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Purpose: The objective is to create a comprehensive model that integrates clinical, semantic, and radiomics 
features to forecast the 5-year progression-free survival (PFS) of individuals diagnosed with non-distant meta
static Nasopharyngeal Carcinoma (NPC). 
Methods: In a retrospective analysis, we included clinical and MRI data from 313 patients diagnosed with primary 
NPC. Patient classification into progressive and non-progressive categories relied on the occurrence of recurrence 
or distant metastasis within a 5-year timeframe. Initial screening comprised clinical features and statistically 
significant image semantic features. Subsequently, MRI radiomics features were extracted from all patients, and 
optimal features were selected to formulate the Rad-Score.Combining Rad-Score, image semantic features, and 
clinical features to establish a combined model Evaluation of predictive efficacy was conducted using ROC curves 
and nomogram specific to NPC progression. Lastly, employing the optimal ROC cutoff value from the combined 
model, patients were dichotomized into high-risk and low-risk groups, facilitating a comparison of 10-year 
overall survival (OS) between the groups. 
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Results: The combined model showcased superior predictive performance for NPC progression, reflected by AUC 
values of 0.84, an accuracy rate of 81.60%, sensitivity at 0.77, and specificity at 0.81 within the training group. 
In the test set, the AUC value reached 0.81, with an accuracy of 74.6%, sensitivity at 0.82, and specificity at 0.66. 
Conclusion: The amalgamation of Rad-Score, clinical, and imaging semantic features from multi-parameter MRI 
exhibited significant promise in prognosticating 5-year PFS for non-distant metastatic NPC patients. The com
bined model provided quantifiable data for informed and personalized diagnosis and treatment planning.   

1. Introduction 

Nasopharyngeal Carcinoma (NPC) manifests as a heterogeneous 
malignant tumour originating from the nasopharyngeal mucosal 
epithelium, demonstrating notable sensitivity to radiotherapy [1]. In the 
year 2020, the Global Cancer Centre reported 133,354 newly confirmed 
cases of NPC, with over 70% occurring in Southern China and Southeast 
Asia [2]. Given its heightened responsiveness to radiotherapy and the 
anatomical constraints of the nasopharynx, radiotherapy remains the 
primary treatment modality for individuals afflicted with non-distant 
metastatic NPC [3]. 

Amidst the progressions in medical equipment, the continual evo
lution of radiotherapy technology, and the widespread integration of 
artificial intelligence, particularly the prevalent adoption of Intensity- 
Modulated Radiotherapy (IMRT) in NPC [4,5], patients have entered 
an era of prolonged survival. However, the incidence of distant metas
tasis remains notably high at 20%~25% [5], with some advanced pa
tients facing a 5-year survival rate of approximately 60%~85% [6]. 
Consequently, recurrence and distant metastasis persist as primary 
contributors to therapeutic failures [7,8]. As NPC advances, it presents a 
multitude of clinical challenges. Chiefly, the clinical attributes of 
recurrent and metastatic NPC are distinct, with around 22% of locally 
recurrent patients and 33% of those with distant metastases showing no 
clinical symptoms [9,10]. Furthermore, over 70% of local recurrences 
are in advanced stages, rendering rescue interventions challenging [11]. 
Secondly, different medical institutions adhere to varying monitoring 
intervals, often leading to suboptimal utilization of medical resources or 
delayed diagnosis of recurrences and distant metastases for certain pa
tients [10]. Presently, while NCCN guidelines emphasize pre-treatment 
imaging methods for detecting recurrences and metastases, the ESMO 
guidelines lack detailed recommendations. Therefore, early prognosti
cation of recurrence and distant metastasis in NPC patients, coupled 
with the enhancement of patient stratification and the formulation of 
personalised and precise treatment strategies based on risk factors and 
failure patterns, stands as pivotal for improving therapeutic efficacy and 
extending the survival duration of NPC patients, thereby occupying a 
central role in clinical patient management. 

The TNM staging system serves as the definitive metric for assessing 
the prognosis of NPC. However, current research indicates that reliance 
solely on anatomy-based TNM staging falls short in providing precise 
clinical guidance [12–14]. Notably, the invasion of the carotid artery 
(CAI) has emerged as a significant prognostic indicator for specific 
malignancies in the head and neck region [15,16]. In the context of NPC, 
the impact of the primary tumour extending to the carotid sheath or the 
invasion of the carotid sheath by metastatic lymph nodes has been un
equivocally substantiated [17,18]. 

In recent years, radiomics has gained traction as a method to 
investigate tumour heterogeneity. It extracts textural attributes from 
medical images, screens these attributes, and constructs models to assess 
tumour heterogeneity and biological characteristics. This yields quan
titative parameters for clinical use, enhancing diagnosis, distinguishing 
between different tumour types, and predicting individual outcomes, 
thereby providing more personalised treatment options for cancer pa
tients. Based on MRI radiomics, it has demonstrated higher value in 
various studies related to the diagnosis and differential diagnosis of head 
and neck tumours [19], risk stratification [20], prognosis prediction 
[21], and survival application [22]. The nomogram serves as a reflection 

of tumour space heterogeneity and assumes the role of a novel 
biomarker [23–25]. 

This study sought to leverage clinical and multi-parameter MRI im
ages of non-metastatic NPC to construct 5-year PFS models encom
passing clinical-image semantic features, radiomics, and their 
combination, with the aim of exploring their predictive potential. Pa
tients were categorised based on the optimal model, and the 10-year OS 
rates among different risk groups were juxtaposed, thereby providing a 
quantitative foundation for the clinical treatment strategies of NPC. 

2. Materials and methods 

2.1. Materials for clinical cases 

This study has obtained approval from the local research ethics 
committee (approval number: NO.20220722/08/01/002). Given its 
retrospective nature, individual informed consent is not obligatory. The 
study protocol adheres to the Helsinki Declaration and is executed in 
accordance with relevant guidelines and regulations. A total of 517 
patients diagnosed with stage I-IVa Nasopharyngeal Carcinoma (NPC) 
were compiled from the affiliated Oncology Hospital of the Chinese 
Academy of Sciences between June 2012 and December 2016. The in
clusion criteria comprised: 1) patients with histopathologically 
confirmed NPC; 2) patients classified as stage I-IVa according to the 
2017 AJCC eighth edition; 3) age not less than 18 years, with a follow-up 
duration of at least 60 months, who received complete Intensity- 
Modulated Radiotherapy (IMRT) treatment; 4) patients with bulky 
NPC who underwent pre-treatment MRI scans, including transverse T1- 
weighted imaging (T1WI), fat-suppressed T2-weighted imaging (FS 
T2WI), and fat-suppressed contrast-enhanced T1-weighted imaging (FS 
CE-T1WI), with no pronounced artefacts. Patients who continued to 
progress after treatment were not encompassed in our investigation. 

According to the new eighth edition of the AJCC staging system, all 
patients were reclassified into new stages. The process of patient selec
tion and categorisation is illustrated in Fig. 1. 

Demographic information, including sex, age, pathological type, T 
stage, N stage, induction chemotherapy (IC) regimen, treatment dura
tion, and synchronous chemotherapy course, was meticulously 
collected. 

2.1.1. Treatment and follow-up 
All enrolled patients underwent 0–3 cycles of induction chemo

therapy, comprising either the docetaxel + cisplatin + 5-fluorouracil 
(TPF) or cisplatin + 5-fluorouracil (PF) regimens. Subsequently, 0–2 
cycles of concurrent chemotherapy were administered three to four 
weeks after the completion of induction chemotherapy. All patients 
underwent intensity-modulated radiotherapy (IMRT). The prescribed 
radiation dose for the nasopharyngeal primary lesion planning target 
(PGTVnx) ranged from 63.0 to 70.8 Gy, and for the lymph node plan
ning target (PGTVnd) it ranged from 60.0 to 72.1 Gy. Recurrence and 
metastasis were defined as new pathologically confirmed NPC tumours 
appearing six months post-radiotherapy. In cases where pathological 
evidence was unavailable, recurrence and metastasis were identified 
through MRI, SPECT, CT, or ultrasound examination, in conjunction 
with clinical multidisciplinary consultation evaluation. 

Following treatment completion, patients underwent follow-up 
evaluations every 1–3 months during the initial two years, biannually 

Y. Xi et al.                                                                                                                                                                                                                                        



European Journal of Radiology Open 12 (2024) 100543

3

in the subsequent 2–3 years, and annually thereafter. The primary 
endpoint was the 5-year progression-free survival (PFS) rate for all pa
tients, while the secondary endpoint was the 10-year OS rate. Endpoint 
calculation commenced from the treatment initiation date to the 
occurrence of the first defined event or the latest follow-up visit, which 
was conducted until February 23, 2023. 

2.2. MR inspection square method 

MR images were obtained using two distinct MR scanners, specif
ically Siemens Magnetom Symphony 1.5 T and Siemens Skyra 3.0 T. 
Cross-sectional T1-weighted images (T1WI) and fast spin-echo T2- 
weighted images (fs T2WI) were initially acquired. Subsequently, axial 
fast spin-echo contrast-enhanced T1-weighted images (fs CE-T1WI) 
were obtained following the administration of a gadolinium-based 
contrast agent at a dosage of 0.01 mmol/kg. While recommendations 
for neck MRI slightly varied, the protocol primarily comprised the 
following parameters: 1) axial T1WI: TR/TE 1700–1800 ms/910 ms, flip 
angle of 90◦, matrix of 256 × 168, slice thickness of 5.00 mm, and slice 
spacing of 1.00 mm; 2) axial fs T2WI: TR/TE 5700–6360 ms/4995 ms, 
flip angle of 90◦, matrix of 256 × 168, slice thickness of 5.00 mm, and 
slice spacing of 1.00 mm; 3) axial fs CE-T1WI: TR/TE 450–605 ms/ 
8.89 ms, flip angle of 90◦, matrix of 256 × 168, slice thickness of 

5.00 mm, and slice spacing of 1.00 mm. 

2.3. MRI semantic features 

All MR images underwent independent review by two experienced 
head and neck radiation physicians with 8 and 15 years of experience, 
respectively. Relevant clinical information, such as cranial nerve palsy 
and lymph node size, was considered during assessment. Tumour in
vasion of the internal carotid artery, external carotid artery, and com
mon carotid artery, as well as cervical lymph nodes, was evaluated based 
on radiological criteria from established sources [18,26]. To assess 
inter-rater reliability for cervical vessel sheath involvement by tumours 
and lymph nodes, after a three-month interval, one of the radiologists 
(XYZ) re-evaluated the cases, and Cohen’s kappa coefficient was 
calculated for evaluation. 

2.4. Tumour segmentation, radiomics feature extraction, and selection 

MRI Preprocessing and Image Segmentation: ① Acquisition of 
DICOM images for pre-treatment nasopharyngeal MR scans was con
ducted from the Picture Archiving and Communication System (PACS) 
of the hospital for each patient. ② Manual layer-by-layer segmentation 
of primary nasopharyngeal carcinoma (NPC) tumours on T1-weighted 

Fig. 1. The case screening process for the progressive group and the non-progressive group involved the screening of 203 and 110 eligible cases, respectively.  
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imaging (T1WI), fast spin-echo T2-weighted imaging (fs T2WI), and 
contrast-enhanced fast spin-echo T1-weighted imaging (fs T1WI+C) was 
performed using ITK-SNAP software (version 3.8.0). The resulting de
lineations were stored as regions of interest (ROIs). This segmentation 
task was carried out by two senior radiation department therapists, each 
possessing 8 and 15 years of diagnostic experience in head and neck 
radiology. Inter- and intra-observer agreement was evaluated using 
intra-class correlation coefficients (ICCs). 

Image Preprocessing, radiomics Feature Extraction, and Selection: 
The original images, along with their corresponding delineated ROIs, 
were imported into the uAI Research Portal software. Initially, the 
original images underwent normalization, followed by the extraction of 
radiomics features.Radiomics features were derived from distinct 
groups, encompassing First Order, Shape, Gray Level Co-occurrence 
Matrix (GLCM), Gray Level Dependence Matrix (GLDM), Gray Level 
Size Zone Matrix (GLSZM), Gray Level Run Length Matrix (GLRLM), and 
Neighbourhood Gray Tone Difference Matrix (NGTDM). Various filters, 
including Original, Laplacian of Gaussian (LoG), wavelet, Additive 
Gaussian Noise, Box Mean, Binomial Blur Image, Box Sigma Image, 
Normalize, Laplacian Sharpening, Discrete Gaussian, Mean, Speckle 
Noise, Recursive Gaussian, and Shot Noise, were applied, resulting in the 
extraction of 2286 features from each sequence. Subsequently, the 
dataset was partitioned into a training cohort (TC) and a test cohort (VC) 
in an 8:2 ratio through random assignment. Employing the maximum 
relevance minimum redundancy (mRMR) algorithm, 20 features were 
retained based on their maximum correlation and minimum redun
dancy. Following this, the least absolute shrinkage and selection oper
ator (LASSO) regression was applied to further reduce the 
dimensionality of each feature, ultimately yielding the statistically sig
nificant radiomics signature referred to as Rad-Score. The formulae for 
feature extraction and model development are detailed in 
https://pyradiomics.readthedocs.io/en/latest/features.html#. The pre
dictive performance of the models was assessed by calculating the Area 
Under the Curve (AUC), accuracy, sensitivity, specificity, positive pre
dictive value (PPV), and negative predictive value (NPV) separately for 
the training set and test set. 

2.5. Model establishment, verification, and analysis 

Statistical analysis was performed using version and version Med
Calc software 19.1 of MedCalc and 4.2.1 of R software statistical soft
ware were employed for the analyses. Measurement data adhering to a 
normal distribution were expressed as mean ± standard deviation 
(" ± s"), and inter-group comparisons were executed using the two in
dependent samples t-test. In instances where measurement data devi
ated from a normal distribution, presentation took the form of median 
(interquartile range) [M (P25 and P75)], and inter-group comparisons 
were conducted using the Mann-Whitney U test. The χ2 test was utilised 
for the comparison of categorical data between groups. The radiomics 
model was constructed based on the Rad-score. To discern independent 
risk factors for the progression of NPC patients, multivariate logistic 
regression analyses were undertaken on potential predictors, encom
passing sex, age, pathological type, T stage, N stage, induction chemo
therapy regimen and duration, simultaneous chemotherapy course, and 
invasion of the carotid sheath by the tumour and lymph nodes. The 
identified independent risk factors, along with the Rad-Score, were 
amalgamated to formulate a comprehensive model. Model goodness-of- 
fit was assessed through the Hosmer-Lemeshow test. Receiver Operating 
Characteristic (ROC) curves were crafted, and a nomogram was devel
oped to prognosticate NPC progression. The efficacy of each model was 
evaluated using the Area Under the Curve (AUC), with AUC values 
compared among different models through the Delong test. The optimal 
cut-off value was determined based on the AUC of the combined model. 
Subsequently, patients were categorised into high and low-risk groups, 
and 10-year overall survival (OS) curves were generated for all patients. 

3. Results 

3.1. Clinical characteristics selection 

Based on the occurrence of recurrence or distant metastasis within a 
5-year timeframe among NPC patients, they were categorised into two 
distinct groups: the progressive group (n = 110 cases) and the non- 
progressive group (n = 203 cases). The Kappa test yielded values of 
0.920 and 0.879 for cervical artery tumour invasion and cervical artery 
lymph node invasion, respectively. Similarly, the Kappa test recorded 
values of 0.914 and 0.901 for cervical artery lymph node invasion. 
Notably, a statistically significant disparity in cervical artery sheath 
involvement was observed between the two groups based on N stage and 
tumour invasion, as presented in Table 1. These identified risk factors 
were subsequently integrated into the construction of a clinical- 
semantic feature pre-detection model for NPC progression type. 

3.2. Extraction and selection of radiomics features 

Initially, the mRMR square method was employed to select 20 
texture features from a pool of over 6000 features extracted from T1- 
weighted imaging (T1WI), fast spin-echo T2-weighted imaging (FS 
T2WI), and contrast-enhanced fast spin-echo T1-weighted imaging (FS 
CE-T1WI) images (Fig. 2 A). Subsequently, the LASSO algorithm was 
applied for further refinement. To mitigate the risk of overfitting, a 10- 
fold cross-validation was utilised for selecting the tuning parameter λ. 
Ultimately, 9 optimal subsets were retained (Fig. 2B). The Rad-Score 
was computed by calculating the weighted sum of these features based 
on their correlation coefficients, as outlined in Table 2. The Rad-Score 
box-plot-scatter diagram, illustrating both the training and testing 

Table 1 
Comparison of clinical and imaging semantic features between the two groups.  

Clinical data and semantic 
features 

Non- 
progress 
（203） 

Progress 
（110） 

P 
value 

95% CI 

Sex male 142 87  0.072 -0.008–0.191 
female 61 23 

Age (year) 50.31 
± 9.88 

51.92 
± 9.18 

0.168  -3.859–0.633 

Pathological type Type 1 24 17  0.914 -0.363–0.262 
Type 2 106 52 
Type3 26 14 
Type 4 1 2 
Type 5 46 25 

Induction 
chemotherapy 
regimen 

NO 25 14  0.195 -0.064–0.252 
PF 86 56 
TPF 92 40 

Course of 
induction 
chemotherapy 

0 25 14  0.886 -0.084–0.056 
1 2 1 
2 5 3 
3 171 92 

Synchronous 
course of 
chemotherapy 

0 12 4  0.861 -0.141–0.087 
1 11 8 
2 180 98 

T status 1 5 3  0.330 -0.217–0.094 
2 12 6 
3 123 60 
4 63 40 

N status 0 3 2  0.005 -0.416~− 0.084 
1 84 34 
2 97 47 
3 19 27 

Tumor invasion NO 158 70  0.020 -0.235~− 0.021 
Yes 46 39 

Lymph node 
invasion 

NO 117 66  0.686 -0.092–0.139 
Yes 86 44 

The classification is as follows: Type 1 – Squamous carcinoma, Type 2 – Non- 
keratinizing undifferentiated carcinoma, Type 3 – Non-keratinizing differenti
ated carcinoma, Type 4 – Non-keratinizing mixed cell carcinoma, Type 5 – Basal 
cell-like carcinoma. 
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sets, is presented in Fig. 3. 

3.3. Construction and verification of the combined model 

The risk of NPC progression was evaluated utilising the Rad-Score, N- 
stages, and tumour invasion of the carotid sheath as pivotal risk factors. 

The Area Under the Curve (AUC) values (Fig. 4), accuracy, sensitivity, 
specificity, Positive Predictive Value (PPV), and Negative Predictive 
Value (NPV) under the Receiver Operating Characteristic (ROC) curve 
were computed for both the training set and test set of the combined 
model. The specific values are presented in Table 3. Notably, the com
bined model exhibited the highest predictive value, as illustrated in  
Table 4, Figs 5 & 6, depicting the line diagram and fitting curve. 
Referring to the optimal cut-off value from the ROC curve of the com
bined model, the patients were categorised into high and low-risk 
groups, and the 10-year OS curve comparing the two groups is por
trayed in Fig. 7. 

4. Discussion 

In this investigation, we developed a combined clinical-semantic- 
radiomics model to predict the risk of 5-year PFS for NPC. The find
ings revealed that N staging and tumour invasion into the carotid sheath 
were significant factors influencing the 5-year PFS risk in NPC patients. 
Pre-treatment multi-parameter MRI radiomics emerged as a potent tool 
for anticipating NPC progression, with the combined model demon
strating the most robust predictive efficacy. Moreover, the nomogram 
developed from the combined model serves as a valuable quantitative 
tool for early-stage risk assessment, stratifying patients into high and 
low-risk categories based on the joint model’s Area Under the Curve 
(AUC) value. Notably, a significant discrepancy in 10-year OS between 
the two groups is evident. 

The intrusion of tumours into blood vessels is recognised as an 

Fig. 2. (A) The mRMR square method was utilised to select 20 texture features. (B) Subsequently, nine key imaging features were chosen along with their corre
sponding correlation coefficients, distinguishing between the progressive group and the non-progressive group. 

Table 2 
The nine optimal radiomics features have been selected, each accompanied by 
its corresponding weighted coefficients.  

Sequence MRI radiomics features Weighting 
coefficient 

T1WI curvatureflow_glszm_graylevelnonuniformity  0.0806 
FS 

T1 + C 
normalize_firstorder_variance  0.0619 

FS 
T1 + C 

log_firstorder_log-sigma-0-5-mm-3d-skewness  0.0394 

FS 
T1 + C 

normalize_glszm_zoneentropy  0.0299 

FS T2WI normalize_firstorder_entropy  0.0088 
T1WI wavelet_glszm_wavelet-hll-graylevelvariance  0.0068 
T1WI curvatureflow_glszm_sizezonenonuniformitynormalized  0.0017 
FS T2WI wavelet_firstorder_wavelet-III-10percentile  -0.0002 
FS 

T1 + C 
recursivegaussian_firstorder_minimum  -0.0289 

The weight values are automatically generated by the software during the 
feature selection process, as illustrated in Fig. 2 of the radiomics feature selec
tion method. 
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unfavourable predictor of survival outcomes [27,28]. Notably, the in
vasion of the carotid sheath by tumours, which houses an abundant 
vascular network, acts as a conduit for distant transmission. Our study 
discerns that the infiltration of the carotid sheath by tumours holds 
predictive value for 5-year PFS in non-metastatic NPC patients, poten
tially because such tumours bear an elevated tumour load [29]. 
Intriguingly, our research reveals that metastatic lymph nodes invading 
the carotid sheath exhibit no significant statistical variance in NPC 
progression. This observation could stem from the potential of induction 
chemotherapy to alleviate the tumour burden, eradicating early-stage 

Fig. 3. Box-plot-scatter diagram of Rad-Scores for the training and testing sets (P < 0.05).  

Fig. 4. ROC curves were generated for the Radomics model, clinical-semantic feature model, and combined model using the training and test sets of the two groups.  

Table 3 
Evaluation indicators of multiple models of training and test sets.   

Model AUC 95% CI accuracy sensitivity specificity NPV PPV 

TS Radomics  0.807 0.753–0.854  78.80  69.32  85.19  55.68  91.36 
Clinical-semantic  0.615 0.551–0.675  68.40  42.05  81.68  90.74  27.27 
Combined  0.840 0.788–0.883  81.60  77.27  81.48  90.74  64.77 

VS Radomics  0.786 0.665–0.879  74.60  54.55  92.68  85.37  54.55 
Clinical-semantic  0.683 0.554–0.795  71.43  50.00  80.49  90.24  36.36 
Combined  0.809 0.690–0897  74.60  81.82  65.85  85.37  54.55 

TS：training set, VS: test set 

Table 4 
Delong test of AUC values of training set between different models.    

Radomics VS.Clinical- 
semantic 

Radomics VS. 
Combined 

Clinical-semantic vs. 
Combined 

TS Z 3.831  2.020 5.555 
P ＜0.001  0.043 ＜0.001 

Note: There are statistical differences among the three models, and the com
bined model has the highest predictive value. TS：training set 
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micrometastases while demonstrating enhanced tolerance [30]. A 
notable portion of the patients in our dataset underwent induction 
chemotherapy. Furthermore, our study underscores that the combined 
model also possesses substantial predictive worth in forecasting 10-year 
OS in NPC patients. 

The most prominent MRI radiomics features distinguishing the pro
gressive and non-progressive groups primarily centre on tumour het
erogeneity: GLSZM-gln measures the diversity of grey intensity values 
within images, with lower values signifying greater uniformity in 

intensity; First-order variance calculates the average squared distance 
between each intensity value and the mean value, serving as a mean 
distribution measure. First-order 3-D skewness quantifies the "peak" of 
the image ROI’s mean value distribution, where higher skewness sig
nifies concentration towards the distribution tail. Greater uncertainty or 
randomness in GLSZM-zoneentropy measurement area size and grey 
level distribution corresponds to higher values, indicative of heightened 
texture pattern heterogeneity. These traits underscore that elevated 
unevenness in NPC’s grey intensity value distribution and heightened 
heterogeneity correlate with an elevated likelihood of NPC patients 
experiencing recurrence or distant metastasis. 

MRI represents a conventional and pivotal tool in the preliminary 
stages of treatment for NPC patients and in determining appropriate 
therapeutic interventions. Moreover, radiomic features derived from 
multi-parameter MRI underscore the significance of tumour heteroge
neity during the initial phases of tumour progression. The Delong test 
establishes that the composite model, which integrates clinical-MRI se
mantic features and radiomics studies, exhibits the most favourable 
predictive efficacy for NPC progression. NPC patients at an elevated risk 
present with pronounced tumour heterogeneity and a more substantial 
tumour load, thereby further heightening the susceptibility to disease 
progression. Early pre-testing and prompt intervention constitute the 
foundation for refining and advancing clinical treatments for NPC. 

The current investigation is not without limitations. Firstly, our 
study adopts a retrospective analysis, potentially introducing selective 
bias. Secondly, the data originates from a single centre, and our future 
endeavours involve acquiring data from multiple centres to enhance the 
generalizability of the augmented model. Thirdly, NPC patients often 
experience prolonged lifespans, resulting in a limited dataset within 
both deceased and non-deceased groups. In response to this, we intend 
to expand our follow-up efforts and accumulate additional data over 
time to bolster the robustness and reliability of our model. 

Fig. 5. Diagram illustrating the training set for the progressive and non-progressive groups. CSI: Carotid Sheath Invasion, denoting the extent of tumor infiltration.  

Fig. 6. Fitting curve of progressive group and non-progressive training set.  
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5. Conclusion 

In summary, the amalgamated model, rooted in pre-treatment multi- 
parameter MRI radiomics and complemented by clinical and MRI se
mantic features, possesses the capability to prognosticate the 5-year PFS 
in non-metastatic NPC patients at an early stage. Through the compre
hensive risk classification across all NPC patients, substantial variations 
in the 10-year OS become evident among distinct risk groups within the 
NPC population. Consequently, this model facilitates an accurate prog
nosis and stratification of progression risk in NPC patients, guided by 
high-risk factors associated with recurrence and distant metastasis. This 
provides a non-invasive, high-throughput quantitative foundation for 
timely intervention and optimization of treatment, offering a means to 
balance survival advantages against medical costs. 
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