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Abstract: Coronavirus disease 2019 (COVID-19) is induced by SARS-CoV-2 and may arise as a variety
of clinical manifestations, ranging from an asymptomatic condition to a life-threatening disease
associated with cytokine storm, multiorgan and respiratory failure. The molecular mechanism behind
such variability is still under investigation. Several pieces of experimental evidence suggest that
genetic variants influencing the onset, maintenance and resolution of the immune response may be
fundamental in predicting the evolution of the disease. The identification of genetic variants behind
immune system reactivity and function in COVID-19 may help in the elaboration of personalized
therapeutic strategies. In the frenetic look for universally shared treatment plans, those genetic
variants that are common to other diseases/models may also help in addressing future research
in terms of drug repurposing. In this paper, we discuss the most recent updates about the role
of immunogenetics in determining the susceptibility to and the history of SARS-CoV-2 infection.
We propose a narrative review of available data, speculating about lessons that we have learnt from
other viral infections and immunosenescence, and discussing what kind of aspects of research should
be deepened in order to improve our knowledge of how host genetic variability impacts the outcome
for COVID-19 patients.
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1. Introduction

Since the emergence of the first documented cases in December 2019, it soon became
evident that subjects infected by SARS-CoV-2 experience a disease promptly named coro-
navirus disease 2019 (COVID-19) with dramatic interindividual variability in its clinical
manifestations. In fact, COVID-19 may arise as an asymptomatic state as well as a panel of
respiratory conditions ranging from mild flu-like symptoms (fever, fatigue and dry cough)
to a severe respiratory disease (including pneumonia and dyspnoea) that may require hospi-
talization and may be exacerbated by cytokine storm, acute respiratory distress syndrome
(ARDS), multi-organ and respiratory failure, with potentially fatal consequences [1–4].
In contrast to the SARS-CoV (-1)-caused SARS pandemic (2002/2003), recorded as the
first pandemic of the 21st century, the SARS-CoV-2-caused COVID-19 pandemic was
not stopped by public health preventive measures in its first season 2019/20. Instead,
it enforced rapid development of vaccines. This was never accomplished for SARS-1 [5,6].

Epidemiological data demonstrated that clinically relevant variables like sex, age and
comorbidities, as well as viral genome variants were not enough in explaining why subjects
with apparently similar clinical history and pre-existent status develop such a different
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group of symptoms [2,4]. Thus, other factors must contribute to the pathogenesis of the
disease, determining which patients will develop an asymptomatic infection and how
serious the disease will be in symptomatic subjects [4,7]. Defining these factors will be
especially advantageous to detect patients who may benefit from an early hospitalization
and therapeutic intervention [2,3]. The attention was immediately captivated by those
host genetic variants ruling the expression and characteristics of viral receptors and host
enzymes involved in viral entry [1,3,7–13]. However, this represents only one of the
elements that must be considered in the complex interplay involving the virus, the host
respiratory tract–lung tissues, and the host immune system [2,7,14].

Host immune responses and immune-related symptoms are extremely variable be-
tween patients who have effective control of SARS-CoV-2, i.e., asymptomatic, and patients
who are unable to control the virus, i.e., affected by severe COVID-19. This suggests that
host immune dysregulation contributes to pathogenesis in some cases. However, it is
not known if the development of a severe form of the disease is ruled by ether immune
hyperactivity or by a failure to resolve the inflammatory response due to the ongoing viral
replication and immune dysregulation. The correlation among cytokine levels, nasopha-
ryngeal viral load and declining viral load in moderate cases suggests that the immune
response is associated with the viral burden [15,16].

However, the genetic basis of the immune response, the focus of immunogenetics,
may account for a notable part of the (still) unexplained interindividual disease variability
and may provide the key to stratifying patients on the basis of the risk of developing
severe symptoms according to the presence/absence of genetic variants [17]. In line
with this hypothesis, a number of studies are currently ongoing in order to explore the
genetic characteristics of COVID-19 patients as regards those genes that are involved in the
setting/maintenance/control/switching off of the immune response [14,18].

2. AB0 Groups

The AB0 molecules represent complex membrane antigens widely expressed both
on the surface of red blood cells (RBC) and many other cells, extending the importance
and the clinical significance of the AB0 system beyond transfusion medicine. Historically,
the AB0 phenotype was one of the first markers involved in cancer susceptibility. Evidence
has since then accumulated that AB0 blood antigens could play a key role in various human
diseases, although the data are not clear [19,20]. On this basis, it is not surprising that
several studies have studied the associations between COVID-19 and the AB0 system.

The suspicion that the AB0 locus should be involved with the increased risk of de-
veloping a severe form of the disease arose from the observation that: (i) the frequency
of blood group 0 among COVID-19 patients was lower vs. control subjects, whereas the
frequency of blood group A among COVID-19 patients was higher vs. control subjects;
(ii) the risk of infection was lower in blood group 0 subjects vs. non-0 blood groups; on
the contrary, blood group A was associated with a higher risk of infection vs. non-A blood
groups (Table 1) [21–28].

Table 1. List of the associations between blood groups and variants at the AB0 locus with COVID-19 susceptibility
and severity.

Group/Locus Variant Outcome p OR (95% CI) RR (95%CI) Refs.

A
Susceptibility 0.027 1.21 (1.02–1.43) [21]
Susceptibility * 0.04 * 1.33 (1.02–1.73) [24]
Susceptibility 0.0024 1.23 (1.08–1.41) [25]
Susceptibility <0.001 1.09 (1.02–1.13) [27]

Susceptibility (1) <0.001 1.249 (1.114–1.440) [26]
Susceptibility (2) 0.03 1.3 (1.02–1.66) [29]

Respiratory failure * 1.48×10−4 * 1.45 (1.20–1.75) [28]
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Table 1. Cont.

Group/Locus Variant Outcome p OR (95% CI) RR (95%CI) Refs.

Mortality 0.008 1.482 (1.113–1.972) [21]
AB

Susceptibility * 0.035 * 1.37 (1.02–1.83) [30]
B

Susceptibility * 0.004 * 1.28 (1.08–1.52) [30]
0

Susceptibility <0.001 0.67 (0.60–0.75) [21]
Susceptibility 0.0006 0.787 (0.69–0.90) [25]
Susceptibility <0.001 0.87 (0.82–0.91) [27]
Susceptibility * 0.007 0.84 (0.75–0.95) [30]

Susceptibility (1) <0.001 0.699 (0.635–0.770) [26]
Respiratory failure * 1.06×10−5 * 0.65 (0.53–0.79) [28]

Mortality 0.014 0.660 (0.479–0.911) [21]
Locus AB0

rs657152 (A) Respiratory failure * 5.35×10−7 * 1.39 (1.22–1.59) [28]

Group/locus, AB0 blood group or locus; variant, name of the polymorphism at the indicated locus (allele); outcome, type of assayed
outcome; p, p value (corrected p values are preceded by a *); OR (95% CI), odds ratio (95% confidence interval) for the analysed blood group
or variant (adjusted OR are preceded by a *); RR (95% CI), relative risk (95% confidence interval) for the analysed blood group or variant;
Ref, references. (1) meta-analysis; (2) in transplanted patients.

However, controversies still exist about the association of blood groups with the sever-
ity of the disease, with some reports documenting that blood group A is associated with
an increased risk of death vs. non-A blood groups and blood group AB is associated
with an increased risk of intubation and death vs. blood group 0, while other reports
failed in reproducing the same observations or even in demonstrating an association be-
tween any blood group and disease severity (expressed variably as hospitalization, inten-
sive care unit—ICU—admission, intubation, required proning, extracorporeal membrane
oxygenation—ECMO) (Table 1) [21,23,26,27,30,31]. Obviously, the adoption of universal cri-
teria to define the severity of COVID-19 would be extremely beneficial in terms of proper
stratification of patients and reproducibility of the results.

A genome wide association study (GWAS) performed by The Severe Covid-19 GWAS
Group on Italian and Spanish subjects demonstrated that the association of severe COVID-
19 expressed as respiratory failure with rs657152 (A or C single nucleotide polymorphism
(SNP)) at locus 9q34.2 (coinciding with the AB0 locus) was significant at the genome
wide level, even after correction for sex and age. Moreover, blood-group-specific analysis
corrected for age and gender showed a higher risk of experiencing respiratory failure in
blood group A than in other blood groups and a protective effect in blood group 0 in
comparison with other blood groups, but no association was detected with disease severity
expressed as the need for mechanical ventilation (Table 1) [28].

In a subsequent study, the authors reported that the rs657152 SNP is in almost complete
linkage disequilibrium (LD; D’ = 0.996, r2 = 0.97) with rs8176719 (c.259-1_259insG), whose
deletion is the main determinant of group 0, allele AB0*O.01.01. However, no differences
in the genotype and allele frequencies were detected comparing age matched COVID-
19 patients who required hospitalization with healthy controls and comparing severe
with non-severe COVID-19 patients (with severity defined as the need of critical care
support—high-flow oxygen, positive-pressure ventilation, vasoactive drugs) [31].

A further source of heterogeneity may be represented by the choice of the pool of the
analyzed patients. In a cohort of Italian transplanted and waiting for organ transplantation
patients, blood group A was more frequent in COVID-19+ (45.5%) than COVID-19- patients
(39.0%) but no difference in blood group A distribution was observed comparing dead and
alive patients (Table 1); however, the authors do not provide readers with further details
about the cause of death—if it was determined by COVID-19 related complications or
not [29].
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About possible mechanistic considerations, it would be worth deepening the obser-
vation that serum levels of inflammatory marker soluble E-selectin are higher in 0/0 in-
dividuals, whereas a single nucleotide polymorphism in A1 allele is associated with low
levels of this inflammatory marker. Furthermore, subjects homozygous for G allele in
rs657152 SNP, corresponding to blood type 0 carriers, showed higher interleukin-6 (IL-6)
circulating levels respect to non-0 carriers [19]. Moreover, ABH oligosaccharide structures
have been identified on the N-linked oligo-saccharide chains of von Willebrand factor
(VWF) located in the A1 domain, which contains the binding site for platelet glycoprotein
Ib. The VWF levels are approximately 25% higher in individuals who have a blood group
other than 0, and it might depend on endothelial A, B glycosyltransferase enzymes gener-
ating A and B antigens on the existing VWF “H” oligosaccharides. In turn, this addition
to VWF might influence its blood level, and hence plasma levels of factor VIII and finally
coagulation [19,20]. However, these literature data appear to conflict with the results of
association studies, putting the accent on the fact that well-controlled inflammation is not
“per se” a negative phenomenon, but rather the necessary response of the immune system
to pathogenic viruses or bacteria [32]. Instead, the hyper inflammation response may be
revealed to be dangerous (see below cytokine storm). This hypothesis is strengthened by
the data of the high healing rates in the centenarians, known to have a good control of the
inflammatory response [33].

Finally, the association could rely on the increase in natural antibodies influencing the
history of SARS-CoV-2 infection [21,23,26,28,34,35].

3. HLA

The human leukocyte antigen (HLA) system codes for cell membrane proteins re-
sponsible for regulating the immune system. HLA genes are highly polymorphic; the
different alleles are involved in fine-tuning the acquired immune responses. HLA classes
have different functions. Class I (HLA-A, -B and -C) antigens present peptides from inside
the cell on the cell surface. If the cell is infected by a virus, peptides of viral origin will be
presented so that the cell can be lysed by CD8+ cytotoxic lymphocytes. Class II (HLA-DRA,
HLA-DRB1, HLA-DRB3–5, HLA-DQA, HLA-DQB, HLA-DPA and HLA-DPB) molecules
present peptides from outside the cell (which is an Antigen Presenting Cell) to CD4+ helper
lymphocytes, which in turn stimulate B lymphocytes to produce antibodies against that
specific antigen. Class III encodes the components of the complement system and the
proinflammatory cytokine tumor necrosis factor (TNF-α). The high polymorphism of
class I and II molecules affects the peptide binding groove, since it varies the amino acid
sequences that can be housed within the groove. Different HLA alleles exhibit different
peptide binding repertoires. Therefore, it is not surprising that different infectious diseases
are associated with different HLA antigens, which are responsible for different humoral or
cellular immune responses against different viral epitopes [17].

Furthermore, regulation of class II gene expression has been claimed to play a role
in susceptibility/resistance to HLA-associated diseases [36]. In cancer, HLA class I gene
expression was frequently down-regulated at both protein and mRNA levels and hyperme-
thylation of the promoter regions of the HLA-A, -B and -C genes is a major mechanism
of transcriptional inactivation [37]. This mechanism allowing evasion from the cytotoxic
response has been shown to be present in cell line infection by the Epstein-Barr Virus
(EBV) [38]. However, to the best of our knowledge no study has demonstrated this possi-
bility for the immune responses to SARS-CoV-2 yet. The association between HLA alleles
and COVID-19 infection and severity was assayed in a number of studies using laboratory,
ecological, and in silico approaches. This kind of intense research was pushed by the
mentioned fundamental role of the HLA in immune response setting and in susceptibility
to infections [14,39–42], and also by the reports documenting that monocytes exhibit a
decrease in HLA-DR expression inversely correlated with severity—the more HLA-DR
decreases, the more the severity increases. Interpreting this piece of data in the light of
other clinical and molecular characteristics of SARS-CoV-2 infected subjects, the authors



Int. J. Mol. Sci. 2021, 22, 2636 5 of 27

concluded that HLA-DR levels may mirror the balance between the inflammatory and
immunosuppressive status of COVID-19 patients [43,44].

3.1. Incidence and Susceptibility

Using an ecological approach, it was demonstrated that B*44 and C*01 alleles (whose
prevalence is higher in northern Italy) showed a positive log-linear correlation with COVID-
19 incidence rate measured in close proximity to the date of the national outbreak, keeping
their positive association with COVID-19 incidence in multivariable regression analysis
also adjusted for regions (Table 2).

Table 2. Association between human leukocyte antigen (HLA) class I and II allele/serotype/haplotype with COVID-
19 incidence, susceptibility and severity.

Variable Allele/Serotype p OR (95%CI) Regression
Coefficient

Growth Rate
(95%CI) Refs.

Incidence
B*44 0.05 0.1484 1.16 (1–1.35%) [39]
C*01 0.042 0.1747 1.19 (1.01–1.41%) [39]

Susceptibility

B*15:27 0.030 3.59 (1.72–7.50) § [45]
B46 n.s. [46]
B22 0.032 1.71 (1.23–2.38) § [46]

C*07:29 0.025 130.20 (5.28–3211) § [45]
DQB1*06 0.0468 # 1.96 (1.19–3.22) #§ [47]
DRB1*08 0.010 # 1.814 (1.151–2.860) # [29]

Severity

A n.s. [28]
A*11:01 0.008 2.33 [10]

B22 n.s. [46]
B27 n.s. [46,48]

B*27:07 * 0.004 [41]
B46 n.s. [46]

B*51:01 0.007 3.38 [10]
C n.s. [28]

C*14:02 0.003 4.75 [10]
DPB1*03:01 0.037 0.09 [10]
DQA1*01:01 0.039 6.05 [10]

DQB1 n.s. [28]
DQB1*06:02 0.016 [41]

DRB1 n.s. [28]
DRB1*01:01 0.02 13.7 [10]
DRB1*12:01 0.045 0.18 [10]
DRB1*14:04 0.01 15.1 [10]
DRB1*15:01 0.048 [37]

A*11 0.04 (1) 7.693 (1.063–55.65) (1) [40]
0.02 (2) 11.858 (1.524–92.273) (2) [40]

Mortality C*01 0.04 (1) 11.182 (1.053–118.7) (1) [40]
0.02 (2) 17.604 (1.629–190.211) (2) [40]

DQB1*04 0.03 (1) 9.963 (1.235–80.358) (1) [40]
DRB1*08 0.01 # 8.6 (1.7–43.9) # [29]

Variable, type of variable considered in the statistical analysis; allele/serotype, HLA alleles or serotypes; p, p value (corrected p values are
preceded by a *); OR (95% CI), odds ratio (95% confidence interval) for the analyzed allele/serogroup/haplotype; regression coefficient,
regression coefficient at regression analysis; growth rate (95% CI), growth rate (95% confidence interval) for the analyzed allele/serogroup;
Ref, references; n.s. not significant. Alleles are reported in italics. The listed statistics, coefficients and p values are corrected. Unadjusted
statistics are indicated by a §. # in transplanted patients; (1) after controlling for Sepsis-related Organ Failure Assessment (SOFA)—see text
for details. (2) after controlling for the Acute Physiology and Chronic Health Evaluation (APACHE)-II—see text for details.

On the contrary, HLA-B*14, B*18, and B*49 alleles (more frequent in southern Italy)
showed an inverse log-linear correlation with COVID-19 incidence rate, but these asso-
ciations lost their significance in the multiple regression model [39]. The authors un-
derlined the fact that the product of HLA-C*01 allele represents the ligand of Natural
Killer (NK) inhibitor receptors Killer Cell Immunoglobulin-Like Receptor (KIR) 2DL2 and
KIR2DL3 [49,50], thus suggesting a possible role for HLA-C*01 carrying in establishing
the entity of the immune response [39] (see below). In a Chinese study, HLA-B*15:27 and



Int. J. Mol. Sci. 2021, 22, 2636 6 of 27

HLA-C*07:29 were more frequent in COVID-19 patients vs. control subjects, with the results
staying significant after correction. However, the small sample size may hamper the proper
interpretation of the results, as the authors warn (Table 2) [45]. An in silico study reported
that among the compared alleles HLA-B*46:01 had the smallest predicted binding capacity
for SARS-CoV-2 peptides and extremely low binding affinity measured for human coron-
avirus conserved peptides (defined as dissociation constant <500 nM), thus suggesting a
possible role for HLA-B*46:01 in determining disease susceptibility [51,52], but this associa-
tion was not confirmed by a following study on Hong Kong Chinese patients (Table 2) [46].
Furthermore, serotype HLA-B22 was found more frequently in COVID-19 Hong Kong Chi-
nese patients vs. non-age matched controls but the association was not significant when the
comparison was made against age matched controls [46]. Finally, it was demonstrated that
countries where HLA-A*02:01 is the most frequent in the population had lower numbers of
COVID-19 cases out of 106 population vs. countries where HLA-A*24:02 or HLA-A*11:01
are the most frequent alleles, as confirmed at two different time points (April 2020 p = 0.009
and August 2020 p = 0.013) [53].

3.2. Disease Severity

As regards the association of HLA alleles with disease severity, published papers
report conflicting results, mainly due to the lack of shared criteria for disease severity
classification, and the differences in the choice of compared groups of subjects. No signifi-
cant correlation was found between HLA-B27 status and COVID-19 severity evaluated on
an arbitrary scale ranging from mild to life-threatening disease by a team of researchers
studying northern American patients (Table 2) [48]. These results were independently
confirmed by a report on Hong Kong Chinese patients finding no significant association
between HLA-B27 serotype and lymphopenia or disease severity expressed as mild (mild
symptoms up to mild pneumonia) or severe (dyspnoea, hypoxia, or >50% lung involve-
ment on imaging)/critical (respiratory failure, shock, or multi-organ system dysfunction)
(Table 2) [46]. Instead, another study performed on a cohort of COVID-19 patients with
severe (respiratory impairment, requiring non-invasive ventilation) and extremely severe
(respiratory failure, requiring invasive ventilation and ICU admission) disease showed that
the frequency of HLA-B*27:07, -DRB1*15:01, -DQB1*06:02 was higher in the studied COVID-
19 patients vs. a reference group representing the local Italian population (Table 2) [41].
On the contrary, the assessment of allelic distribution at the HLA loci (Classes I and II) in a
group of Italian and Spanish patients showed no association with the need for mechanical
ventilation (Table 2) [28]. Comparing a group of mild (non-experimenting pneumonia)
and severe (including severe and critically ill subjects according to the Chinese Center for
Disease Control and Prevention -CDC- criteria) Chinese patients, HLA-C*14:02, -B*51:01,
and -A*11:01 were associated with the severity of the disease in logistic regression analysis
also adjusted for age and gender, with the three alleles in strong linkage disequilibrium,
thus representing a haplotype. As regards Class II HLA alleles, -DRB1*14:04, -DRB1*01:01,
-DQA1*01:01 represented severity risk alleles, whereas -DPB1*03:01 and -DRB1*12:01 were
protective alleles (Table 2) [10]. A possible correlation between in silico predictions and
observed symptoms was provided by Iturrieta-Zuazo et al. The authors demonstrated
that mild or asymptomatic patients (mild group) exhibited a significant greater number
of viral peptides, making a comparison with both hospitalized patients (moderate group)
and subjects requiring ICU admission and supportive care (severe group) by HLA locus
(HLA-A, -B, -C) and by HLA Class I genotype (for HLA Class I, p < 0.0001 estimated on
the number of tightly (dissociation constant <50 nM) and loosely (dissociation constant <
500 nM) binding peptides, in both severe vs. mild and moderate vs. mild) [54].

3.3. Mortality

Regarding the association between HLA alleles and death rates, data are extremely
varied. A Spanish study failed in detecting differences in HLA allele distribution compar-
ing COVID-19 patients and healthy controls. However, the authors noticed that the Acute
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Physiology and Chronic Health Evaluation (APACHE)-II score, Sepsis-related Organ Fail-
ure Assessment (SOFA) score, and frequency of HLA-A*11, HLA-C*01 and HLA-DQB1*04
were higher in non-surviving vs. surviving patients. In their binomial logistic regression
models, all the three alleles preserved their association with mortality after controlling for
SOFA, and HLA-A*11 and HLA-C*01 kept their association after controlling for APACHE-II
(Table 2) [40]. In Mexico, a statistically significant correlation was documented between
HLA-DRB1*01:01 allele and the predicted fatality rate in hospitalized patients (R = −0.44,
p = 0.02) [55]. Similarly, analyzing the HLA haplotype distribution in three Italian zones
(northern, central and southern regions), the haplotype HLA-A*01:01g-B*08:01g-C*07:01g-
DRB1*03:01g showed a positive correlation and the haplotype HLA-A*02:01g-B*18:01g-
C*07:01g-DRB1*11:04g and a negative correlation with both COVID-19 incidence (number
of cases/100,000 inhabitants) and mortality (number of deaths/100,000 inhabitants) at three
out of four the analyzed timepoints (the first time point was reported to have no significant
results because it was too premature) [56]. HLA-A*01:01, -B*08:01, -C*07:01,-DRB1*03:01,
-DQA1*05:01 and -DQB1*02:01 is a common Caucasoid haplotype called 8.1 ancestral hap-
lotype (AH). Intriguingly, numerous genetic studies reported that individuals with 8.1 AH
have a higher risk of specific autoimmune disorders than those without these alleles [57].
It is worth nothing that bivariate correlation analysis among the regional frequencies
of HLA-A*01:01g-B*08:01g-C*07:01g-DRB1*03:01g haplotype and incidence and mortality
showed a cluster distribution, with the northern regions having the highest haplotype
frequencies and the highest incidence and mortality, the central regions recording inter-
mediate and the southern regions exhibiting the lowest values. The opposite frame was
reported for the haplotype HLA-A*02:01g-B*18:01g-C*07:01g-DRB1*11:04g [56]. However,
the alleles analyzed in this study HLA-A*02:01, HLA-B*08:01, HLA-A*01:01, HLA-B*18:01,
HLA-C*07:01 are predicted to exhibit a good viral antigen presenting capacity, with HLA-
A*02:01 offering the highest numbers of both tightly (dissociation constant < 50 nM, peptide
number 267) and loosely (dissociation constant < 500 nM, peptide number 795) SARS-CoV-
2 peptides [51,56], thus making the relationship between COVID-19 death rates and in
silico estimated HLA antigen presenting capacity less clear. Curiously, in countries where
HLA-A*02:01 is the most frequent in the population, a significant correlation exists with
mortality (expressed as deaths out of 106 population) vs. countries where HLA-A*24:02 or
HLA-A*11:01 are the most frequent alleles, as confirmed at two different time points (April
2020 p = 0.003 and August 2020 p < 0.001, respectively), excluding from further analysis
that the number of recorded deaths accounts for the simple increase in COVID-19 cases
regardless of the HLA genotype. The authors also predicted the functional performance of
the three analyzed alleles, with HLA-A*02:01 having the lowest viral antigen-presenting
capacity in comparison with HLA-A*24:02 and HLA-A*11:01, completely contradicting a
previous paper reporting that the number of loosely+tightly binding peptides was higher
for HLA-A*02:01 vs. both HLA-A*11:01 and HLA-A*24:02 [51,53,54].

3.4. Transplanted Patients

Transplanted patients, for whom HLA typing is speedily available, may represent
an important source of information. In a cohort of Italian transplanted or waiting for
organ transplantation patients, HLA-DRB1*08 was associated with a higher risk of infection
and with a higher risk of death, with both observations keeping their significance in
adjusted logistic regression analysis. Importantly, in an in silico prediction, none of the
DRB1*08 alleles were able to bind with high affinity any of the viral peptides included
in the simulation, raising questions about the functional performance of HLA-DRB1*08
in the case of SARS-CoV-2 infection (Table 1) [29]. Similarly, research performed in the
UK showed that in a cohort of COVID-19+ transplanted (kidney or hematopoietic stem
cells) and on the waiting list for solid organ transplantation patients, HLA-DQB1*06 was
significantly associated with the risk of infection vs. a group of individuals on the renal
transplant waiting list representing the local population (52.5% vs. 36%, respectively),
as summarized in Table 2 [47].
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3.5. Functional and Mechanistic Considerations

One report explored the association of HLA types with the immunophenotypic and
functional characteristics of immune cells. HLA-A*02:01-restricted SARS-CoV-2-reactive
CD8+ T cells can be detected at higher levels in COVID-19 patients vs. uninfected subjects,
but their frequency is lower than that recorded for influenza or EBV-specific memory CD8+
T cells in SARS-CoV-2 uninfected subjects. In addition, in COVID-19 convalescent subjects
these HLA-A*02:01-restricted SARS-CoV-2-reactive CD8+ T cells expressed granzymes
and/or perforin, but were negative for CD38, HLA-DR, PD-1, and CD71 activation markers,
while all these markers where positive in acute phase patients [58].

The lack of uniformity among the recalled reports could be easily explained. Indeed,
several methodological problems can elucidate the discrepancies observed in studies
concerning the association of HLA with diseases as follows: (I) insufficient sample sizes to
detect differences in HLA antigen frequencies; (II) inadequate inclusion with inappropriate
mixing of data (cohort effect) and inappropriate control matching, i.e., lack of proper
selection from the same target population; (III) the different genetic backgrounds of the
studied population; (IV) the lack of Bonferroni’s correction for multiple comparisons [59].
Differences in susceptibility/resistance to the same disease in populations can then be
linked to the presence of different HLA subtypes in the various populations [60]. Moreover,
caution should be adopted in the attempt to justify the observed correlation between HLA
allele geographical distribution and COVID-19 incidence, prevalence and related mortality.
In fact, in silico analysis of predicted HLA allele binding affinity must be validated in vitro
together with the evaluation of the effect of the calculated binding affinity for each HLA
allele on the increase in sustained immune responses and on cytokine synthesis control.

Concerning the meaning of the observed associations of HLA with COVID-19, it has
to be pointed out that, in the last few years, it is becoming clear that Class I antigens can
play a role as ligand for KIRs. Therefore, several observed associations of HLA class I
antigen with COVID-19 might be explained by their role as ligands for KIR [61] (see above).

Finally, recent studies have investigated the role of nonclassical HLA class I HLA-E
in the control of viral diseases. With only two alleles described, HLA-E shows a very
low level of allelic variation. HLA-E is thus considered to play a role in both innate and
adaptive immunity, by interacting with NK cells as well as presenting peptides to antigen-
specific CD8+ T cells. The HLA-E alleles’ association with different viral infections seems
to be discrepant. Each of the alleles can be advantageous for an individual or the entire
population against a particular virus. Therefore, it has been assumed that the presence of
both alleles in the gene pool can be beneficial for the survival of the population [62,63].
Thus, HLA-E should be an interesting new player in the field of immunology. However,
to best of our knowledge no study has been performed on COVID-19 patients.

4. Other Immune Response Genes

COVID-19 severity and mortality may depend on attenuation or suppression of cy-
tokines’ elicited pathways. In fact, SARS-CoV-2 blocks the proper synthesis of interferon-α
(IFN-α) and interferon-β (IFN-β), thus impairing type I interferon signaling and leading to
a suboptimal immune response [64,65]. The suppression of IFN-β synthesis is a mechanism
shared with SARS-CoV, which exhibits a number of other ways to attenuate response to
type I interferons, including interference with interferon receptor turnover or with the
expression of interferon induced genes. However, these mechanisms have not been investi-
gated deeply in SARS-CoV-2 infection yet [65]. Anyway, uncontrolled cytokine release and
signaling may also cause life-threatening consequences.

Cytokine storm is an umbrella term encompassing a wide range of clinical and labora-
tory abnormalities. However, all cases involve elevated circulating cytokine levels, acute
systemic inflammatory symptoms, and secondary organ dysfunction. A critical question
concerns the factors that contribute to the severe cytokine storm-like phenotype observed
in a small fraction of COVID-19 patients. Coexisting conditions such as hypertension,
diabetes, and obesity are associated with more severe cases of COVID-19, possibly because
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of the pre-existing chronic inflammatory state or a lower threshold for the development
of organ dysfunction from the immune response. Another prominent feature of COVID-
19 severity is the association with advanced age [1,2,66,67]. Below the role of comorbidities,
which tend to become more frequent during the aging process, a potential contributor to
COVID-19 severity in older people may be represented by the subtle chronic inflammatory
status called inflammaging (one of the three hallmarks of immunosenescence—an increase
in serum cytokines impairing the effectivity of immune responses) and by the age-related
progressive reduction in the ability to trigger effective antibody and cellular responses
against infections and vaccinations [66,68–71]. Thus, immunosenescence represents a fur-
ther potential contributor to the insurgence of fatal complications in COVID-19 [8,62,63].
Lymphopenia and accumulation of immune cells showing immunophenotypic and func-
tional signs of exhaustion were commonly documented in COVID-19 patients, correlating
with age and severity [43,68,72–84]. This strong resemblance to immunosenescence makes
COVID-19 a possible scenario to deepen the knowledge about the molecular basis affecting
normal immune cell metabolism/lifespan/turnover and to determine the importance of
genetic variants and epigenetic modifications behind the appearance of inflammaging
and immunosenescence [66,85–88]. Furthermore, the improvement of our understanding
of the relationship between immunogenetics and immunosenescence (including inflam-
maging) would be crucial in the design of a therapeutic strategy specifically for older
COVID-19 patients [66,68,69,89].

Several data suggest that cytokine storm may contribute to the pathogenesis of COVID-19.
Serum cytokine levels that are elevated in patients with COVID-19-associated cytokine storm
include IL-1β, IL-6, interferon γ-induced protein-10 (IP-10), TNF-α, interferon-γ (IFN-γ),
macrophage inflammatory protein (MIP) -1α and -1β, and vascular endothelial growth factor
(VEGF) [3,7,52,90–93].

Available data suggest that cytokine receptor antagonists might have a positive impact
on survival of COVID-19 patients. IL-1 receptor antagonist Anakinra showed to be benefi-
cial in terms of the need for mechanical ventilation and risk of death, despite larger studies
being necessary to confirm if this agent is safe to be used alone or requires combination
with other drugs such as glucocorticoids, and to estimate the exact entity of adverse effects
like bacteremia. On the other hand, despite the association of high IL-6 levels with shorter
survival and the evidence that laboratory findings of hyperinflammation (example, ele-
vated values of C-reactive protein—CRP) and tissue damage predict worsening outcomes
in COVID-19, data for anti–IL-6 receptor antibody therapies lack a uniform confirmation
and/or are still insufficient, and are thus reported as conflicting in terms of mortality and
hospitalization. This it is not surprising, since IL-1, IL-6 and other cytokines are potentially
critical for both a healthy response to SARS-CoV-2 and a detrimental cytokine storm. Thus,
completely blocking cytokine signaling might actually impair clearance of SARS-CoV-2, in-
crease the risk of secondary infections, and lead to worse outcomes, as seen with influenza
virus [16,94–100]. However, studies deeply dissecting the genetic basis of the insurgence
of this phenomenon or the possible role of cytokine receptors in COVID-19 severity are
still missing.

4.1. Type I Interferons and Players of Their Molecular Pathways

Synthesis and release of type I interferons together with their signaling by binding to
IFN-α receptor 1 (IFNAR1) and IFNAR2 are all fundamental steps in the defense process
raised by viral RNA or DNA. These molecular pathways involve a number of actors,
including toll like receptors (TLR), IFN regulatory factors (IRF), signal transducers and
activator of transcription (STAT) 1 and 2, TIR-domain containing adaptor inducing IFN-β
(TICAM1/TRIF), TANK binding kinase 1 (TBK10), TNF Receptor Associated Factor 3
(TRAF3) and Unc-93 homolog B1 (UNC93B1) [101–112].

A notable effort was made to analyze 12 autosomal loci (STAT1 on chromosome 2,
TLR 3 on chromosome 4, IRF7 and UNC93B1 on chromosome 11, TBK1 and STAT2 on
chromosome 12, IRF9 and TRAF3 on chromosome 14, TICAM1/TRIF and IRF3 on chromo-



Int. J. Mol. Sci. 2021, 22, 2636 10 of 27

some 19, IFNAR1 and IFNAR2 on chromosome 21) and one X linked locus (NF-κB essential
modulator—NEMO/IKBKG) in COVID-19 patients with life-threatening pneumonia vs.
mild and asymptomatic COVID-19 cases (control group) [113,114]. The studied loci were
connected to viral encephalitis, complications after measles, mumps, and rubella (MMR)
vaccination and ARDS/critical influenza pneumonia [113,115,116]. As regards the 12 au-
tosomal loci, a significant enrichment in what are predicted to be loss-of-function (pLOF)
variants in patients vs. controls was detected under an autosomal-dominant (AD) mode of
inheritance (Table 3).

Table 3. List of genetic variants influencing immune responses associated with COVID-19 susceptibility, severity and mortality.

Gene/Locus Variant/
Position

Reference/
Other Allele

Altered/
Risk Allele

Protein
Variant Type p OR (95%CI) Outcome Refs.

TLR3 § 187003852 AT A p.Ser339fs pLOF

0.01
8.28

(1.04–65.64)
severity [113]

TLR3 § 187005146 G A p.Trp769 * pLOF
UNC93B1 § 67770598 C A p.Glu96 * pLOF

TBK1 § 64875731 C T p.Arg308 * pLOF
IRF7 § 615095 A C p.Arg7fs pLOF
IRF7 § 614300 G A p.Gln185 * pLOF

IRF7 § 613966 CGGGCTGG
GGCCCG C p.Pro246fs pLOF

IRF7 § 613353 G GC p.Pro364fs pLOF

IFNAR2 § 34621038 AGATTGTT
GGTTTT A p.Glu140fs pLOF

IFNAR2 rs2236757 G A 4.99 × 10−8 1.28 severity [117]
OAS3 rs10735079 G A 1.65 × 10−8 1.29 severity [117]

IFITM3 rs12252 T C # 0.0093 # 6.37 severity [118]

0.025 1.93
(1.09–3.46) severity [119]

PRKRA I226N 0.02 severity [120]
TNF-α rs1800629 G A ◦ <0.001 age > 60 [121]

◦ <0.001 lymphopenia [121]
◦ 0.009 high CRP [121]
◦ <0.001 high ferritin [121]
◦ <0.001 severity [121]
† 0.045 severity [121]

3p21.31 rs11385942 G GA 1.15 × 10−10 1.77
(1.48–2.11)

respiratory
failure [28]

0.003 1.56
(1.17–2.01)

mechanical
ventilation [28]

TMEM189UBE2V1 rs6020298 G A 4.1 × 10–6 1.2 severity [10]
DPP9 rs2109069 G A 3.98 × 10−12 1.36 severity [117]

GOLGA8B rs200975425 C T 9.4 × 10–10 5.4 susceptibility [10]
LAPTM4B P219L

0.029 [120]P220L
I109F
P50T

ApoE e3 e4 1.19 × 10–6 2.31
(1.65–3.24) severity [122]

ˆ 0.009 ˆ 1.20
(1.05–1.37) severity [123]

3.24 × 10−9 2.24
(1.72–2.93) severity [123]

1.22 × 10–6 4.29
(2.38–7.72) mortality [123]

Gene/locus, analyzed gene or locus; variant/position, variant name, or position of the variant on reference human genome; reference/other
allele., reference allele or other allele; altered/risk allele, altered allele or risk allele; protein variant, changes in the aminoacidic sequence; p,
p value (all the reported p values are corrected); OR (95% CI), odds ratio (95% confidence interval); outcome, type of the assayed outcome;
Ref, references. § GRCh37; # homozygosity for the risk allele; ◦ homozygosity for the risk allele vs. homozygosity for the other allele; †
homozygosity for the risk allele vs. heterozygosity for the risk allele; ˆ heterozygosity for the risk allele vs. homozygosity for the other allele.

Using overexpression systems, 24 variants (including the pLOF ones) in TLR3, UNC93B1,
IRF7, IRF3, TICAM1/TRIF, TBK1, IFNAR1, IFNAR2 were demonstrated to be deleterious,
since they were loss-of-expression, LOF or severely hypomorphic; of these 24 variants,
four were autosomal-recessive (AR) deficiencies (homozygosity or compound heterozy-
gosity for IRF7; homozygosity for IFNAR1) and 19 AD deficiencies (TLR3, TICAM1, TBK1,
IRF3, UNC93B1, IRF7, IFNAR1, and IFNAR2). AR and AD IRF7-deficiency was associ-
ated with reduced levels of IRF7 expression on phytohemagglutinin (PHA) stimulated
T cells. Plasmacytoid dendritic cells isolated from AR IRF7-deficient patients did not
produce detectable type I or III IFNs on SARS-CoV-2 infection. Similarly, PHA stimu-
lated T cells from a patient with AR IFNAR1 deficiency had impaired IFNAR1 expression
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and response to type I IFNs. Then, the authors checked the functional consequences of
IRF7 and IFNAR1 defects on SARS-CoV-2 susceptibility in vitro, taking into account that
angiotensin-converting enzyme 2 (ACE2) works as a receptor for SARS-CoV-2, and that
transmembrane protease serine protease 2 (TMPRSS2) processes SARS-CoV-2 S protein
and activates viral entry [2,89]. Thus, they noticed that TLR3−/−, TLR3+/−, IRF7−/−,
and IFNAR1−/− fibroblasts previously transduced with ACE2 and TMPRSS2 were more
susceptible to SARS-CoV-2 infection in vitro vs. cells from control subjects but were rescued
by transduction of wild type IRF7 or IFNAR1. All these data suggest that genetic defects in
the pathway of type I IFNs may be key determinant of COVID-19 severity [113].

Comforting these results, a recent study detected, validated and replicated the associa-
tion between COVID-19 severity (i.e., admission to critical care) and rs2236757 (chr21q22.1)
in the interferon receptor gene IFNAR2 and rs10735079 in the gene cluster coding for
interferon-inducible 2’-5’-Oligoadenylate Synthetase (OAS) 1, 2, and 3 (chr12q24.13) com-
paring severe COVID-19 patients with controls from the population [117] (Table 3). OAS
genes encodes for enzymes that synthetize 2′,5′-oligoadenylate, leading to RNase L acti-
vation and dsRNA degradation [124]. Exon 3 and 3′ untranslated region (UTR) variants
in OAS1 are reported to confer increased susceptibility to and protection against SARS,
respectively [115].

Interferon-induced transmembrane protein 3 (IFITM3) is an endosomal antiviral pro-
tein which is upregulated as a consequence of type I and type II interferon signaling as
well as by cytokines like IL-6. The rs12252(C) allele in IFITM3 (chr. 11p15.5) was as-
sociated with influenza severity and mortality, and faster progression of HIV infection
towards AIDS [125–128]. As regards COVID-19, the rs12252 (C) allele is considered a risk
variant [120], especially as regards the homozygosity for the C allele, i.e., the (CC) geno-
type, in symptomatic cases [118,129]. As discussed in the previous sections, the adoption
of uniform criteria to describe disease severity and the careful choice of the compared
groups/populations are essential in order to obtain reproducible results. Comparing
COVID-19 mild (fever, respiratory symptoms, and pneumonia at imaging) patients with
severe (respiratory distress, blood oxygen saturation <93%, ratio of arterial oxygen pressure
to fraction of inspired oxygen <300 mm Hg, respiratory failure with mechanical ventilation,
shock, or other organ failure requiring intensive care in the intensive care unit) cases,
an association between homozygosity for the C allele (CC vs. CT/TT) and disease severity
was detected in logistic regression analysis adjusted for age (Table 3) [118]. Another study
failed in demonstrating a significant association between carrying the C allele and disease
severity intended as critical care support (including high-flow oxygen, positive-pressure
ventilation or vasoactive drugs), but showed that carrying the C allele was associated with
an increased risk of hospitalization comparing COVID-19 patients vs. controls—recruited
before the pandemics—whose status about COVID-19 was unknown, with results keep-
ing their significance in multiple logistic regression adjusted for age and sex (Table 3).
No specific statistical analysis for the homozygosity for the C allele was carried [119].

Protein Activator of the Interferon-Induced Protein Kinase (PRKRA) together with
IFN-induced, double-stranded RNA-activated protein kinase (PKR) is a long-time de-
scribed mediator of interferon antiviral activity [130–132]. By whole exome sequencing
and unbiased collapsing gene analysis, an Italian study identified PRKRA as one of the
two protective genes (see below) comparing hospitalized COVID-19 patients with con-
trols of unknown status. In this context, the deleterious variant was more frequent in
COVID-19 patients than in controls [120].

4.2. Other Cytokines, Chemokines and Their Signaling Pathways

Data about promoter polymorphism -308 (G/A) (rs1800629) of TNF-α depict its in-
volvement in the immune response set up and maintenance in different clinical scenarios,
but the explanation of the related molecular mechanism is still pending. The minor allele
A was described as associated with the risk of inflammatory disorders, sepsis, chronic
obstructive pulmonary disease and asthma, whereas it confers protection against Dengue
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fever and has no effect on Kawasaki disease [133–138]. In addition, it exhibits a relation
with increased serum TNF-α levels in asthma and not uniformly in cancer patients, but an
analogous influence on transcription was not detected in other contexts like Alzheimer’s
disease and generalized vitiligo [139–143]. A hospital-based case-control study comparing
COVID-19 patients with controls described the frequency of −308 (G/A) TNF-α polymor-
phisms. The AA genotype and the A allele were more frequent in COVID-19 subjects
vs. the control group (p = 0.019 and p = 0.005, respectively). Moreover, the AA genotype
was associated with age > 60 years, increased degree lymphopenia, high CRP and serum
ferritin (Table 3). The AA genotype was more frequent in severe (with any of the following:
tachypnoea with a respiratory rate more than 30 cycle/min; PaO2 less than 300 mmHg;
oxygen saturation below 93 at rest; shock; respiratory failure or other organ dysfunction)
vs. mild cases (Table 3), with no GG genotype detected among severe patients. All dead
subjects in this study carried the AA genotype [121].

Chemokine receptors are undoubtedly a keystone of immune cell trafficking; in par-
ticular, C-C Motif Chemokine Receptor 9 (CCR9) has a documented role in mediating
immune cell localization in inflammatory disorders, C-X-C Motif Chemokine Receptor
6 (CXCR6) rules memory T cell recruiting in the airways, and X-C Motif Chemokine Re-
ceptor 1(XCR1), with its ligand X-C Motif Chemokine Ligand 1 (XCL1), has effects on the
establishment of cytotoxic immune responses [144–151]. Thus, it would sound logical to
suppose that any polymorphism impacting the transcription levels of these three recep-
tors may affect the ability to mount an adequate immune response, also against airway
pathogens. A GWAS revealed that the rs11385942 insertion–deletion GA or G variant at
locus 3p21.31 was associated with COVID-19 related respiratory failure. The homozy-
gosity for the risk allele GA was encountered in younger subjects vs. heterozygosity or
homozygosity for the non-risk allele (59 years median age—interquartile range 49 to 68-
vs. 66 years median age—interquartile range, 56 to 75; p = 0.005). The association locus
included genes coding for chemokine receptors CCR9, CXCR6, and XCR1 (plus the genes
SLC6A20, LZTFL1, and FYCO1), and the risk allele GA of rs11385942 accounted for a
reduction in the expression of CXCR6. Moreover, the frequency of the risk allele was
associated with a higher risk of receiving mechanical ventilation, also after correction for
sex and age (Table 3) [28]. More studies are necessary to deepen these results, also estab-
lishing a causal relationship between expression of chemokine receptors and history of
the SARS-CoV-2 infection. Supporting this urgency, an Italian study focused on hospi-
talized COVID-19 patients looking for variants involved in viral infection, susceptibility
or protection by whole exome sequencing; the authors detected variant rs1799864 of C-C
Motif Chemokine Receptor 2 (CCR2) in 8 out of 35 patients and rs1800940 of CCR5 (both
associated with protection against HIV) in 1 out of 35 patients [120,152,153]. Furthermore,
in lung tissues, transcriptome-wide association demonstrated that predicted low levels of
CXCR6 together with low expression of CCCR3 and high expression of CCR2 are associated
with severe COVID-19 (defined as admission to critical care) vs. controls [117,154].

There is a general paucity of data regarding interleukin signaling pathways; however,
interesting information may be extrapolated by more general studies. Products of the
neighboring transmembrane protein 189 (TMEM189) and ubiquitin-conjugating enzyme
E2 variant 1 (UBE2V1) genes are involved in IL-1 pathway, with variants in UBE2V1 also
associated with HIV-1 acquisition risk [155–158]. Using a genome wide association ap-
proach on COVID-19 patients divided into a mild (asymptomatic+mild+moderate subjects)
group and a severe (severe+critically ill subjects) group according to Chinese CDC criteria,
a report documented that A allele frequency of intronic rs6020298 in TMEM189–UBE2V1
(chr. 20q13.13) showed a significant association with both mild and severe conditions
(Table 3) and a severity score estimated on the basis of age, gender and laboratory as-
sessment (linear regression p = 1.1 × 10–6, β = 0.35). A similar association is shown by
SNPs in linkage disequilibrium with rs6020298 (r2 > 0.8). The rs6020298 variant is an
expression quantitative locus (eQTL) for TMEM189, with the A allele increasing TMEM189
expression [10].
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A number of results are already available to address future research in this direction,
in the form of papers awaiting the peer review process.

One preprint compares the frequency of rs1800796 and rs1800795 of IL-6, rs2228145 of
IL-6R, rs1800896 and rs1800871 of IL-10, rs2275913 of IL-17A and rs76378 of IL-17F as
recorded in previous studies with the prevalence/106 population and mortality/106 popu-
lation of COVID-19 in China, Japan, India, Iran, Spain, Italy, Mexico, Netherlands, Sweden,
Turkey, Finland, Brazil, Czechia, Russia, Poland, suggesting a possible role for rs2275913 of
IL-17A in COVID-19 prevalence and mortality [159–162]. This piece of data is particu-
lar intriguing, assuming that the analyzed polymorphism is reported as associated with
susceptibility to cutaneous and airway infections, ARDS and asthma [163–169].

Another preprint leading with supervariants involved in COVID-19 mortality focuses
on the possible role of rs60811869, an eQTL of gene of the E3 ubiquitin ligase WD Repeat
And SOCS Box Containing 1 (WSB1), in determining death rates among COVID-19 pa-
tients [170,171]. WSB1 is a particularly promising candidate, being involved in hormone
homeostasis and hypoxia, as well as in the maturation of IL-21 receptor with IL-21 being a
key player in humoral immunity and in the formation of the immune memory [172–176].

4.3. Other Genetic Determinants of Establishment/Maintenance/Resolution of the Immune
Response and Antigen Presentation

Among dipeptidyl peptidase (DPP) family members, DPP9 on chromosome 19 seems
to be implicated in macrophage differentiation and apoptosis [177,178]. In addition, it is
involved in idiopathic pulmonary fibrosis [179]. Variant rs2109069 in the DPP9 gene is
associated with disease severity in a cohort of UK patients (Table 3) [117]. Instead, DPP7
(9q34.3) is essential for the maintenance of quiescence in lymphocytes [180–182] and its
expression is associated with influenza vaccination response [183]. Using a pedigree
approach, a study demonstrated that a 1-bp insertion in DPP7 (rs11391519), disrupting
gene transcription, was present in asymptomatic subjects [10].

Looking for monogenic effects determining COVID-19 severity, the same group re-
ported the rs143359233 splice acceptor variant in golgin subfamily A 3 (GOLGA3, chr.
12q24.33) in critically ill patients (defined as subjects with one of the following conditions:
respiratory failure and requesting mechanical ventilation, shock, failure of other organs
and requesting intensive care monitoring) [10,184]. This is an interesting piece of data,
since golgin family members are involved in nuclear transport, and another variant in
GOLGA3 (rs12282) is associated with response to smallpox vaccine [185,186]. Intrigu-
ingly, this does not seem to be the only member of the golgin family involved in defining
the history of SARS-CoV-2 infection. In fact, through the single variant association test
to compare COVID-19 hospitalized cases and controls, missense variant rs200975425 in
golgin A8 family member B (GOLGA8B in15q14) emerged as associated with infection
susceptibility [10,187–189].

Resident macrophages engaged in the fight against SARS-CoV-2 may be influenced
by genetic variants ruling polarization—thus tissue macrophages’ functions. Macrophage
stimulating 1 receptor (MST1R in 3p21.31) is expressed on macrophages and involved
in their polarization [190–195]. In unrelated samples Wang et al. identified a loss of
function variants in MST1R (hg38 chr3:49896789_C/T) in asymptomatic and mild subjects
comparing them with moderate, severe and critically ill patients (all categories defined
according to the Chinese CDC criteria) [10].

Antigen presentation by HLA-DR may be a further potential pattern whose molecular
defects may lead to an incomplete or insufficient response in COVID-19 patients. Expres-
sion of lysosomal localized Lysosomal Protein Transmembrane 4 β (LAPTM4B in 8q22.1),
a lysosomal regulator of autophagy and an essential partner for endosomal transporters is
finely regulated, since its overexpression causes enlargement of lysosomes [26,196–199].
LAPTM4B is the second gene identified by an Italian study for which deleterious variants
were reported at higher frequencies in COVID-19 patients than in controls (Table 3) [120].

Other candidate genes may be involved in immune cell activation at various levels,
as the pro-inflammatory allele ε4 (apoliprotein E in 19q13.32) ApoE gene is known to
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be involved in the pathophysiology of age-related inflammatory diseases as well as in
susceptibility to infectious diseases [200,201]. In a logistic regression model adjusted also
for age and sex, the ApoE ε4ε4 homozygous genotype was found to be associated with
an increased risk of developing COVID-19 vs. ε3ε3 homozygotes (Table 3), preserving
its statistical significance after the exclusion of participants related to the third degree
or closer, and patients carrying ε4 with dementia, hypertension, cardiovascular disease,
and type 2 diabetes. In this study, disease positivity for COVID-19 was interpreted as
a synonym of severity, given that testing was restricted to hospitalized symptomatic
patients [14,122]. The same authors later expanded their analysis and noticed that carrying
ε4 represents a susceptibility factor (Table 3), but only the results for ε4ε4 genotype kept
their statistical significance after the exclusion of patients carrying ε4 with dementia,
hypertension, cardiovascular disease, and type 2 diabetes. Similarly, comparing COVID-
19 patients who died with subjects from the UK biobank excluding COVID-19+ surviving
subjects, the ApoE ε4ε4 homozygous genotype was found to be significantly associated
with an increased risk of death vs. ε3ε3 homozygotes (Table 3) even after the exclusion
of patients carrying e4 with dementia, hypertension, cardiovascular disease, and type
2 diabetes [123].

Figure 1 summarizes immunogenetic factors discussed in the present review [202–213].

Figure 1. Scheme of factors influencing susceptibility to and severity of COVID-19. “Lifestyle”
refers to habits (in terms of quality of nutrition, physical activity, drug consumption, smoking) and
to socio-economic parameters (access to the health care system, level of education, access to high
quality medical information), i.e., the social determinants of health. “Environment” (intended as
exposure to contaminants, pollution, and non-ionizing radio frequency, but also as exposure to
multiple pathogens) is relevant since it mechanistically modifies the immune response [202–210].
Viral genetic variants and their effects on virulence/COVID-19 severity are also a matter of intense
research [211–213].

5. Discussion

The continuously updated epidemiological and molecular data tell a story of a pan-
demic still lacking universally shared treatment protocols [2,214,215]. It is pretty evident
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that a number of factors contribute to determine SARS-CoV-2 infection susceptibility and
COVID-19 severity (Figure 1), and that such a high number of new infections/hospitalized
cases put extreme pressure on the global web of health care systems, creating the premises
for the urgent need for a shared scheme to face the pandemic [2,214,216]. Together with
public health measures to control the spread of the infection, stratifying patients according
to the risk of developing a life-threatening disease could be a winning strategy to ensure the
highest reachable survival rates while waiting for the completion of a global vaccination
plan or the introduction of SARS-CoV-2 specific antiviral drugs [2,89,215]. The elaboration
of an algorithm to calculate the probability of requiring hospitalization and to predict
the efficacy and safety of early treatment/targeted treatment is an attractive perspective.
Current efforts in this sense are focused on a number of predictors among clinical and
laboratory evidence [1,217]. As demonstrated by experimental data, in this process the
impact of host genetics, and—even better—immunogenetics should be surely included,
together with gender related immunogenetic differences.

Although SARS-CoV-2 may infect people regardless of age, ethnic group or sex,
male older subjects have been identified as a high-risk group regarding the clinical out-
come of the disease, both for developing severe pneumonia with respiratory distress and
death [1,2,67]. The reason behind the increased severity of the disease in the male older
population is currently an unanswered question. A sex-specific GWAS performed in the UK
showed no sex specific association [117]. However, it has been demonstrated that a more
rapid aging of the immune system occurs in men than women. In fact, the strength and
types of immune responses are different between men and women. Oestrogens promote
while androgens suppress immune responses in the case of infections, vaccination and
autoimmunity. On these grounds, men are more susceptible to many infections, while
women suffer more from infectious diseases with enhanced immunopathological impact
as well as from autoimmune diseases [71]. Peripheral blood mononuclear cells of men
and women significantly differ after the age of 65, contradicting expectations related to
declining sex hormones. Annotation of sex-biased loci reveal that older women have higher
genomic activity for adaptive cells and older men have higher activity for monocytes and
inflammation [218,219].

In the case of COVID-19, some authors proposed that polymorphism in ACE2 gene
(located on chromosome X) coding and regulatory regions may partially explain such a
sex-connected variability [11]. However, other factors may be involved, possibly including
biochemical patterns ruling natural defenses against viruses (for example the sex related
differences in H2S synthesis) as well as genes involved on immune responses located on
chromosome X like CD40 ligand (CD40L), TLR7, TLR8, forkhead box p3 (FOXP3) and C-X-C
Motif Chemokine Receptor 3 (CXCR3) [219–225]. Supporting this hypothesis, a study per-
formed on two unrelated families (each one with a pair of male brothers with severe COVID-
19) identified two variants in TLR7: (I) a pLOF variant NM_016562.3 c.2129_2132del,
p.(Gln710Argfs*18) in the first family and (II) a missense variant NM_016562.3 c.2383G>T,
p.(Val795Phe) in the second family. These variants significantly impaired the increase in
TRL7 transcription, the upregulation of type I IFN-related genes interferonβ 1 (IFNB1), IRF7
and ubiquitin-like modifier ISG15 (ISG15) in the TLR7 pathway, and the IFN-γ production
after stimulation with imiquimod [226–228].

The sex effect may also be the result of an interplay between non-immune oestro-
gen/progesterone/androgen functions and other immune causes. Intriguingly, a significant
association was described between blood type A and frequency of COVID-19 in the female
subgroup (p = 0.02, OR = 1.56, 95% CI = 1.08–2.27) but not in the male subgroup of analyzed
subjects (p = 0.51, OR = 1.14, 95%CI = 0.78–1.67) in a cohort of gender-stratified Chinese
controls and COVID19+ patients [24].

In addition, the role of ethnic dependent differences in the frequency of variants in
immunity ruling genes would be worth deeper investigation. In this sense, the choice
of technical strategies to investigate the immunogenetic diversity is crucial in order to
obtain the deepest pieces of information and to predict the course of the disease. GWAS is
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surely a helpful approach in the identification of those ethnic groups showing an in-
creased susceptibility to SARS-CoV-2 infection/life threatening COVID-19. GWAS are
frequently performed on nationally available pools of patients [28,117,171]. It would be
highly recommendable that the impact of ethnicity related genetic diversity is always
deeply investigated [107], even when the chosen patients appear to be homogeneous for
their ethnic background [28,171]. All GWAS data should be confirmed on larger/cross
national scales, stratifying the obtained results on the basis of ethnic differences of the
studied populations, thus in terms of genetic background.

Future analysis should include genes that have not been studied yet, such as, for ex-
ample, KIRs and immunoglobulin G heavy chain (GM). KIRs, expressed on the membrane
of NK cells and a minority of T lymphocytes, regulate the killing function of these cells by
interacting with specific amino acid motifs (public epitopes) carried by some HLA class
I molecules and expressed on their targets. The KIR gene complex is characterized by
multiple gene-content haplotypes, i.e., it is polygenic and some genes are polymorphic.
KIRs are able to detect cells infected by viruses and transformed cells by binding the
different class I allelic variants. Most inhibitory KIRs specifically recognize sets of HLA
class I alleles. Specific combinations of KIRs with their cognate HLA ligands have been
associated with onset and severity of infectious diseases [229–231]. This supports the role
for HLA class I diversity in the innate immune response in addition to the documented
acquired immune response. GM allotypes contribute to the inter-individual differences in
the magnitude of immune responsiveness. GM allotypes have been shown to be associated
with immune responsiveness to several major infectious pathogens and with survival of
epidemics [231].

Furthermore, another type of immune response control also deserves in-depth studies
in relation to COVID-19: the so-called trained immunity. Indeed, exposure to selected
vaccines, such as bacille Calmette—Guérin (BCG) or microbial components, can increase the
baseline tone of innate immunity and trigger pathogen-agnostic antimicrobial resistance.
Such epigenetics training is directly relevant to resistance against infectious diseases,
including COVID-19 and several trials to determine whether BCG can help prevent or
ameliorate COVID-19 are under way [232].

6. Conclusions

Experimental data underline the contribution of immunogenetics in determining
the susceptibility to SARS-CoV-2 infection as well as severity and mortality of COVID-
19. Some of the involved genes and loci have already been analyzed in literature for
their involvement in other infectious processes (as happened for example for AB0 locus,
HLA genes, sequences regulating the expression of/coding for cytokines and chemokines);
others are less investigated and may open the space for mechanistic studies (for example,
Golgin and DPP genes). The most evident conclusion is that available reports are not always
reproducible, and no definitive conclusions may be inferred since a lack of uniformity
hampers the elaboration of a definitive cause–effect relationship. This situation may depend
on differences in the experimental settings and adopted criteria to stratify the analyzed
population, as well as on other factors influencing the genetic background of the immune
response, such as environment and lifestyle (also accounting for epigenetics modulation).

A huge comprehension of the impact of genetic/epigenetic variants on immune mech-
anisms would offer the chance to: (i) identify those molecular pathways that are impaired
in the setting of the immune response against SARS-CoV-2, leading to a more severe disease
and to a more difficult resolution of the infection; (ii) concentrate the efforts on the design
of a personalized approach for those patients presenting variants associated with a notable
risk of altered lymphocyte distribution, uncontrolled or suboptimal immune response
and cytokine storm syndrome; (iii) detect molecular defects common to other diseases
that may be considered as possible targets in terms of drug repurposing [10,12,89,233–237].
This specific pandemic situation requires a global coordinated approach to face the disease
in a short time with the most limited loss of human lives. To reach such an ambitious and
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necessary goal, a priority will be the setting of shared criteria to stratify patients according
to their clinical presentation (i.e., COVID-19 severity) and the prompt validation of in silico
predictions, both of these representing a powerful tool to guarantee reproducibility of
results and proper interpretation of epidemiological and experimental data.

Author Contributions: Conceptualization, A.A., G.A. and C.C.; writing—original draft preparation,
F.P.; writing—review and editing, A.A., G.A., C.C. and D.A.G.; all authors provided suggestions
and comments on the manuscript. F.P. generated figure. All authors have read and agreed to the
published version of the manuscript.

Funding: “This research received no external funding”. Original work performed by G.C., C.C.,
G.A., A.A. is funded by Improved Vaccination Strategies for Older Adults granted by European
Commission (Horizon 2020 ID 848166).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ACE2 Angiotensin-converting enzyme 2
AD Autosomal-dominant
AH Ancestral haplotype
AIDS Acquired immunodeficiency syndrome
APACHE Acute Physiology and Chronic Health Evaluation
ApoE Apoliprotein E
AR Autosomal-recessive
ARDS Acute respiratory distress syndrome
CD40L CD40 ligand
CDC Centers for Disease Control and Prevention
CCR2 C-C Motif Chemokine Receptor 2
CCR3 C-C Motif Chemokine Receptor 3
CCR5 C-C Motif Chemokine Receptor 5
CCR9 C-C Motif Chemokine Receptor 9
COVID-19 Coronavirus disease 19
CRP C-reactive protein
CXCR3 C-X-C Motif Chemokine Receptor 3
CXCR6 C-X-C Motif Chemokine Receptor 6
DPP Dipeptidyl peptidase
EBV Epstein-Barr Virus
ECMO Extracorporeal membrane oxygenation
eQTL Expression quantitative locus
FOXP3 Forkhead box p3
GM Immunoglobulin G heavy chain
GOLGA3 Golgin subfamily A 3
GOLGA8B Golgin A8 family member B
GWAS Genome wide association study
HIV Human immunodeficiency virus
HLA Human Leukocyte Antigens
ICU Intensive care unit
IFITM3 Interferon-induced transmembrane protein 3
IFNB1 Interferon β 1
IFN-α Interferon-α
IFN-β Interferon-β
IFN-γ Interferon-γ
IFNAR1 IFN-α receptor 1
IFNAR2 IFN-α receptor 2
IL-1β Interleukin-1β
IL-6 Interleukin-6
IL-10 Interleukin-10
IL-17A Interleukin-17A
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IL-17F Interleukin-17F
IL-21 Interleukin-21
IP-10 Interferon γ-induced protein-10
IRF IFN regulatory factors
ISG15 Ubiquitin-like modifier ISG15
KIR Killer Immunoglobulin Receptors
KIR2DL2 Killer Cell Immunoglobulin-Like Receptor 2DL2
KIR2DL3 Killer Cell Immunoglobulin-Like Receptor 2DL3
LAPTM4B Lysosomal Protein Transmembrane 4 β
MIP-1α Macrophage inflammatory protein 1α
MIP-1β Macrophage inflammatory protein 1β
MMR Measles, mumps, and rubella
MST1R Macrophage stimulating 1 receptor
NEMO/IKBKG NF-κB essential modulator
NK Natural Killer
OAS 2’-5’-Oligoadenylate synthetase
PHA Phytohemagglutinin
PKR IFN-induced, double-stranded RNA-activated protein kinase
pLOF Predicted to be loss-of-function
PRKRA Protein Activator of The Interferon-Induced Protein Kinase
RBC Red blood cells
SNP Single nucleotide polymorphism
SOFA Sepsis-related Organ Failure Assessment
STAT1 Signal transducer and activator of transcription 1
STAT2 Signal transducer and activator of transcription 2
TBK1 TANK binding kinase 1
TICAM1/TRIF TIR-domain containing adaptor inducing IFN-β
TLR Toll like receptor
TMEM189 Transmembrane protein 189
TMPRSS2 Transmembrane protease serine protease 2
TNF-α Tumor necrosis factor-α
TRAF3 TNF Receptor Associated Factor 3
UBE2V1 Ubiquitin-conjugating enzyme E2 variant 1
UNC93B1 Unc-93 homolog B1
UTR Untranslated region
VEGF Vascular endothelial growth factor
VWF von Willebrand factor
WSB1 WD Repeat And SOCS Box Containing 1
XCL1 X-C Motif Chemokine Ligand 1
XCR1 X-C Motif Chemokine Receptor 1
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