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A B S T R A C T   

Background: Antipsychotic treatment has improved the disrupted functional connectivity (FC) and neuro-
metabolites levels of the default mode network (DMN) in schizophrenia patients, but a direct relationship be-
tween FC change, neurometabolic level alteration, and symptom improvement has not been built. This study 
examined the association between the alterations in DMN FC, the changes of neurometabolites levels in the 
medial prefrontal cortex (MPFC), and the improvements in psychopathology in a longitudinal study of drug- 
naïve first-episode psychosis (FEP) patients. 
Methods: Thirty-two drug-naïve FEP patients and 30 matched healthy controls underwent repeated assessments 
with the Positive and Negative Syndrome Scale (PANSS) and 3T proton magnetic resonance spectroscopy as well 
as resting-state functional magnetic resonance imaging. The levels of γ-aminobutyric acid, glutamate, N-acetyl- 
aspartate in MPFC, and the FC of DMN were measured. After 8-week antipsychotic treatment, 24 patients were 
re-examined. 
Results: After treatment, the changes in γ-aminobutyric acid were correlated with the alterations of FC between 
the MPFC and DMN, while the changes in N-acetyl-aspartate were associated with the alterations of FC between 
the posterior cingulate cortex/precuneus and DMN. The FC changes of both regions were correlated with patients 
PANSS positive score reductions. The structural equation modeling analyses revealed that the changes of DMN 
FC mediated the relationship between the changes of neurometabolites and the symptom improvements of the 
patients. 
Conclusions: The derived neurometabolic-functional changes underlying the clinical recovery provide insights 
into the prognosis of FEP patients. It is noteworthy that this is an exploratory study, and future work with larger 
sample size is needed to validate our findings.   

1. Introduction 

The aberrant organization of functional brain networks plays an 
important role in the pathology of schizophrenia (SCZ) (McCutcheon 
et al., 2020). Among them, the functional activity changes in the default 
mode network (DMN) have been most commonly reported in SCZ 

patients (Landin-Romero et al., 2015; O’Neill et al., 2019; Whitfield- 
Gabrieli and Ford, 2012). For example, the within-DMN functional 
connectivity (FC) decreased in first-episode psychosis (FEP) (Bastos- 
Leite et al., 2015; Camchong et al., 2011) and increased in medicated 
SCZ patients or their first-degree relatives (Whitfield-Gabrieli et al., 
2009). Also, decreased anticorrelations between DMN and dorsolateral 
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prefrontal cortex (DLPFC) were consistently found in the subjects at 
ultra-high risk for psychosis (Shim et al., 2010) and medicated SCZ 
patients or their relatives (Whitfield-Gabrieli et al., 2009; Liu et al., 
2012). More importantly, longitudinal studies have suggested that 
antipsychotic medication might act on the DMN-related brain networks. 
For example, increased posterior cingulate cortex/precuneus (PCC/PCu) 
FC was found after 8-week risperidone monotherapy for drug-naïve FEP 
(DN-FEP) patients (Zong et al., 2019). Increased DMN-DLPFC anti-
correlations were found in SCZ patients after 8 weeks of olanzapine 
treatment, compared to 4 weeks of treatment (Sambataro et al., 2010). 
Nevertheless, the underlying neurometabolic mechanism of the DMN- 
related FC changes as well as its relationship to the therapeutic effects 
in SCZ patients remain not fully understood. 

The intrinsic brain functional activity is attributed to the gamma 
oscillations generated by the interplay between excitatory and inhibi-
tory neurons (McCutcheon et al., 2020). Using combined functional 
magnetic resonance imaging (fMRI) and proton magnetic resonance 
spectroscopy (1H-MRS), the relationship between brain functional ac-
tivity and neurometabolic concentrations could be evaluated non- 
invasively. Chen et al. found that the γ-aminobutyric acid (GABA) 
concentration in the medial prefrontal cortex (MPFC) was closely 
related to the within-DMN deactivation and the anticorrelation between 
DMN and DLPFC in healthy subjects (Du et al., 2018). In SCZ patients, 
disrupted correlations between the cognitive task-related functional 
responses and the local glutamate or GABA levels were constantly re-
ported (Cadena et al., 2018; Kaminski et al., 2020; Overbeek et al., 
2019). Moreover, the resting-state FC between DMN and hippocampus 
was found to be correlated with the hippocampal glutamatergic signal in 
DN-FEP patients, indicating the intrinsic coupling between the func-
tional and neurometabolic signals at baseline (Nelson et al., 2020). 
Recently, a growing interest has been drawn to the therapeutic effect of 
pharmacological intervention on the neurometabolites concentrations 
of SCZ patients. Using 1H-MRS, it was shown that the elevated GABA 
concentration in the MPFC of DN-FEP patients was decreased after 4- 
week risperidone treatment (de la Fuente-Sandoval et al., 2018). The 
increased thalamic glutamate level was normalized after 6 and 26 weeks 
of treatment in DN-FEP patients (Bojesen et al., 2020). After 6 weeks of 
antipsychotic treatment, the SCZ patients showed a normalized rela-
tionship between the functional activation in the anterior cingulate 
cortex (ACC) and its regional glutamate concentration (Cadena et al., 
2018). Nevertheless, the alterations of brain functional-neurometabolic 
signals in relation to the clinical recovery after pharmacological inter-
vention for SCZ patients remain to be elucidated. 

In this study, we aim to investigate the relationship between FC 
change, neurometabolites levels alteration, and symptom improvement 
of DN-FEP patients, before and after 8-week antipsychotic treatment. We 
hypothesized that the decreased FC of DMN in FEP patients would be 
enhanced after medication, which might be related to the alterations in 
neurometabolite and neurotransmitter concentrations, e.g., decreased 
GABA level within DMN after antipsychotic treatment (de la Fuente- 
Sandoval et al., 2018). Furthermore, we hypothesized that the coupled 
functional-neurometabolic changes would be related to patients’ clinical 
recovery after medication. A combined resting-state fMRI and 1H-MRS 
methodology was utilized for brain functional and neurometabolic im-
aging. This longitudinal design allows us to investigate the therapeutic 
effects of the neurobiological substrate in SCZ without the confounds of 
medication at baseline and illness chronicity. 

2. Methods and materials 

2.1. Participants 

Thirty-two drug-naïve, right-handed FEP patients [mean age: 26.8 
years (range: 19 to 40 years)] and 30 age-, sex-, and education-matched 
healthy controls (HCs) [mean age: 27.1 years (range: 20 to 39 years)] 
participated in this study. The patients were recruited from Shanghai 

Mental Health Center, and the HCs were recruited from the local com-
munity. Exclusion criteria included substance abuse, major medical/ 
neurological conditions, other psychiatric or neurological diseases, 
pregnancy or breastfeeding, and MRI contraindications. All the patients 
were diagnosed using the Diagnostic and Statistical Manual of Mental 
Disorders, Fifth Edition (DSM-5) (American Psychiatric Association 
[APA], 2013) diagnostic criteria (Association, 2013) by an experienced 
psychiatrist. Inclusion criteria for patients include 1) fulfilled the 
Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition 
(DSM-5) (American Psychiatric Association [APA], 2013) diagnostic 
criteria (Association, 2013) for schizophrenia, schizophreniform or 
schizoaffective disorder; 2) age between 18 and 40 years old; 3) no 
previous contact with health services for psychosis; 4) duration of un-
treated psychosis in <5 years; 5) provided informed consent. All control 
subjects underwent interviews with the Mini-International Neuropsy-
chiatric Interview (MINI) plus v 7.0 (Sheehan, 1998) to rule out Axis I 
diagnosis. All participants underwent clinical assessment, resting-state 
fMRI, and 1H-MRS scans. The clinical symptoms were assessed using 
the Positive and Negative Syndrome Scale (PANSS) (Kay et al., 1987). 
After the baseline MR scans, all the patients were treated with second- 
generation antipsychotics based on clinical evaluation, and the drug 
dosage was determined based on the clinical judgment. After 8 weeks of 
medication, 24 patients received follow-up scans and clinical assess-
ments. This study was approved by the Institutional Review Board of the 
Shanghai Mental Health Center. All participants provided written 
informed consents. 

2.2. Image acquisition 

All image data were collected on a 3T Siemens Verio MR Scanner 
(Siemens AG, Erlangen, Germany) using a 32-channel head coil. To 
minimize head motions, additional padding was placed around each 
subject’s head. The T1-weighted MR images were acquired for 
anatomical reference with a magnetization prepared rapid acquisition 
gradient-echo (MPRAGE) sequence (repetition time (TR) = 2530 ms, 
echo time (TE) = 3.65 ms, flip angle (FA) = 7◦, field of view (FOV) =
256×256 mm2, matrix size = 256×256, slice number = 224, slice 
thickness = 1 mm, voxel size = 1.0 × 1.0 × 1.0 mm3). The single-voxel 
1H-MRS data were acquired using a MEGA-PRESS spectral editing 
sequence (Mescher et al., 1998) (voxel size = 30×30×30 mm3, TR =
1500 ms, TE = 69 ms, number of averages = 128, edit pulse frequency =
1.90 ppm, edit pulse bandwidth = 45 Hz). The voxel was placed in front 
of the corpus callosum and centered on the interhemispheric fissure to 
optimally cover the MPFC region, as shown in Fig. 3A. The resting-state 
fMRI data were acquired using a gradient-echo echo-planar imaging 
(EPI) sequence (TR = 2000 ms, TE = 30 ms, FA = 90◦, FOV = 220×220 
mm2, matrix size = 64×64, slice number = 30, slice thickness = 4 mm, 
slice gap = 0 mm, voxel size = 3.4×3.4×4.0 mm3). All subjects were 
required to lay supine and remain awake without systematic thinking 
during the scan. 

2.3. 1H-MRS data processing 

The 1H-MRS data were quantified using LCModel software 
(http://s-provencher.com/pages/lcmodel.shtml; RRID: SCR_014455) 
(Provencher, 1993). The unsuppressed water signal was used for eddy- 
current correction and as the reference for metabolite quantification. 
For quality control, only concentrations with quantification Cramer-Rao 
lower bounds (CRLB) < 20% were included for further analysis. Detailed 
information for spectral quality and voxel tissue composition were 
compared among the three groups. As summarized in Supplementary 
Table S1, no significant between-group differences were detected. The 
corrections of partial volume effects were performed for all the data (see 
Supplementary Methods). 
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2.4. FMRI data processing 

2.4.1. FMRI data preprocessing 
The fMRI data were preprocessed using the Data Processing Assistant 

for Resting-State fMRI Toolbox (DPARSFhttp://rfmri.org/DPARSF; 
RRID:SCR_002372) (Yan and Zang, 2010). The first 10 frames were 
removed to alleviate the impact of the subjects’ inadaptation to the 
scanning environment, and the slice-timing correction was performed to 
correct the interleaved acquisitions. The acquisition time delay was 
corrected by realigning the remaining 170 volumes to the first volume. 
Head motion correction, spatial normalization to the Montreal Neuro-
logical Institute (MNI) space with a resampled resolution of 3×3×3 
mm3, and band-pass filtering (0.01–0.1 Hz) were then performed. The 
nuisance signals, including Friston 24 head motion parameters (Friston 
et al., 1996), 5 principal components of the time courses extracted from 
white matter (WM) and cerebral spinal fluid (CSF), as well as the global 
signal, were regressed out from each voxel’s time series. The analysis 
without global signal regression was also performed to show the 
robustness of the results, as illustrated in Supplementary Fig. S1 and 
Fig. S2. Spatial smoothing with a 6-mm full-width half-maximum 
Gaussian kernel was applied to all fMRI images. To minimize the in-
fluence of head motion, we excluded the participants with over 0.25 mm 
mean framewise displacement (FD) (Power et al., 2012), or with over 
2.5 mm translation or 2.5◦ rotation in any direction. The fMRI data of 
two healthy control subjects, one FEP patient at baseline and two pa-
tients at 8 weeks post treatment were excluded due to excessive head 
motions. A detailed flowchart of the data inclusion is provided in Sup-
plementary Fig. S3. 

2.4.2. Identification of the DMN 
The DMN was defined following the previous literature (Whitfield- 

Gabrieli et al., 2009), in which four DMN seed regions were used, 
including MPFC (-1, 47, − 4), PCC (-5, − 49, 40), left lateral parietal (-45, 
− 67, 36) and right lateral parietal (45, − 67, 36) peak foci, each repre-
sented with a 6-mm sphere. The DMN seeds were created based on the 
fslmaths command of FSL (https://fsl.fmrib.ox.ac.uk/fsl/; RRID: 
SCR_002823). For each seed, Pearson’s correlation coefficients were 
calculated between its mean time series and those of the other voxels in 
the brain. The coefficient maps were obtained for each subject indi-
vidually and converted into z-maps using Fisher z-transformation. By 
averaging the z-maps from all four seeds, we obtained one mean z-map 
for each subject, which reflects the widespread connectivity with the 
DMN regions. To determine the DMN regions, one-sample t-tests were 
performed for the average z-maps of each group, and the results were 
corrected for multiple comparisons using false discovery rate (FDR) 
correction at p < 0.001. The DMN map of the HC group was binarized as 
the DMN mask and used for subsequent analyses. Graphical represen-
tation of the above analyses can be found in Supplementary Fig. S4A. 

2.4.3. Identification of the anticorrelation networks with DMN 
Since the anticorrelated networks for different DMN seeds are 

strikingly different (Uddin et al., 2009), the anticorrelation analyses 
were separately performed for the z-maps of MPFC and PCC seed, which 
are two functional hubs of the DMN (Fransson and Marrelec, 2008; 
Uddin et al., 2009). To identify the anticorrelated networks of each seed, 
one-sample t-tests were performed for the z-maps. The anticorrelation 
mask of each seed was determined from the FDR (p < 0.001) correction 
results. Graphical representation of the above analyses is provided in 
Supplementary Fig. S5A. 

2.4.4. Calculation of FCS 
To quantitatively measure the FC with DMN, the functional con-

nectivity strength (FCS) was calculated as the average FC within a given 
cluster to the voxels within the DMN. For cluster i, the FCS was defined 
as (Liang et al., 2013): 

FCS(i) =
1
N

∑N

j=1
zij (1) 

for j = 1,⋯,N , where N is the number of voxels within the DMN 
mask, zij denotes the Fisher z-transformed correlation coefficient be-
tween the mean fMRI time series of a cluster i and that of each voxel j 
within the DMN mask. Graphical representation of the calculation of 
FCS within and anticorrelation with DMN can be found in Supplementary 
Fig. S4C and Fig. S5C, respectively. 

2.5. Statistical analyses 

2.5.1. Group comparisons of functional connectivity 
To identify the regions that showed the most significant differences 

in FC between HCs and DN-FEP patients, two-sample t-tests were per-
formed on the average z-maps within the DMN mask as well as the z- 
maps of MPFC seed and PCC seed within the anticorrelation networks. 
To investigate the longitudinal alterations of the FC, paired-sample t- 
tests were similarly performed on the z-maps between FEP patients at 
baseline and at 8 weeks within the DMN and anticorrelation masks. 
Clusters that showed significant between-group differences were cor-
rected for multiple comparisons using AlphaSim correction (p < 0.001). 
All the above analyses were implemented in a MATLAB-based REsting- 
State fMRI data analysis Toolkit (REST, http://www.restfmri.net; RRID: 
SCR_009641). 

2.5.2. Group comparisons of neurometabolic levels and clinical 
characteristics 

The group comparisons were performed using SPSS 19 (https 
://www.ibm.com/products/spss-statistics; RRID: SCR_019096). All 
data have been tested for normality using Kolmogorov-Smirnov tests. 
For normally distributed measures, two-tailed two-sample t-tests were 
utilized to compare the group differences at baseline; paired t-tests were 
used to compare the patients’ longitudinal data. For non-normally- 
distributed measures, between-group differences were evaluated by 
the Mann-Whitney U tests; the longitudinal data were tested using 
Wilcoxon signed-rank tests. The outliers were identified using the 
function ‘outlierTest’ from the ‘car’ package in R software (Fox and 
Weisberg, 2018), which reports the Bonferroni corrected p-values for the 
extreme observations. If p < 0.05, it is considered as an outlier and was 
removed. 

2.5.3. Correlation analyses of the functional and neurometabolic changes 
For the correlation analyses between the longitudinal changes of FCS 

and neurometabolic levels as well as between the longitudinal changes 
of FCS and clinical scores, we used the MPFC and PCC/PCu as the re-
gions of interest (ROIs) for the calculation of regional FCS. The rationale 
is these ROIs are the two major functional hubs in the DMN (Fransson 
and Marrelec, 2008; Uddin et al., 2009) and the clusters showing sig-
nificant between-group differences at baseline were identified within 
these two regions. The ROIs were delineated based on the AAL atlas, 
which included the medial superior frontal gyrus, posterior cingulate 
gyrus and precuneus, as shown in Fig. 3C and Fig. 3D (Tzourio-Mazoyer 
et al., 2002). The correlations were evaluated by partial correlation 
analyses with age and sex as covariates. 

2.5.4. Structural equation modeling 
The relationship among the changes of neurometabolites in MPFC, 

the FCS of DMN, and the recovery of patients’ clinical symptoms was 
evaluated using structural equation modeling (SEM). Based on the cor-
relation analyses results that the MPFC FCS changes were correlated 
with both the MPFC GABA alterations and patients’ PANSS positive 
symptom recovery, while the PCC/PCu FCS changes were associated 
with both the MPFC NAA changes and patients PANSS positive symptom 
recovery, we assumed that the FCS changes might serve as mediators 
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between neurometabolic changes and clinical symptom recovery. 
Therefore, an MPFC FCS mediation model (i.e., GABA change → MPFC 
FCS change → PANSS positive score change) and a PCC/PCu FCS 
mediation model (i.e., NAA change → PCC/PCu FCS change → PANSS 
positive score change) were built and shown in Fig. 4. The goodness-of- 
fit of the model was assessed using the χ2 test, goodness-of-fit index 
(GFI), and Akaike information criterion (AIC). A non-significant χ2 value 
and a GFI value above 0.9 indicated a good fit (Kline, 2015). The AIC 
was applied to penalize overfitting, with a minimal value being the 
preferred model (Akaike, 1974). The significance of the mediation ef-
fect, i.e., indirect effect, was evaluated by bootstrapping (5000 itera-
tions) confidence intervals. The mediation effect was considered 
significant if zero does not fall into the bias-corrected bootstrap 95% 
confidence interval (Cheung and Lau, 2008). 

3. Results 

3.1. Clinical characteristics 

Clinical characteristics are summarized in Table 1 for all partici-
pants. There were no significant differences between the DN-FEP pa-
tients and HCs in sex, age, and education (Table 1). After 8 weeks (62.9 
± 8.0 days) of treatment, 24 patients were re-examined and all patients’ 
PANSS scores significantly decreased. 

3.2. Functional connectivity with the DMN 

The DMN regions of HCs and DN-FEP patients are shown in Fig. 1A. 
There are 2 clusters within DMN that showed significantly decreased FC 
with DMN in DN-FEP patients (see Fig. 1B), with one cluster in the MPFC 
region (peak MNI coordinate: [-6, 63, 9]), and the other one in the PCC/ 
PCu region (peak MNI coordinate: [-12, − 48, 18]). The DN-FEP patients 
demonstrated significantly lower FCS than HCs in both clusters (MPFC 
cluster: t = 3.348, p = 0.002; PCC/PCu cluster: t = 2.228, p = 0.030). 
There was no significant difference in anticorrelation with PCC between 
HCs and DN-FEP patients. The regions showing anticorrelations with 
MPFC are exhibited in Fig. 2A. Compared to HCs, a cluster in DLPFC 
(peak MNI coordinates: [42, 42, 6]) was identified with significantly 
decreased anticorrelation (i.e., negative connectivity) with MPFC in the 
DN-FEP patients (t = - 2.520, p = 0.015), as shown in Fig. 2B. For the FC 
comparison between the FEP patients at baseline and at 8 weeks, there is 
one cluster within the DMN that showed increased FC in the MPFC re-
gion (peak MNI coordinate: [-12, 60, -18], t = - 4.725, p < 0.001). A 
cluster in the DLPFC (peak MNI coordinate: [-36, 39, 12], t = 4.567, p <
0.001) showed increased anticorrelation with the MPFC, and a cluster in 
the middle temporal gyrus (peak MNI coordinate: [-39, - 63, 6], t = - 
4.391, p < 0.001) showed decreased anticorrelation with the MPFC. The 
detailed cluster information is listed in Supplementary Table S2 and S3. 

3.3. Neurometabolites levels in the MPFC 

The 1H-MRS voxel placement and the correspondingly acquired and 
fitted spectra are shown in Fig. 3A. The GABA level in the MPFC of DN- 
FEP patients increased significantly compared to the controls (p =
0.034), as shown in Fig. 3B. No significant difference was found between 
the DN-FEP patients and healthy control groups in NAA or Glx, as pre-
sented in Supplementary Table S4. 

For GABA levels of MPFC, the differences between FEP patients and 
HCs were not significant after 8-week antipsychotic treatment (p =
0.821). No differences in NAA and Glx levels were found between FEP 
patients at baseline and after 8-week medication. The detailed results 
are provided in Supplementary Table S4. 

3.4. Associations of MPFC neurometabolites levels and DMN connectivity 

At baseline, no significant correlation was found between neuro-
metabolites and DMN FCS in the MPFC, PCC, or DLPFC cluster in FEP 
patients or HCs (Supplementary Table S5). After treatment, the DMN 
FCS values for the MPFC region were significantly correlated with the 
GABA levels in the MPFC voxel (r = - 0.611, p = 0.004) in the patients. 
More interestingly, the changes of GABA concentrations were negatively 
correlated with the changes of FCS in the MPFC of FEP patients (r = - 
0.525, p = 0.037) (Fig. 3C), while the changes of NAA concentrations 
were negatively correlated with the changes of FCS in the PCC/PCu of 
the patients (r = - 0.607, p = 0.013) post treatment (Fig. 3D). 

3.5. Functional-neurometabolic signal changes in association with 
symptom recovery of FEP patients 

The longitudinal alterations of FCS in the PCC/PCu were negatively 
correlated with the decreases in patients PANSS positive (r = - 0.540, p 
= 0.031) and PANSS general psychopathology subscales (r = - 0.551, p 
= 0.027), while the increases in FCS of MPFC were negatively correlated 
with the decreases of PANSS positive scores (r = - 0.531, p = 0.034) in 
the patients. More detailed correlation results can be found in Supple-
mentary Table S6. The changes of neurometabolites were not signifi-
cantly correlated with symptom recovery of FEP patients across the 8- 
week treatment, as shown in Supplementary Table S7. 

Table 1 
Demographic and Clinical Characteristics of Participants.  

Measure HC 
(n =
30) 

FEP 
0 (n =
32) 

FEP 1 
(n = 24) 

p value 
(HC vs. 
FEP 0) 

p value 
(HC vs. 
FEP 1) 

p value 
(FEP 
0 vs. 
FEP 1) 

Age (Years) 27.1 
(4.3) 

26.8 
(6.1) 

27.0 
(5.8) 

0.823a 0.962a  

Sex (Female/ 
Male) 

15/ 
15 

16/16 12/12 1.000b 1.000b  

Education 
(Years) 

14.3 
(2.4) 

13.0 
(3.2) 

13.4 
(3.1) 

0.310c 0.822c  

Handedness 
(Right/Left) 

30/0 32/0 24/0 1b 1b  

Current 
tobacco use 
(yes/no) 

8/22 3/29 2/22 0.057b 0.157b  

Current 
cannabis 
use (yes/no) 

0/30 0/32 0/24 1b 1b  

DUP (Months) NA 7.2 
(12.4) 

6.7 
(12.2)    

PANSS Total NA 73.8 
(18.2) 

48.6 
(14.1)   

<

0.001d 

PANSS 
Positive 

NA 20.3 
(5.3) 

10.9 
(3.6)   

<

0.001d 

PANSS 
Negative 

NA 16.9 
(6.1) 

12.7 
(5.0)   

<

0.001d 

PANSS 
General 

NA 36.7 
(9.9) 

24.7 
(6.8)   

<

0.001d 

CGI NA 4.8 
(0.9) 

3.0 
(1.1)   

<

0.001d 

CPZ eq (mg/ 
day) 

NA NA 335.4 
(140.2)    

Note: Values are presented as mean (SD). Abbreviations: HC, healthy control; 
FEP 0, drug-naïve first-episode psychosis; FEP 1, first-episode psychosis patients 
at 8 weeks post treatment; DUP, duration of untreated psychosis; PANSS, Posi-
tive and Negative Syndrome Scale; CGI, clinical global impression; CPZ eq, 
chlorpromazine equivalence. 

a Independent two-sample t-test. 
b Chi-square test. 
c Mann-Whitney U test. 
d Wilcoxon signed-rank test. 
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3.6. Mediation analyses 

To evaluate the relationship between the longitudinal changes of 
neurometabolites concentrations and FCS changes, as well as their 
contributions to patients’ clinical recovery, we applied the SEM analysis. 
As shown in Fig. 4A, the changes of FCS between MPFC and DMN 
mediated the relationship between the changes of GABA concentration 
in the MPFC and positive symptom recovery of the FEP patients (p =
0.045; bias-corrected bootstrapping confidence interval [0.005 0.499]). 
Moreover, the changes of FCS between PCC/PCu and DMN mediated the 
relationship between the changes of NAA concentrations in the MPFC 
and positive symptom recovery of the FEP patients (p = 0.005; bias- 
corrected bootstrapping confidence interval [0.100 0.481]), as shown 
in Fig. 4B. The models were well fit for both the MPFC FCS mediation 
model ( χ2 = 0.583, p = 0.445; GFI = 0.978; AIC = 10.583) and the PCC/ 
PCu FCS mediation model ( χ2 = 0.013, p = 0.910; GFI = 0.999; AIC =
10.013). 

4. Discussion 

In this study, we investigated the concurrent alterations of neuro-
metabolites levels and FC in DMN, as well as their contributions to the 
recovery of clinical symptoms after 8 weeks of pharmacological inter-
vention for DN-FEP patients. Our findings confirmed the hypothesis 
about an intrinsic linkage between the DMN functional and neuro-
metabolic signal changes during medication therapy, which is related to 
the clinical recovery of FEP patients. 

The reduced FC of DMN in FEP patients has been consistently re-
ported in previous studies (Bastos-Leite et al., 2015; Dong et al., 2018; 
Fan et al., 2020), in agreement with our findings. After 8-week 

antipsychotic medication, we found increased FC between the MPFC 
cluster and DMN, similar to the findings in the previous study (Samba-
taro et al., 2010). The animal model studies showed that the second- 
generation antipsychotics such as olanzapine increased the extracel-
lular level of dopamine in the PFC (Gessa et al., 2000; Ichikawa et al., 
2001), which modulated the GABAergic inputs to pyramidal cells 
(Seamans and Yang, 2004) and contributed to the enhancement of 
coupling between DMN and frontal-parietal control network (Dang 
et al., 2012). An alternative mechanism underlying the treatment effect 
on DMN FC might be attributed to the indirect regulation via the in-
crease of dopamine level in the anticorrelated networks (Bertolino et al., 
2004; Sambataro et al., 2010). In support of this, we found that the 
reduced anticorrelation between DMN and DLPFC in the FEP patients 
was normalized after 8 weeks of antipsychotic treatment. Furthermore, 
we showed the association between the changes of the DMN connec-
tivity with MPFC and PCC/PCu and the improvement in positive 
symptom scores in the FEP patients after 8-week medication. These 
findings are in line with previous reports that showed the FC changes 
between PCC/PCu and MPFC were correlated with the positive symptom 
improvement in FEP patients after 8-week risperidone monotherapy 
(Zong et al., 2019). Our results consolidated the medication effects on 
both within-DMN FC and anticorrelation between DMN and DLPFC as 
well as their associations with clinical recovery in FEP patients. 

Besides the FC changes, elevated GABA level in the MPFC of DN-FEP 
patients was found in our work. Deficits in GABAergic neurotransmis-
sion have been implicated in the pathophysiology of SCZ (Marín, 2012). 
Postmortem studies have shown the reductions of GABA-synthesizing 
enzyme and GABAergic interneurons in the prefrontal and cingulate 
cortices of SCZ patients (Marín, 2012; Volk et al., 2001). The elevated 
GABA signal we found is concordant with previous findings in 

Fig. 1. Comparisons of FC within DMN between HC and FEP 0 groups. (A) FC maps within DMN in HC and FEP 0 groups. (B) Two clusters in the MPFC and PCC/PCu 
showed significantly reduced FCs in the FEP 0 group compared to the HC group. (C) The FCS in the MPFC decreased in the FEP 0 group compared to the HC group (p 
= 0.002). (D)The FCS in PCC/PCu decreased in FEP 0 group compared to the HC group (p = 0.030). Abbreviations: FCS, functional connectivity strength; DMN, 
default mode network; MPFC, medial prefrontal cortex; PCC/PCu, posterior cingulate cortex/precuneus; FC, functional connectivity; HC, healthy control; FEP 0, first- 
episode psychosis patients at baseline. Two-tailed two-sample t-tests were used for the comparison. * p < 0.05, ** p < 0.01. 
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Fig. 2. Comparisons of anticorrelations (i. 
e., negative connectivity) with MPFC be-
tween HC and FEP 0 groups. (A) Anti-
correlation maps with MPFC in HC and FEP 
0 groups. (B) One cluster in DLPFC showed 
significantly reduced anticorrelation or 
increased connectivity in FEP 0 group 
compared to the HC group. (C) The FEP 
0 group showed increased FCS in the 
DLPFC compared to the HC group (p =
0.015). Abbreviations: FCS, functional 
connectivity strength; HC, healthy control; 
FEP 0, first-episode psychosis patients at 
baseline; DMN, default mode network; 
DLPFC, dorsolateral prefrontal cortex. 
Two-tailed two-sample t-tests were used 
for the comparison. * p < 0.05.   

Fig. 3. The coupled changes of neu-
rometabolites concentrations and FCS 
in the DMN. (A) The placement of the 
1H-MRS voxel (blue) along with the 
spectrum fitted by LCModel. (B) 
Comparisons of GABA, Glx, and NAA 
concentrations between HC and FEP 
0 groups. (C) The changes of GABA 
level in the MPFC were negatively 
correlated with the alterations of FCS 
in the MPFC of the patients. (D) The 
changes of NAA level in the MPFC 
were negatively correlated with the 
alterations of FCS in the PCC/PCu of 
the patients. Δ denotes the changes 
before and after treatment. Abbrevi-
ations: FCS, functional connectivity 
strength; DMN, default mode 
network; HC, healthy control; FEP 0, 
first-episode psychosis patients at 
baseline; FEP 1, first-episode psycho-
sis patients at 8-week follow-up; 
MPFC, medial prefrontal cortex; 
PCC/PCu, posterior cingulate cortex/ 
precuneus; GABA, gamma- 
aminobutyric acid; Glx, glutamate 
and glutamine; NAA, N-acetyl-aspar-
tate. * p < 0.05. (For interpretation of 
the references to colour in this figure 
legend, the reader is referred to the 
web version of this article.)   
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unmedicated SCZ patients and subjects at ultra-high risk for psychosis 
(Cen et al., 2020; de la Fuente-Sandoval, 2015; Kegeles, 2012). 
Furthermore, the differences of GABA levels between DN-FEP and HC 
groups were not significant after 8-week treatment, in line with the 
previous results that showed no differences in the MPFC GABA con-
centration between medicated SCZ and HC groups (Marenco et al., 2016; 
Rowland et al., 2016). 

More interestingly, the change of MPFC GABA signal was negatively 
correlated with the alteration of its FCS with DMN after treatment. The 
GABAergic neurotransmission has been closely involved in the genera-
tion of synchronized gamma oscillations (Cardin et al., 2009; Uhlhaas 
and Singer, 2010), which were correlated with the hemodynamic re-
sponses (Niessing et al., 2005). Previous studies of healthy subjects 
suggested that the regional GABA levels were associated with the FC or 
functional activation (Gu et al., 2019; Kapogiannis et al., 2013). For 
example, Northoff et al. showed that the ACC GABA concentration 
mediated the negative fMRI signal changes of DMN during emotional 
processing task (Northoff et al., 2007), and Kapogiannis et al. found that 
the GABA level in PCC/PCu was negatively correlated with the resting- 
state FC of DMN (Kapogiannis et al., 2013). Similar to our results shown 
in Supplementary Fig. S6, Chen et al. found that the GABA level in MPFC 
was negatively correlated with the MPFC-DLPFC anticorrelation in HCs 
(Du et al., 2018). 

Besides the regional neurometabolic-functional signal coupling, the 
neurometabolic levels may also contribute to the functional activity in 
distant but functionally connected regions. Interestingly, we found that 
changes of NAA concentration in MPFC were negatively correlated with 
the changes of PCC/PCu FCS within DMN. This finding suggests that the 
alteration of NAA concentration is associated with the long-range 
connection changes in the DMN of FEP patients. NAA is an amino acid 
synthesized in neuronal mitochondria (Moffett et al., 2007). In the 
cytosol, NAA acts as a precursor for the enzymatic synthesis of N-acetyl- 
aspartyl-glutamate (NAAG), which regulates glutamate and dopamine 

release (Xi et al., 2002; Zhao et al., 2001). Glutamate, as the major 
excitatory neurotransmitter, is involved in the long-range modulation of 
the BOLD responses. Previous studies have found that glutamate in ACC 
could modulate the functional activation in posterior DMN (Overbeek 
et al., 2019). In FEP patients, the coupling between ACC glutamate and 
posterior DMN response was disrupted (Overbeek et al., 2019), along 
with aberrant striatal dopamine synthesis and release (Howes et al., 
2012). The dysregulation of striatum dopamine release has been asso-
ciated with NAA reductions in the prefrontal cortex (Bertolino et al., 
2000; Moffett et al., 2007). Since the pharmacological treatments act to 
deplete striatum dopamine levels or block dopamine receptors, we 
speculate that the treatment-related changes of NAA levels may facili-
tate the normalization of glutamatergic long-range projections to distant 
but functionally connected regions. 

Furthermore, using the SEM approach, we found that the alteration 
of DMN FCS in MPFC influenced a path from the alterations of MPFC 
GABA concentration to the recovery of PANSS positive symptoms. Def-
icits of inhibitory GABAergic interneurons would lead to the excitatory/ 
inhibitory imbalance of neural circuits (Marín, 2012). In SCZ, several 
genes that regulate the glutamate-GABA system, e.g., GRIA1, GABRA3, 
and GBRB3, were primarily associated with the DMN dysconnectivity, 
indicating the intrinsic linkage between the neurotransmitters and FC 
(Meda et al., 2014). The abnormalities in GABAergic function mediated 
the prefrontal hypodopaminergia, which might contribute to patients’ 
clinical symptoms (Di Pietro and Seamans, 2007). Current results firstly 
showed that the relationship between FEP patients’ positive symptoms 
recovery and the altered GABAergic signal in MPFC was mediated by the 
restoration of its FC with DMN. 

On the other hand, we showed that the NAA alteration was associ-
ated with the changes of the FCS between PCC/PCu and DMN, which 
contributed to the recovery of patients’ positive symptoms. It’s shown 
that the D2 receptor antagonism of risperidone plays a key role in 
alleviating patients’ positive symptoms (Zong et al., 2015). Previous 

Fig. 4. Mediation analysis of longitudinal changes of 
neurometabolites concentrations, FCS, and PANSS 
symptom scores in the FEP patients. (A) The associa-
tion between the changes of GABA concentration in 
the MPFC and the recovery of PANSS positive symp-
tom score was mediated by the FCS between MPFC 
and DMN. (B) The association between the changes of 
NAA concentration in the MPFC and the recovery of 
PANSS positive symptom score was mediated by the 
FCS between PCC/PCu and DMN. Standardized path 
coefficients are labeled along each path. The path a 
refers to the effect of neurometabolic concentration 
on DMN FCS; the path b refers to the effect of DMN 
FCS on PANSS symptom scores, controlling for neu-
rometabolic level; indirect effect (product a*b) refers 
to the amount of mediation that the FCS of DMN had 
on the neurometabolic concentration – PANSS symp-
tom relationship. Δ denotes the changes before and 
after treatment. Abbreviations: FCS, functional con-
nectivity strength; PANSS, Positive and Negative 
Syndrome Scale; FEP, first-episode psychosis patients; 
MPFC, medial prefrontal cortex; PCC/PCu, posterior 
cingulate cortex/precuneus; GABA, gamma- 
aminobutyric acid; NAA, N-acetyl-aspartate. * p <
0.05, ** p < 0.01.   
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studies have suggested a potential linkage between dopamine signaling 
and DMN modulation (Minzenberg et al., 2011; Nagano-Saito et al., 
2009). As mentioned above, NAA is involved in the regulation of 
dopamine release (Xi et al., 2002; Zhao et al., 2001). Taken together, we 
speculate that MPFC NAA changes may underlie the alterations of DMN 
connectivity and the recovery of positive symptoms through its complex 
interactions with dopamine signaling. 

Recently, the aberrant coupling between the FC and glutamate 
concentration of the salience network (SN) has been reported in SCZ 
patients (Limongi et al., 2020; Maximo et al., 2021; McCutcheon et al., 
2021). The relationship between Glx levels in the dorsal ACC and FC in 
the dorsal ACC, insula, and lateral parietal cortex was weaker or absent 
in medication-naive FEP patients (Maximo et al., 2021). Glutamate 
concentration in the dorsal ACC was associated with weaker inhibitory 
connections in the FEP group than in the HC group (Limongi et al., 
2020). Besides, the increases in glutamate levels induced by riluzole 
were correlated with the increases in connectivity localized to the SN 
(McCutcheon et al., 2021). A triple-network model, composed of DMN, 
SN, and central executive network (CEN), has been proposed to underlie 
a range of psychiatric disorders including schizophrenia (Han et al., 
2019; Liang et al., 2021; Menon, 2011; Supekar et al., 2019). For 
example, the decreased functional activity of SN has been found to be 
associated with increased FC between DMN and CEN (Manoliu et al., 
2014). Our results provided insights into the neurometabolic-functional 
signal changes within DMN of FEP patients before and after treatment. 
Further studies integrating the DMN, SN, and CEN are in merit to reveal 
the biochemical-functional interactions among these networks using 
combined MRS and fMRI measures. 

Strengths of the present study include the longitudinal study design, 
and the combination of fMRI and 1H-MRS, which makes it possible to 
investigate the functional-neurometabolic mechanism of therapeutic 
effect. The inclusion of DN-FEP patients could rule out the effects of 
medication at baseline and illness chronicity. Some limitations should, 
however, be considered. First, the measured GABA signal should be 
interpreted with caution since it included the macromolecule signals 
(Behar et al., 1994). Second, the current resting-state scan of 6 min is 
relatively short, and a longer scanning time may improve the test-retest 
reliability of the results. Third, the possibility that the observed changes 
may be caused by other factors could not be completely excluded 
because of the lack of a patient group receiving placebos, which has not 
been conducted in this study due to ethical issues. Also, we excluded the 
subjects with substance abuse in order to avoid the potential impact of 
comorbid substance use disorders, which might limit the generalisability 
of the findings. Finally, the lack of follow-up scans in the HC group is a 
limitation of our study, which could confound the interpretation of the 
medication effects. We could not exclude the possibility that the 
observed functional and neurometabolic changes might be caused by the 
experiential changes (e.g., the adaptation to the scanning environment) 
instead of the purely therapeutic effect. The purpose of this study is to 
examine whether the DMN functional and neurometabolic abnormal-
ities in DN-FEP patients were improved after 8-week antipsychotic 
treatment. A more solid design of the study is to include follow-up scans 
for the control group and examine the group-by-time interaction using 
two-way analysis of variance with a repeated measures design as in 
previous literature (Li et al., 2016; Sambataro et al., 2010). Also, the 
sample size of our study is relatively small due to the difficulty in patient 
recruitment. For stable estimates in mediation analyses, a larger sample 
size is in need (Schönbrodt and Perugini, 2013). Although the bias- 
corrected bootstrapping technique was used to help with the analyses, 
our current sample size is still at the lower bound of possibility (Fritz and 
Mackinnon, 2007). Therefore, our findings are rather exploratory and 
should be interpreted with caution. Future studies with larger sample 
sizes and with follow-up control groups are in need to consolidate our 
findings. 

5. Conclusions 

In conclusion, this study showed the GABA level increased concur-
rently with decreased FC in the DMN of DN-FEP patients. After 8-week 
antipsychotic medication, the changes of the FCS between the MPFC and 
DMN mediated the association between the changes of GABA concen-
tration in the MPFC and the improvement in positive symptom scores of 
FEP patients. Moreover, the changes of FCS between the PCC/PCu and 
DMN mediated the relationship between the changes of NAA concen-
tration in the MPFC and the improvement in positive symptom scores of 
FEP patients. Our results provide novel insights into the understanding 
of the neurometabolic mechanisms of the DMN-related FC changes as 
well as their contributions to the pharmacological and therapeutic ef-
fects in DN-FEP patients using noninvasive multimodal neuroimaging. 
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