image divided by the size of the cube. The specific surface area is estimated by counting the total 
number of voxels that are at the interface between the void and solid constituent divided by the total volume of 
the cubic image.

Effective permeability The effective permeability of the GAN-generated micro-structure is the last and the 
most important metric that measures whether the GAN-generated micro-structures mimics the real micro 
structures. In brief, the effective permeability of a given porous medium to a fluid phase (oil, water, gas) is the 
ability of that phase to flow inside that medium given a hydraulic gradient47. In this work, the effective perme-
ability is estimated with OpenPNM39.

Topology measurements The topology metrics measure is designed to measure the topological similarity of 
the pore connectivity graph generated from the GAN and those obtained from micro-CT imaging. To generate 
the connectivity graph, an open source software called PoreSpy48 is used to convert the binary images into 
weighted graphs and the properties of the weighted graphs are measured. The definition of these graph measures 
are listed below. They are calculated using the open-source software NetworkX49 for exploration and analysis 
of graph networks.

•	 Degree assortativity    The degree assortativity coefficient measures the similarity of the connections in a 
graph with respect to the node degree.

•	 Graph transitivity    The graph transitivity is the fraction of all possible triangles present in the graph over the 
number of triads. Possible triangles are identified by the number of triads—two edges with a shared vertex.

•	 Graph density    The density for undirected graphs is defined as d = 2m
n(n−1) , where n in the number of nodes 

and m is the number of edges of the graph.
•	 Average clustering    The average clustering coefficient of the graph is defined as C = 1

n

∑

v∈G cn , where n in 
the number of nodes. The clustering coefficient cn of node n is defined as cn = 2T(n)

deg(n)(deg(n)−1) , where T(n) is 
the number of triangles passing through node n and deg(n) is the degree of node n.

•	 Efficiency    The efficiency of a pair of nodes is defined as the reciprocal of the shortest path distance between 
the nodes. The local efficiency of a node in the graph is the average global efficiency of the subgraph induced by 
the neighbours of the node. The average local efficiency, used in this work, is the average of the local efficiency 
calculated for every node in the graph.

Evaluation of 3D‑GAN synthetic microstructures.  Figure 4 illustrates the comparison between the 
real and synthetic microstructures. By observing both 3D models and corresponding 2D slices, the synthetic 
microstructure is similar to the real microstructure as it is difficult to distinguish between them. Moreover, the 
shapes of voids and crystals of synthetic microstructures are also diverse and realistic, thus, showing that the 
proposed 3D-GAN-based material generator is capable of emulating the complex micro-geometry of natural 
materials. In addition, Fig.  5 shows the effects of the global morphology parameters and the local stochasticity 
parameters. As shown in the figure, the global morphology parameters result in the change in overall “style” of 
the synthetic microstructures, whereas the local stochasticity parameters create minor local variations in the 
microstructure morphology.

(12)p(x) =

n
∑

i=1

K(x, xi; h)

(13)MMD =
[

Ex∼Pr ,y∼Pg

[

K(x, x′)− 2K(x, y)+ K(y, y′)
]

]1/2
.

(14)W(Pr , Pg ) ∝ max
f

Ex∼Pr

[

f (x)
]

− Ex∼Pg

[

f (x)
]

,

(15)Ŵ(xtest , xg ) =
1

N

N
∑

i=1

f̂ (xtest [i])−
1

N

N
∑

j=1

f̂ (xg [j])
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In addition, Table 1 quantitatively evaluates the quality of GAN-generated microstructures. For this compari-
son, we prepared two disjoint sets of real microstructures and a set of synthetic microstructures. Each of those 
three sets had 100 randomly selected samples. We computed the KLD, MMD, and EMD distances between the 
statistical distributions of real microstructures and synthetic microstructures. The statistical distance between the 
two sets of real microstructures were also computed to be used as the baseline for comparison. Results reported 
in Table 1 indicate that there is only negligible difference between real and synthetic microstructures, in terms 
of their statistical distributions.

Figure 4.   Comparison of 2D slices and 3D volume renders of ground truth microstructures and GAN-
generated microstructures. In terms of the visual quality, the synthetic microstructures look realistic such that it 
is difficult to distinguish between the real and synthetic microstructures. Futher, the synthetic voids and crystals 
also look realistic and diverse.

Figure 5.   Effects of the local stochasticity parameter ρ . All images are 2D slices of synthetic microstructures 
taken by cutting planes at the same height position. Microstructures in the same row have the same morphology 
parameters but different local stochasticity parameters. As can be seen, their overall “style” is maintained and 
there are only subtle differences between microstructures slice images.
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Furthermore, we also validated GAN-generated microstructures using several physics-based metrics, includ-
ing porosity, specific surface area, permeability, average clustering, graph density, degree assortativity coefficient, 
local efficiency, and graph transitivity. As reported in Fig. 6, physical properties of synthetic microstructures are, 
in general, in a good agreement with those of the real microstructure data and the distributions of the proper-
ties coincide with each other. Moreover, it is worth noting that the proposed 3D-GAN generator can generate 
synthesized microstructures with porosities that cover the range between 0.1 and 0.25 which is larger than that 
of the ground truth which only covers porosities between 0.18 to 0.25. This extrapolation capacity could be 
helpful on extending the material databases for characteristics provided that the micro-structural attributes of 
RVE outside the training data range remain sufficiently similar6.

Table 1.   Evaluation of synthetic microstructures generated by GAN.

Metric Synthetic–real Real–real

Kullback–Leibler divergence (KLD) 0.0235 0.0197

Maximum mean discrepancy (MMD) 0.0190 0.0175

Earth mover’s distance (EMD) 0.0799 0.0899

Figure 6.   Quantitative evaluation of 3D synthetic microstructures. Pore space measurements, topology 
measurements, and permeability are plotted w.r.t porosity. (a) specific surface area, (b) log permeability 
(md), (c) average clustering, (d) graph density, (e) degree assortativity coefficient, (f) local efficiency, and 
(g) graph transitivity. As seen in the plots, there is an agreement between physical properties of ground 
truth microstructures and synthetic microstructures; thus, proving the validity of the proposed 3D-GAN 
microstructure generator.
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Evaluation of the GAN‑AC framework for synthetic microstructure reconstruction.  The vali-
dation of the GAN-AC framework is conducted via a microstructure reconstruction problem with targeted 
QoI including porosity, specific surface area, and effective permeability. The 3D-GAN model is utilized as the 
microstructure generator and an AC model, trained by using Algorithm 1, is attached to control the morphology 
parameters of the generator. The inverse design process follows Algorithm 2.

Figure 7 shows some examples of synthetic microstructures generated by the proposed GAN-AC framework 
with their physical properties. Additionally, the referenced microstructures with targeted physical properties were 
added for comparison. Generally, although synthetic microstructures presented in Fig. 7 are visually different 
with the targeted ones, their physical QoI are relatively similar. Moreover, Fig. 8 illustrates the quantiative evalu-
ation of 500 synthetic microstructures by comparing the synthetic and targeted QoI. As illustrated, the synthetic 
microstructures can exhibit the properties of targeted ones with the average error of 2.54, 3.51, and 4.06% for 
porosity, specific surface area, and effective permeability, respectively. These evaluation results demonstrate the 
validity of the GAN-AC framework in terms of inverse microstructure design. We have also made 10 synthetic 
3D microstructures available via an open-access data repository, Mendeley data.

Comparison with other design optimization approaches.  Bayesian optimization (BO) is a well-
known gradient-free optimization technique that is popularly applied for solving inverse design problems in 
material science33,50. Acknowledging its state of the art performance, we use BO as a reference of comparison to 
further investigate the performance of our proposed GAN-AC framework. For the implementation of BO with 

Figure 7.   Visualization of synthetic microstructures generated by the proposed GAN-AC framework (top) and 
their corresponding targeted microstructures (bottom). The 3D voxelized data has been made available to public 
for inspection and third-party validation.

Figure 8.   Comparison between targeted and generated properties. On the test conducted on 500 examples that 
were set aside during training, synthetic microstructures generated by the GAN-AC framework exhibited the 
targeted physical properties with extremely small difference, 2.54, 3.51, and 4.06% for porosity, specific surface 
area, and effective permeability, respectively.
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the GAN microstructure generator, we employ the following steps. First, an initial dataset is created by sampling 
within the 15-dimensional (global parameters) GAN latent space. Second, the QoIs of the initial microstructures 
are computed and the Gaussian process model is fit to the initial data. From the predicted uncertainty of the 
Gaussian process model (acquisition function), the next sampling point is determined. Finally, the QoIs of the 
new sample are estimated and added to the database for updating the Gaussian process model and the current 
solution. The same process is repeated until the convergence criteria is met or the algorithm reach the maximum 
number of iterations.

As similar to the AC method, BO also targets to minimize the objective function in Eq. (3) which measures 
the difference between desired and generated QoIs. We selected expected improvement (EI) as our acquisition 
function to balance between exploitation and exploration50. In addition, the maximum number of iterations is 
set to 32 to make its working condition similar to that of the GAN-AC model during inference. Finally, since 
the performance of BO is highly affected by intital sampling, we examined two different sampling strategies, 
including Latin Hypercube sampling (BO-LHS) and random uniform sampling (BO-uniform). In addition, the 
number of initial samples is set to 5 empirically, to assure the best quality of BO solution with the lowest number 
of objective function estimations.

Figure 9 shows the performance comparison between AC and BO. As can be observed from Fig. 9a, both 
the AC and BO exhibited a similar performance in terms of the converged minimum. In particular, while AC-
computed minima were 0.0836± 0.0479 , the BO-uniform-computed minima were 0.0934± 0.0450 and BO-
LHS-computed minima were 0.0842± 0.0407 , for 50 different optimization tasks with various target QoIs. In 
addition, despite of requiring 1000 training optimization instances, AC was significantly (about 3 times) faster 
in terms of the number of objective function evaluation, in which AC only required the average of 8.7 func-
tion evaluations whereas BO-uniform required 23.7 function evaluations and BO-LHS required 24.4 function 
evaluations on average.

In fact, it is widely accepted that reinforcement learning approaches in general are more efficient and scalable 
than conventional design optimization approaches (e.g., BO or genetic algorithm)34,35,51. The problem of generat-
ing microstructures is highly complex because the wide variation of grain/pore sizes, aspect ratios, orientations, 
and many other morphological attributes spans a vastly large design space. While traditional optimization 
methods are often limited by the complexity of the design problems34, the proposed GAN-AC framework can be 
significantly faster than traditional optimization algorithms during the inference time, even though the training 
could be computationally demanding and data-intensive. Therefore, for design optimization applications where 
the same type of material needs to be repetitively optimized for different design targets, reinforcement learning 
approaches provide a substantial advantage over traditional optimization algorithms34,35. In addition, reinforce-
ment learning approaches are problem-aware, as opposed to the traditional optimization approaches that are 
problem agnostic. Reinforcement learning (RL) algorithms can learn the “landscape” of the design space, and 
they become better at searching for the nearest optimum as they accumulate more experiences, making it more 
generalized and is suitable for repetitive optimization tasks52. Also, it is worth to note that, the generalizability 
of the proposed GAN-AC method is only stopped at unseen optimization tasks where only targeted QoI values 
are different. For the design problems whereby different types of targeted QoI or different materials are required, 
BO is still more beneficial as RL requires a retraining of the model. Although methods such as transfer learn-
ing can reduce the effort of retraining RL algorithms, their effectiveness is still need to be further investigated.

Conclusions
In this work, a novel method for inverse synthetic microstructure reconstruction utilizing 3D-GAN and off-
policy deterministic AC reinforcement learning is proposed. Experimental studies on a dataset collected from 
X-ray CT scans of a Bentheim sandstone justified the validity of the proposed method. As reported, the synthetic 
microstructures are diverse and realistic in qualiative and quantiative comparison with the real microstructures. 

Figure 9.   Performance comparison between our GAN-AC framework and a conventional optimization 
approach (Bayesian optimization; BO). (a) While the quality of the solution is on par compared to BO with 
Latin Hypercube sampling and marginally better than BO with random uniform sampling, (b) the AC method 
is significantly more efficient than BO with both initial sampling strategies (about three times) in terms of the 
number of objective function evaluation.
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Further, the application of the AC model also enables the controllability on the physical properties of synthetic 
microstructures. The quantiative analysis of three given physical properties, including porosity, specific surface 
area, and effective permeability, results in a good agreement between synthetic and targeted physical QoI. The 
results demonstrate the capability of the proposed method in mimicking original microstructures both geo-
metrically and physically.

For our future work, there are a few extensions to be made to make the GAN-AC framework more practi-
cal and usable. For example, a multi-agent AC model with multiple actors could be adopted to accelerate the 
explorations. Multi-actor models with decentralized policies and shared experience, for instance, may enable 
more effective exploration-exploitation than the current single-actor counterpart. Furthermore, we may con-
sider capturing the alestoric and epistemic uncertainties of real microstructures. Uncertainty quantification is 
necessary in practice, as the process-structure-property relationships of real-world materials incorporates a great 
deal of stochasticity, arising from manufacturing, measurement, and modeling errors53. Such randomness could 
be addressed by solving a stochastic inverse problem whereby a stochastic solution, instead of a deterministic 
one, is derived. In addition, the manufacturability, or more broadly, the process-structure relationships were not 
included in the scope of this current work, which must be further explored as an immediate future work. Finally, 
physics-informed machine learning, in which the neural network architecture is designed to fulfill the relevant 
physical constraints (e.g. material symmetry, invariance properties), can also be applied to further assure the 
validity of the synthetic microstructures.

Data availability
The data set generated and analyzed during the current study are available in Mendeley Data (https://​data.​mende​
ley.​com/​datas​ets/​tp9ny​nzc34/1).
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