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Abstract 

Background Omicron variant impacts populations with its rapid contagiousness, and part of patients suffered 
from persistent symptoms termed as long COVID. The molecular and immune mechanisms of this currently dominant 
global variant leading to long COVID remain unclear, due to long COVID heterogeneity across populations.

Methods We recruited 66 participants in total, 22 out of 66 were healthy control without COVID-19 infection history, 
and 22 complaining about long COVID symptoms 6 months after first infection of Omicron, referred as long COVID 
(LC) Group. The left ones were defined as non-long COVID (NLC) Group. We profiled them via plasma neutralizing 
antibody titer, SARS-CoV-2 viral load, transcriptomic and proteomics screening, and machine learning.

Results No serum residual SARS-CoV-2 was observed in the participants 6 months post COVID-19 infection. No 
significant difference in neutralizing antibody titers was found between the long COVID (LC) Group and the non-long 
COVID (NLC) Group. Transcriptomic and proteomic profiling allow the stratification of long COVID into neutrophil 
function upregulated (NU-LC) and downregulated types (ND-LC). The NU-LC, identifiable through a refined set of 5 
blood gene markers (ABCA13, CEACAM6, CRISP3, CTSG and BPI), displays evidence of relatively higher neutrophil 
counts and function of degranulation than the ND-LC at 6 months after infection, while recovered at 12 months 
post COVID-19.

Conclusion The transcriptomic and proteomic profiling revealed heterogeneity among long COVID patients. We 
discovered a subgroup of long COVID population characterized by neutrophil activation, which might associate 
with the development of psychiatric symptoms and indicate a higher inflammatory state. Meanwhile, a cluster of 5 
genes was manually curated as the most potent discriminators of NU-LC from long COVID population. This study can 
serve as a foundational exploration of the heterogeneity in the pathogenesis of long COVID and assist in therapeutic 
targeting and detailed epidemiological investigation of long COVID.
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Introduction
Although COVID-19 has gradually turned into regional 
endemics, the relatively high portion of patients com-
plaining to experience persistent symptoms, commonly 
termed as post-acute sequelae of COVID-19 (PASC), 
or long COVID, remains a global issue. According to 
the WHO, COVID-19 has caused 776 million human 
infections and 7.1 million deaths [1], with approxi-
mately ten percent of the patients experiencing PASC 
[2], undisputedly causing enormous medical burden [3, 
4]. Therefore, to explore the concept and the potential 
mechanism behind PASC, and furthermore, to identify 
various subtypes of PASC, are of essential importance 
for deepening our knowledge of the long-term impact 
of COVID-19 infection.

Long COVID has neurological, psychiatric, gastro-
intestinal, and respiratory symptoms such as fatigue, 
shortness of breath, coughing, muscle weakness, and 
diarrhea, and has been repeatedly demonstrated in 
studies in the U.S., U.K., and other countries in a vari-
ety of regions and in different ethnic groups across ages 
and genders [5–9]. Although they can be classified into 
subgroups based on clinical symptoms, the diversity 
of symptoms demonstrated by long COVID patients 
makes it challenging to categorize them using a single 
clinical criterion [10].

Therefore, to distinguish different subgroups of long 
COVID patients, researchers must look beyond the 
clinical symptoms and seek in molecular and immune 
mechanisms. Unfortunately, describing the molecular 
mechanisms underneath long COVID has been proven 
to be even more complex, and although there have been 
many relevant studies, it is difficult to come to a relatively 
unified conclusion because of the complexity of the phe-
notypes. Previous studies have suggested persistent ele-
vation of inflammation among long COVID patients [11], 
and TNF, IL-6, or NF-kB-related signaling pathways have 
been found to be consistently elevated and established 
as potential prediction targets [12, 13]. Other research-
ers have identified possible mechanisms including inef-
ficient clearing of viral RNA due to persisting reservoirs 
[14, 15], persistent reprogramming of immune cells [16], 
and endothelial inflammation or damaged tissues causing 
persistent hyperinflammation [17, 18].

Recent clinical research has shown differences in the 
severity and long COVID risk associated with the alpha, 
delta, and omicron variants [19, 20]. However, differ-
entiating and comparing the long-term immunologi-
cal changes caused by different variants in long COVID 
patients remains a challenge, and a consistent conclusion 
remains to be drawn. One significant reason for this is 
that a substantial portion of the population has experi-
enced repeated infections with different variants, making 

it difficult to isolate the effects of individual variants on 
long COVID symptoms and immunological changes.

Nevertheless, given the rapid contagiousness of the 
omicron variant and its impact on populations, it is 
essential to understand the mechanisms by which this 
currently dominant global variant leads to long COVID, 
and China’s dynamic zero policy towards COVID-19 dur-
ing 2020–2022 gave us a rare opportunity to recruit first-
time Omicron infected patients and healthy controls. 
Our research is unique in that it utilizes omics analysis 
specifically among first-time infected patients during 
the Omicron wave in Shanghai, China, 2022, minimiz-
ing analytical interference caused by different virus vari-
ants, and we have conducted the 6-month and 12-month 
follow-ups on these patients as well. We aim to further 
explore the heterogeneous immune profiles during Omi-
cron infections and their correlation with different clini-
cal phenotypes, at the same time providing potential 
future medication target in the symptomatic population 
[13].

Methods
Enrollment of patients
Participants in this study were Omicron infected patient 
who had positive RT-PCR test or antigen test during 
the Omicron BA.2 outbreak in Shanghai and were hos-
pitalized in Huashan hospital, all of whom had not been 
previously infected with COVID-19 during 2020–2022. 
Inclusion and exclusion criteria have been described 
previously (Supplementary Table  1) [8]. Participants’ 
physical and mental conditions measured by question-
naires, described in our previous study, such as the Gen-
eralized Anxiety Disorder-7 (GAD-7) questionnaire and 
the Patients Health Questionnaire (PHQ-9), were col-
lected at the 6-month and 12-month outpatient follow-
ups (Supplementary Tables 2–6). Clinical laboratory test 
results were also collected, including blood routine and 
inflammatory indexes.

Based on the questionnaire results, we identified 22 
individuals with severe long COVID symptoms reported 
during the 6-month follow-up and referred to this group 
as the long COVID (LC) Group. Age-, gender-, COVID-
19-severity- and vaccination status matched COVID-19 
convalescents that reported without any long COVID 
symptoms were enrolled as the non-long COVID (NLC) 
Group. Besides, 22 healthy controls without history of 
COVID-19 infection were screened by matching for 
age, gender, and vaccination status, referred to as the 
HC Group afterwards. Twelve of 22 participants in the 
LC Group and 12 of 22 individuals in the NLC Group 
attended the 12-month outpatient follow-up, and their 
questionnaires and laboratory examinations results were 
also collected. Peripheral blood samples were collected 
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from participants in the LC Group, NLC Group and the 
HC Group. Sample collection and clinical laboratory 
examinations were approved by the Ethics Committee of 
Huashan hospital (ethical approval number: 2023-750), 
and written informed consent was obtained from all par-
ticipants enrolled.

Construction and production of variant pseudoviruses
Plasmids encoding the SARS-CoV-2 spike were con-
structed and cloned into the pCMV3 vector. HEK293T 
cells were transfected with spike-expressing plasmid 
using Polyethylenimine (Polyscience). VSV-G pseudo-
typed ΔGluciferase (G*ΔG-luciferase, Kerafast) was used 
to infect the cells one day post-transfection; 3  h after 
infection, cells were washed three times with PBS and 
moved to a fresh medium. The next day, the transfection 
supernatant was collected and clarified by centrifugation 
at 3000g for 10 min. Each viral stock was then incubated 
with 20% I1 hybridoma (anti-VSV-G; ATCC, CRL-2700) 
supernatant for 1  h at 37  °C to neutralize the contami-
nating VSV-G pseudotyped ΔG-luciferase virus before 
measuring titers and making aliquots to be stored at 
− 80 °C.

Pseudovirus neutralization assays
Neutralization assays were performed by incubating 
pseudoviruses with serial dilutions of sera and scored 
by the reduction in luciferase gene expression. In brief, 
Pseudoviruses were incubated with serial dilutions of 
heat-inactivated sera in triplicate for 30  min at 37  °C. 
During the co-culture, Vero-E6 cells were trypsinized, 
resuspended with fresh medium, and then added into 
virus-sample mixture at a density of 2 ×  104  cells/well. 
The mixture was incubated for an additional 18  h. The 
luminescence was quantified by Luciferase Assay Sys-
tem (Beyotime). Neutralization ID50 values for sera was 
defined as the dilution at which the relative light units 
were reduced by 50% compared with the virus control 
wells (virus + cells) after subtraction of the background 
in the control groups with cells only. The  ID50 values 
were calculated using a nonlinear five-parameter dose 
response curve to the data in GraphPad Prism 9.

Whole blood and plasma droplet digital RT‑PCR test 
of SARS‑CoV‑2
The droplet digital RT-PCR (ddRT-PCR) was performed 
using a TargetingOne Digital PCR System (TargetingOne, 
Beijing, China, licensed by NMPA, registration numbers: 
20200025 and 20192220517), following the manufactur-
er’s instructions. Briefly, the PCR reaction mixture (30 μl) 
contained 15  μl of RT-PCR mix (TargetingOne, 23301) 
and 15 μl of extracted RNA was prepared. Then, the 30 μl 
PCR reaction mixture and 180  μl of droplet generation 

oil were added into a droplet generation chip and droplet 
generation was performed using a Drop Maker (Target-
ingOne). The resulting droplet emulsion was amplified 
on an A300 thermal cycler (LongGene, Zhejiang, China) 
using the following PCR conditions: 55  °C for 15  min, 
95 °C for 10 min, 45 cycles of 94 °C for 30 s and 57 °C for 
1 min. After PCR, the PCR tube containing the droplets 
was connected to a droplet detection chip, followed by 
fluorescent signals detection using a Chip Reader (Tar-
getingOne). To avoid the risk of viral infection and false 
positive results potentially due to laboratory contami-
nation, all the experiments were performed inside the 
biosafety cabinet in a negative pressure biosafety labora-
tory using filter tips.

RNA isolation and library preparation for transcriptome
Total RNA was extracted using the TRIzol reagent (Invit-
rogen, CA, USA) according to the manufacturer’s proto-
col. RNA purity and quantification were evaluated using 
the NanoDrop 2000 spectrophotometer (Thermo Scien-
tific, USA). RNA integrity was assessed using the Agilent 
2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, 
USA). Then the libraries were constructed using VAHTS 
Universal V6 RNA-seq Library Prep Kit according to the 
manufacturer’s instructions. The transcriptome sequenc-
ing and analysis were conducted by OE Biotech Co., Ltd. 
(Shanghai, China).

RNA sequencing and differentially expressed genes 
analysis
The libraries were sequenced on an llumina Novaseq 
6000 platform and 150 bp paired-end reads were gener-
ated. About 56.82 raw reads for each sample were gen-
erated. Raw reads of fastq format were firstly processed 
using fastp and the low-quality reads were removed to 
obtain the clean reads [21]. Then about 46.89 clean reads 
for each sample were retained for subsequent analyses. 
The clean reads were mapped to the reference genome 
using HISAT2 [22]. FPKM [23] of each gene was calcu-
lated and the read counts of each gene were obtained by 
HTSeq-count [24]. PCA analysis were performed using R 
(v 4.3.1) to evaluate the biological duplication of samples. 
After the hierarchical clustering analysis, three samples 
were removed as outliers. Differential expression analysis 
was performed using the DESeq2 [25]. P value < 0.01 and 
absolute value of foldchange > 1were set as the thresh-
old for significantly differential expression gene (DEGs). 
Hierarchical cluster analysis of DEGs was performed 
using R (v 4.3.1) to demonstrate the expression pattern 
of genes in different groups and samples. The volcano 
plot as drew showed the expression of up-regulated or 
down-regulated DEGs using R packet ggplot. Based on 
the hypergeometric distribution, Reactome enrichment 
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analysis of DEGs were performed to screen the significant 
enriched term using R (v 4.3.1). Gene Set Enrichment 
Analysis (GSEA) was performed using GSEA software 
[26, 27] (v 4.3.2). The analysis used a predefined gene set, 
and the genes were ranked according to the degree of dif-
ferential expression in the two types of samples. Then it 
is tested whether the predefined gene set was enriched at 
the top or bottom of the ranking list.

Plasma sample preparation for proteomics
Take out the samples from − 80 °C refrigerator in advance 
and thaw. Add 25 μl of plasma sample and 150 μl of Buffer 
B, centrifuge at room temperature at 4000 rpm for 2 min, 
Load 150 μl of incubation material working fluid (20 mg/
ml) into centrifugation tube, incubate at 32 °C for 60 min 
at 220 rpm; after incubation, centrifuge at 2500 rpm for 
2  min, remove the supernatant; add 750  ul Buffer C, 
centrifuge at 2500  rpm for 2  min, remove the superna-
tant. Add 50 ul lysis solution (6 M urea, 2 M sulfourea), 
incubate at 32 °C for 30 min at 220 rpm for denaturing. 
Then reduced sample with 3 ul 200 mM tris(2-carboxy-
methyl) phosphine (TCEP), 31.5 °C, 600 rpm for 30 min 
and alkylated with 5  ul 800  mM iodoacetamide (IAA), 
32 °C, 220 rpm, 30 min at dark room. For protein diges-
tion, 150 ul of 100 mM TEAB, 3 ul of trypsin (0.2 ug/ul) 
was added and incubate for 4 h at 32 °C, 400 rpm. Then 
add 2 ul trypsin (0.2 ug/ul) again and incubate for 16 h 
at 32 °C, 220 rpm. Quench the reaction by adding 22 ul 
of 10% trifluoroacetic acid and confirm that the peptide 
solution pH is between 2 and 3. The desalting opera-
tion was then performed using a SOLAμ (Thermo Fisher 
Scientific, San Jose, USA) desalting cartridge according 
to the product instructions. After desalting, use TMT-
pro 16plex labeling reagent to label the peptide accord-
ing to the product instruction, and then mix all samples 
into one sample. Fractionation was performed with 
a Waters XBridge Peptide BEH C18 column (300  Å, 
5  μm × 4.6  mm × 250  mm) under a DIONEX UltiMate 
3000 Liquid Chromatogram. Mobile phase A was 10 mM 
ammonium hydroxide (pH = 10), and mobile phase B was 
98% ACN, 10 mM ammonium hydroxide (pH = 10). Pep-
tides were collected every one minute from 8% ACN to 
35% ACN with a flowrate of 0.5 ml/min in 60 min, and 
then combined into 30 fractions. After SpeedVac dried, 
the 30 fraction samples were resuspended with 2% ACN, 
0.1% Formic Acid and then sent for LC–MS analysis.

Mass spectrometry analysis for proteome, database search 
and statistical analysis
LC–MS/MS with the nanoflow DIONEX UltiMate 3000 
RSLCnano System were coupled to an Orbitrap Exploris 
480 mass spectrometer (Thermo Scientific™, San Jose, 
USA), which equipped with a FAIMS Pro™ (Thermo 

Scientific™, San Jose, USA), in data dependent acquisi-
tion (DDA) mode. Buffer A. 2% ACN, 98% H2O contain-
ing 0.1% FA; Buffer B. 80% ACN in water containing 0.1% 
FA. All reagents were MS grade. For each acquisition, 
peptides were loaded onto a precolumn (3  µm, 100  Å, 
20  mm * 75  µm i.d.) at a flowrate of 6  μl/min for 4  min 
and then injected using a 30 min LC gradient (from 7 to 
30% buffer B) at a flowrate of 300 nl/min (analytical col-
umn, 1.9 µm, 120 Å, 150 mm * 75 µm i.d.). Buffer A was 
2% ACN, 98% H2O containing 0.1% FA, and buffer B 
was 98% ACN in water containing 0.1% FA. All reagents 
were MS grade. The m/z range of MS1 was 375–1800 
with the resolution at 60,000, normalized AGC target of 
200% with the intensity threshold of 2e4, and maximum 
ion injection time (max IT) of 85 ms. MS/MS experiment 
were performed with a resolution at 30,000, normal-
ized AGC target of 200%, and max IT of 86  ms. isola-
tion window was set to 0.7 m/z and first mass was set to 
110 m/z. MS data were analyzed using the Fragpipe (ver-
sion 19.1) search engine against the human protein data-
base downloaded from UniProtKB (version 09/10/2022; 
20420), with a precursor ion mass tolerance of 20 ppm, 
and fragment ion mass tolerance of 0.02 Da. Briefly, TMT 
pro-plex labels at lysine residues and the N-terminus, 
and carbamidomethylation of cysteine residues were set 
as static modifications. A cut-off criterion of a q-value 
of 0.01, corresponding to a 1% FDR, was set for filtering-
identified peptides with highly confident peptide hits. 
Reporter ion ratio values of protein groups were exported 
for subsequent analysis. After the hierarchical cluster-
ing analysis, two samples were removed as outliers. PCA 
analysis were performed using R (v 4.3.1) to evaluate the 
biological duplication of samples. Reactome enrichment 
analysis of differentially expressed proteins (DEP) were 
performed to screen the significant enriched term using 
R (v 4.3.1).

Software and analysis
Computational analysis was carried out in R (v 4.3.1; 
release 16 June 2023). R (v 4.3.1) was used for com-
putational analysis and drawing the violin plots, the 
heatmaps, bubble plots and bar plots. Heat maps were 
generated using the “pheatmap” library (v1.0.12), with 
data pre-normalized using scale function before plot-
ting. Custom plotting, such as biological pathway analy-
sis, was performed using the “ggplot2” library for base 
analysis, and then post processed in Adobe Illustrator (v 
25.3.1). Differentially expressed proteins or genes were 
input into the STRING database for protein–protein 
interaction analysis to screen hub genes, and the pro-
tein–protein interaction (PPI) network was plotted using 
Cytoscape software (v 3.9.1). Random forest models 
were realized using the random forest function from the 
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“randomForest” R package (v 4.7–1.1). Violin plots and 
boxplots of neutralizing antibody titer and violin plots 
of ORF gene and N gene copy values were created using 
GraphPad Prism 9.5.0 software (GraphPad Software, San 
Diego, CA, USA). Graphical abstract was created with 
Biorender.com.

Results
General characteristics
In total, 66 of the participants were selected from the 
previous cohort study [8]. As noted in Methods, among 
the enrolled participants, 22 were patients reported with 
most severe long COVID symptoms (LC Group), 22 were 
participants without long COVID (NLC Group), and the 
rest were healthy controls (HC Group) with no COVID-
19 infection history (Fig. 1a). The first and second sam-
pling time was 6 and 12  months after the COVID-19 
patient’s discharge, respectively, and 12 of the LC Group 
and 12 of the NLC Group attended the second follow-
up. Baseline characteristics of enrolled participants 
showed no significant difference among groups (Table 1). 

Enrollees had a mean age of 46 years (range 22–69), and 
18 (27%) were female (Table 1). Participants in the LC and 
NLC Groups had asymptomatic or mild COVID-19 dur-
ing the hospitalization. Besides, in the LC Group, 7 (32%) 
had chest tightness/chest pain, 17 (77%) had fatigue, and 
10 (45%) had cough, and the average scores of the ques-
tionnaires were listed in Table 1. Detailed results of the 
questionnaires were listed in Supplementary Table 7.

Blood virus‑neutralizing antibody titers and viral load 
in long COVID populations
Around 6  months after SARS-CoV-2 infection, neutral-
izing antibody titers of the LC and NLC Groups were 
significantly higher than that of the healthy donors, 
excluding antibody against BQ1.1. Although there was 
no evidence of a clear difference in these neutralizing 
antibody titers between the LC and NLC Groups, long 
COVID populations tended to have higher antibody lev-
els (Fig. 1b).

Previous studies revealed that viral persistence and 
reactivation was one of the potential mechanisms of 
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long COVID [15]. In this study, droplet digital PCR was 
performed for quantification of residual plasma SARS-
CoV-2 among the LC and the NLC Groups. Results 
turned out to be negative in both LC and NLC Groups, 
indicating no persistent SARS-CoV-2 remaining in the 
blood 6 months after infection (Fig. 1c).

Transcriptome atlas suggested suppressive chemokines 
and interleukins signaling functions 6 months 
post COVID‑19, with upregulated neutrophil activity 
in the LC Group
To gain insight into the molecular characteristics of 
long COVID, the transcriptomic profiles were com-
pared among LC, NLC, and HC Groups. A principal 

component analysis (PCA) was performed with the 
host gene expression profiles to examine clustering of 
the global transcriptomic profiles of all samples. Never-
theless, the separation was not notable among the three 
groups (Fig. 2a), and the transcriptomic profiles were not 
significantly different between the LC and NLC Groups 
(Supplementary Fig. 1a). In the differential gene expres-
sion analysis, pairwise comparisons were made among 
these 3 groups, and differentially expressed genes (DEGs) 
were visualized by volcano plots (Figs. 2b, c, 4a). The find-
ings revealed significant differential expression of genes, 
with 117 genes, 288 genes and 286 genes showing nota-
ble distinctions (P < 0.05, |log2FoldChange|> 1) between 
the LC and NLC Groups, the LC and HC Groups, and 

Table 1 Demographic and clinical characteristic of participants

Characteristics LC Group (n = 22) NLC Group (n = 22) HC Group (n = 22)

Gender (n)

 Female (%) 16 (72.7) 16 (72.7) 16 (72.7)

 Male (%) 6 (27.3) 6 (27.3) 6 (27.3)

Age, year (mean ± SD) 48.0 ± 13.1 45.7 ± 15.4 44.7 ± 12.8

 20–39 years (%) 9 (40.9) 10 (45.5) 9 (40.9)

 40–59 years (%) 7 (31.8) 5 (22.7) 10 (45.5)

 ≥ 60 years (%) 6 (27.3) 7 (31.8) 3 (13.6)

Vaccination status (n)

 Unvaccinated (%) 3 (13.6) 3 (13.6) 0 (0)

 1 dose (%) 1 (4.5) 1 (4.5) 0 (0)

 2 doses (%) 9 (40.9) 9 (40.9) 13 (59.1)

 3 doses (%) 9 (40.9) 9 (40.9) 9 (40.9)

Acute COVID-19 severity

 Asymptomatic 5 (22.7) 5 (22.7) –

 Mild/moderate 17 (77.3) 17 (77.3) –

 Severe/critical 0 (0) 0 (0) –

Long COVID symptoms (self-reported)

 Fatigue 17 (77.3) – –

 Sleep difficulties 19 (86.4) – –

 Hair loss 12 (54.5) – –

 Cough 10 (45.5) – –

 Sore throat 11 (50.0) – –

 Chest pain 7 (31.8) – –

 Smell disorder 9 (40.9) – –

 Taste disorder 11 (50.0) – –

 Headache 10 (45.5) – –

 Palpitations 13 (59.1) – –

 Skin rash 5 (22.7) – –

 Dizziness 14 (63.6) – –

 Muscle pain 10 (45.5) – –

 Joint pain 14 (63.6) – –

 Loss of appetite 7 (31.8) – –

 Nausea/vomiting 6 (22.2) – –
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the NLC and HC Groups, respectively. Furthermore, 
the results indicated that the transcriptomic differences 
before and after SARS-CoV-2 infection were greater 
than the differences between long COVID and non-long 
COVID.

To analyze distinct expression patterns of the LC, NLC, 
and HC groups, differential genes were classified into 6 

clusters using Mfuzz (Fig.  2d). Genes in cluster 2 were 
enriched in MAPK-related signaling pathways. Genes 
in cluster 3, which were significantly higher expressed 
in the LC Group than the NLC Group and HC Group, 
were associated with neutrophil degranulation and inter-
leukins (Fig.  2e). Cluster 4 genes were mainly involved 
in chemokine-related functions (Fig.  2e). Cluster 5 and 

Fig. 2 Differential transcriptomic profiling across the LC, NLC and HC Groups. a The principal coordinate analysis plot showing the grouping 
of samples from the three groups based on global gene expression profiles. b The volcano plot of DEGs between the LC and HC Groups. The 
significant DEGs are highlighted in red (upregulated genes in LC) or blue (downregulated genes in LC). The unsignificant DEGs are marked in grey. 
The most distinctly expressed genes are labeled. c The volcano plot of DEGs between the NLC and HC Groups. The significant DEGs are highlighted 
in red (upregulated genes in NLC) or blue (downregulated genes in NLC). The unsignificant DEGs are marked in grey. The most distinctly expressed 
genes are labeled. d Expression patterns of both DEGs between the LC and HC Groups and DEGs between the NLC and HC Groups, across three 
groups. e Dot plot showing Reactome terms enriched in each cluster mentioned in Fig. 2d
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cluster 6 genes were highly expressed in the heathy indi-
viduals compared to those having had a COVID-19 infec-
tion, and the genes had an enrichment of chemokine and 
interleukins signaling pathways (Fig. 2e). Genes in cluster 
5 and 6, including FOS, IL1B, CCR5, CCR2, CXCR3, and 
IL5RA, which represented functions of chemokines and 
interleukins, recovered to normal levels 12 months after 
infection (Supplementary Fig. 1b).

Our gene results suggested that, in contrast to the NLC 
Group, individuals in the LC Group had a stronger neu-
trophil function at 6 months post SARS-CoV-2 infection. 
Moreover, there was a decrease of chemokines and inter-
leukins signaling functions in the participants at half a 
year post-infection, compared to the healthy individuals, 
and those functions recovered at the 12-month follow-up 
with the relief of long COVID symptoms.

Proteomic atlas revealed upregulated neutrophil activity 
in the LC Group
To analyze alterations in proteins associated with long 
COVID, proteomics profiles were compared among the 
LC, NLC, and HC Groups. Consistent with transcrip-
tomic profiles, PCA results suggested that protein pro-
files were indistinguishable among the 3 groups (Fig. 3a). 
Pairwise comparisons were made among these 3 groups, 
in the differential protein expression analysis. The dif-
ferentially expressed proteins (DEPs) were visualized by 
volcano diagrams (Figs.  3b, c, 4b), which revealed sig-
nificant differential expression, with 76 proteins, 397 
proteins, and 125 proteins showing notable distinctions 
(P < 0.05, |log2FoldChange|> 0.25) between the LC and 
NLC Groups, the LC and HC Groups, and the NLC and 
HC Groups, respectively. Similar to the transcriptomic 
profiles, the proteomic data also exhibited that the dif-
ferences before and after infection were more significant 
in contrast to those between long COVID and non-long 
COVID individuals (Supplementary Fig. 2a). 

To analyze different expression patterns of the LC, 
NLC, and HC groups, DEPs were classified into 6 clusters 
using Mfuzz (Fig. 3d). Proteins in cluster 1 were associ-
ated with biological oxidations pathway, which indicated 
that biological oxidations are more pronounced in the 
LC group compared to both the NLC and HC groups. 
This finding aligns with research that reports height-
ened oxidative stress following COVID-19 infection 
[28]. Specifically, the more intense oxidative response 
in the LC group compared to the NLC group suggested 
that oxidative stress may play a role in the development 
of long COVID symptoms [29, 30]. Paul and colleagues 
suggested that imbalances in redox reactions can lead to 
neurological manifestations and organ damage in long 
COVID [31]. Both clusters 2 and 3 showed enrichment 
in pathways related to neutrophil degranulation (Fig. 3e). 

Proteins in cluster 3, which were significantly higher in 
the LC Group than the NLC Group and HC Group, were 
also enriched in pathways of extracellular matrix organi-
zation and diseases of metabolism (Fig. 3e). Cluster 4 and 
cluster 5 proteins were mainly involved in platelet func-
tion, suggesting that SARS-CoV-2 continued to have 
an impact on platelet function 6  months post infection 
(Fig. 3e). Proteins in cluster 6 had an enrichment of RHO 
GTPase cycle effectors pathways (Fig.  3e). Our proteins 
result resembled what we saw in transcriptomic data, 
which indicated that in contrast to the NLC Group, indi-
viduals in the LC Group had stronger neutrophil func-
tion at 6 months post SARS-CoV-2 infection.

Distinct neutrophil degranulation activation within long 
COVID patients
On the full-transcriptomic and proteomic evalua-
tion, no distinct difference between LC group and NLC 
group was observed. Further PPI network analysis was 
performed using both genes and proteins significantly 
upregulated in the LC group compared to the NLC group 
(Fig. 4a, b). Remarkably, the largest PPI network cluster 
was correlated with the innate immune system, espe-
cially neutrophil and its degranulation function (Fig. 4c). 
In the LC group, expression of individual markers within 
the long COVID cohort was highly heterogeneous based 
on blood full transcriptome (Fig.  4d), which suggested 
potential subsets within the long COVID group with 
heterogeneous innate immunologic activity, especially 
neutrophil-related immune functions. In accordance 
with the hypothesis, unsupervised clustering of the long 
COVID group revealed a clear separation of the two sub-
sets in the overall cohort (Fig. 4e, f ). Pathway enrichment 
analysis of transcriptome profiling in reference to NLC 
group revealed that neutrophil degranulation biological 
pathway was positively associated with one of the subsets 
while negatively associated with the other one (Fig.  4g, 
h). The neutrophil degranulation upregulated group was 
hereafter referred as the neutrophil-function upregulated 
(NU-LC) subset, and the other one with downregulated 
neutrophil degranulation was named as the neutrophil-
function downregulated (ND-LC) subset. Assessment 
of the neutrophil-related inflammation activity markers 
such as CXCL2, VWF, IL33, IL23R in the plasma protein 
sets showed significant abundances in the NU-LC Group 
compared to the ND-LC Group (Supplementary Fig. 2b).
Participants in the NU-LC Group had higher level of 
neutrophil counts than the ND-LC Group and the NLC 
Group (Fig.  4i and Table  2). Further GSEA analysis 
revealed significant differences in the function of neu-
trophil degranulation between the two subsets (Fig.  4j). 
Furthermore, the enrichment of DEPs upregulated in 
the NU-LC compared to the ND-LC also demonstrated 
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elevated neutrophil degranulation activity in the NU-LC 
Group (Fig. 4k).

Clinical distinctions in NU‑LC subset
We further explored variations in neutrophil-related 
immune status within the NU-LC subset from 6 to 
12  months post-COVID-19 infection. Analysis of 
gene expression scores associated with neutrophil 

degranulation indicated that elevated neutrophil activ-
ity in the NU-LC group gradually returned to levels 
similar to the NLC group (Fig. 5a). The distinct neutro-
phil-related inflammatory signaling in the blood of the 
NU-LC and ND-LC subsets indicated clinical heteroge-
neity among long COVID cohorts. The NU-LC group 
had significantly elevated neutrophil counts compared 
to the ND-LC and NLC groups, though within normal 

Fig. 3 Differential proteomic profiling across the LC, NLC and HC Groups. a The principal coordinate analysis plot showing the grouping of samples 
from the three groups based on global protein abundance profiles. b The volcano plot of DEPs between the LC and HC Groups. The significant 
DEPs are highlighted in red (upregulated genes in LC) or blue (downregulated genes in LC). The unsignificant DEPs are marked in grey. The most 
distinctly upregulated or downregulated proteins are labeled. c The volcano plot of DEPs between the NLC and HC Groups. The significant DEPs are 
highlighted in red (upregulated genes in NLC) or blue (downregulated genes in NLC). The unsignificant DEPs are marked in grey. The most distinctly 
upregulated or downregulated proteins are labeled. d Expression patterns of both DEPs between the LC and HC Groups and DEPs between the NLC 
and HC Groups, across three groups. e Dot plot showing Reactome terms enriched in each cluster mentioned in Fig. 3d
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clinical ranges (Fig.  4i and Table  2). Increases in neu-
trophil counts were also connected with several broad 
markers of inflammation including C-reaction protein, 
procalcitonin (PCT) and erythrocyte sedimentation rate 
(ESR) (Fig.  5c). These increases also indicated different 
immune endoenvironments between NU-LC and ND-LC 
Groups, as patients in the NU-LC Group were potentially 
in a relatively inflammatory status. Moreover, elevated 
neutrophil counts were positively associated with psy-
chological questionnaire scale score in the NU-LC group, 
such as depression and anxiety, which was opposite in 
the ND-LC group, establishing the implications in neu-
trophil-related long COVID symptoms (Fig. 5b, c).

Altogether, these findings indicate that while the long 
COVID questionnaires could help with identifying indi-
viduals with ‘long COVID’ symptoms, heterogeneity 
exists in the long COVID population. There was a group 
of people who had a relatively stronger neutrophil-related 
inflammatory response that was positively associated 
with a worse mental state, and they might be suffered 
from neutrophil-based immunopathological injury to 
some extent. The remaining group had a blood ecosys-
tem status more similar to that of the non-long COVID 
population, suggesting their long COVID symptoms were 
more likely to be psychology-related without tissue or 
organ impairment.

Classifying NU‑LC through machine learning
To accurately distinguish NU-LC individuals within the 
long COVID patients, we employed Random Forest (RF) 
modeling, which effectively classified NU-LC patients 
from all other long COVID individuals. The resulting 
predictive model exhibited exceptional robustness. Eval-
uation based on 10,000 models with randomized training 

and test set splits yielded an average ROC AUC of 0.95 
(SD+/−0.04). This indicates that, unlike the broader 
long COVID cohort, NU-LC patients could be efficiently 
identified regardless of the specific patient set used for 
model training. To this end, we manually curated a list 
of 5 genes from the most influential NU-LC discrimina-
tors, including ABCA13, CEACAM6, CRISP3, CTSG, 
and BPI (Fig. 6a). Those genes were then used as inputs 
for a new RF model (Fig. 6b). Despite the limited feature 
set, leveraging feature potency scores to guide parameter 
selection resulted in a model that remained effective in 
distinguishing the NU-LC Group. It achieved an aver-
age ROC AUC of 0.9596, underscoring that complete 
transcriptomic screening is not necessary for identifying 
these patients.

Significant differences in the expression of the five 
genes were observed between the ND-LC and NU-LC 
groups, with the NU-LC group showing significantly 
higher expression than the ND-LC group (Fig.  6c). Fur-
thermore, the expression levels of these five genes are 
significantly higher in the NU-LC group compared to 
the NLC group, while the expression levels are simi-
lar between the HC and NLC groups (Supplementary 
Fig.  3). ABCA13 mediates transmembrane lipid trans-
port, including cholesterol and phospholipids [32]. Its 
aberrant expression can cause lipid dysregulation and is 
linked to psychiatric disorders [33–35]. Research indi-
cates that CEACAM6 facilitates neutrophil adhesion to 
endothelial cells, which in turn mediates their activation 
[36]. Moreover, upregulation of CRISP3 can promote 
leukocyte-mediated migration and neutrophil activation 
and degranulation and is closely associated with pulmo-
nary fibrosis in COVID-19 patients [37, 38]. CTSG is 
mainly found in the azurophilic granules of neutrophils, 

(See figure on next page.)
Fig. 4 Heterogeneity in long COVID patients with elevated neutrophil degranulation. a The volcano plot of DEGs between the LC and NLC Groups. 
The significant DEGs are highlighted in red (upregulated genes in LC) or blue (downregulated genes in LC). The unsignificant DEGs are marked 
in grey. Distinctly expressed genes extracted from the core PPI cluster in Fig. 4c are labeled. b The volcano plot of DEPs between the LC and NLC 
Groups. The significant DEPs are highlighted in red (upregulated genes in LC) or blue (downregulated genes in LC). The unsignificant DEPs are 
marked in grey. Distinctly upregulated proteins extracted from the core PPI cluster in Fig. 4c are labeled. c Networks generated by String database 
analysis using DEGs and upregulated DEPs upregulated in the LC Group compared to the NLC Group. The red and blue nodes indicate DEGs, 
and DEPs inputted for analyses, respectively. d Hierarchical clustering of the long COVID patients (LC Group). Major branches are differentially 
colored. e The principal coordinate analysis plot showing the grouping of samples from the NU-LC Group and ND-LC Group based on global gene 
expression profiles. f The principal coordinate analysis plot showing the grouping of samples from the NU-LC Group and ND-LC Group based 
on global protein abundance profiles. g Bar plots showing top5 enriched Reactome terms of DEGs between the ND-LC and NLC Group. The 
significant terms are highlighted in orange (terms enriched of upregulated genes in ND-LC) or green (terms enriched of downregulated genes 
in ND-LC). The unsignificant terms are marked in grey (P value > 0.05 or Gene count < 4). h Bar plots showing top5 enriched Reactome terms 
of DEPs between the ND-LC and NLC Group. The significant terms are highlighted in orange (terms enriched of upregulated proteins in ND-LC) 
or green (terms enriched of downregulated proteins in ND-LC). The unsignificant terms are marked in grey (P value > 0.05 or Gene count < 4). i Violin 
plots show the average of neutrophil counts of the NLC, ND-LC and NU-LC Groups. P values were calculated from a paired two-tailed Student’s 
t-test. ***P < 0.001, **P < 0.01, *P < 0.05. ns: no significant difference. j Gene set enrichment analysis of DEGs between ND-LC and NU-LC Groups 
of Reactome Neutrophil Degranulation pathway dataset. Normalized enrichment score (NES) and P values are shown. k Dot plot showing enriched 
Reactome terms of DEPs between the ND-LC and NU-LC Group
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Fig. 4 (See legend on previous page.)
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participating in the killing and digestion of phagocytosed 
pathogens [39], and increased levels of CTSG protein 
have been observed in the nasopharynx of COVID-19 
patients [40]. Furthermore, BPI is primarily located in 
neutrophil granules and is a critical component of the 
innate immune system, playing an essential role in pro-
tecting the body from bacterial infections [41].

In the future, these genes could be set as specific targets 
and their expression levels would assist with identifying 
this specific patient subset among individuals with long 
COVID. However, the functional roles of these genes in 
the pathogenesis of long COVID require further investi-
gation in future studies.

Discussion
Our study reached several conclusions. Here, we 
observed no serum residual SARS-CoV-2 six months 
after COVID-19 infection and no significant difference 
in neutralizing antibody titers between the LC Group 
and the NLC Group. Besides, chemokine and interleukin 
signaling was suppressed in our participants 6  months 

post COVID-19 infection, which gradually returned to 
normal levels at 12 months. Finally, we found a subgroup 
of long COVID patients with upregulated neutrophil 
activity, revealing heterogeneity among the long COVID 
population. Those results unveiled long COVID develop-
ment mechanisms underlying immunological changes 
caused by the Omicron variant among first-time infected 
individuals.

Previous studies have indicated the circulation of 
SARS-CoV-2 and spike proteins in the blood of long 
COVID patients [42, 43]. SARS-CoV-2 and its compo-
nents might persist because of its reverse transcription 
ability, which alters subsequent gene expression [44, 
45]. Other possible causes include the severity of the 
acute infection period and insufficient immune response 
[42]. However, our study did not detect residual SARS-
CoV-2 in the bloodstream, likely because the Omicron 
variant, with its modified spike protein and mutated non-
structural proteins, generates fewer infectious particles 
and has reduced fusogenicity and acute disease sever-
ity [46, 47]. Thus, it is plausible to contribute Omicron’s 

Table 2 Demographic and clinical characteristic of long COVID patients

Characteristics ND‑LC group (n = 6) NU‑LC group (n = 13)

Gender (n)

 Female (%) 2 (33.3) 3 (23.1)

 Male (%) 4 (66.7) 10 (77.9)

Age, year (mean ± SD) 48 ± 13 48 ± 12

 20–39 years (%) 2 (33.3) 5 (38.5)

 40–59 years (%) 2 (33.3) 5 (38.5)

 ≥ 60 years (%) 2 (33.3) 3 (23.0)

Vaccination status (n)

 Unvaccinated (%) 1 (16.7) 1 (7.7)

 1 dose (%) 0 (0) 1 (7.7)

 2 doses (%) 3 (50.0) 5 (38.5)

 3 doses (%) 2 (33.3) 6 (46.1)

Acute COVID-19 severity

 Asymptomatic 2 (33.3) 3 (23.1)

 Mild/moderate 4 (66.7) 10 (77.9)

 Severe/critical 0 (0) 0 (0)

Laboratory tests (mean ± SD)

 White blood cell, *109/l 5.1 ± 1.3 6.9 ± 1.4

 Platelets, *109/l 276.0 ± 41.8 246.3 ± 49.5

 Neutrophil, *109/l 2.7 ± 1.0 4.3 ± 1.1

 C-reaction protein, mg/l 1.2 ± 0.4 1.8 ± 1.7

 Procalcitonin, ng/ml 0.024 ± 0.009 0.032 ± 0.008

 Erythrocyte sedimentation rate, mm/h 8.0 ± 4.6 5.6 ± 3.8

Anxiety symptom (GAD-7 score, mean ± SD) 7.8 ± 7.9 7.4 ± 6.9

Depression symptom (PHQ-9 score, mean ± SD) 10.8 ± 7.4 10.0 ± 8.2

PTSD symptom (PCL-C score, mean ± SD) 35.8 ± 13.5 35.5 ± 15.5

Fatigue symptom (Fatigue score, mean ± SD) 38.5 ± 11.3 46.5 ± 14.7
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negligible viral persistence to its attenuated pathogenic-
ity because of its decreased impact on host immune 
response and reduced genome reprogramming ability. 
Omicron characteristics above can also be observed in 
our previous studies, as our patients were mostly mild 
or asymptomatic during the acute onset of COVID [8]. 
Furthermore, population recruited had a history of only 
one COVID infection and most of them were vaccinated 
before the infection. Therefore, their immune systems 
were much less impacted, ruling out the long COVID 
mechanism of insufficient immune response.

Chemokine, which functions to recruit inflammatory 
cells, has been shown to increase in other long COVID 
studies, leading to various symptoms of long COVID, 
including fever, fatigue, or mild respiratory symptoms. 
Elevated cytokine levels trigger the CNS to perceive per-
sistent inflammation, leading to exaggerated immune 
responses seen in long COVID [11, 48]. However, Scott 
and colleagues [49] revealed that specific chemokines, 
such as CXCR2, were decreased in the long COVID 
population and negatively correlated with the sever-
ity of illness during acute infection and fatigue symp-
toms afterwards, due to monocyte dysfunction. Our 
patients had downregulated chemokine-related func-
tions, which could be due to the significant consumption 
of chemokines during acute infection or may indicate 
monocyte dysfunction. This finding may suggest a unique 
mechanism of Omicron that could be used to track the 
recovery of long COVID patients in clinical settings.

Previous research has revealed heterogeneity among 
long COVID patients, and researchers have attempted 
to classify different long COVID subgroups [8, 50, 51]. 
Different patients show symptoms of long COVID 
involving various organs, which can be associated with 
unique markers indicating inefficient viral clearance 
and specific autoantibodies (such as anti-IFN-α2 and 
anti-nuclear antibodies), in the blood [43, 52]. Multiple 
omics approaches were further performed to divide long 
COVID patients according to immunological features, 
including elevated inflammation marked by pro-inflam-
matory cytokines and differential expression of B and T 
cells, which can be used as clinical targets for the precise 
treatment of long COVID [11, 13, 43]. Nonetheless, there 
are still some immunologically unremarkable populations 
that cannot be categorized into any of the subpopula-
tions of long COVID, which adds complexity to following 
omics studies and clinical treatments [11, 43].

Our study uniquely selected first-time COVID-19 
infected patients during the Omicron wave in Shang-
hai, China, 2022, and matching was performed between 
individuals who later developed long COVID and 
those who did not to minimize analytical interference. 
Our research uncovered heterogeneity of long COVID 
post Omicron infections, with one subgroup exhib-
ited upregulated neutrophil degranulation activity and 
elevated neutrophil counts, and another without these 
features. Similarly, elevated neutrophils have previously 
been proposed as a discriminatory feature among long 

Fig. 5 Clinical features of NU-LC subset. a An interval plot with the mean and 95% confidence interval represents dynamic changes of Neutrophil 
Degranulation Score of NU-LC Group, from the 6-month visit to the 12-month visit, compared to the NLC Group. b Correlogram of ND-LC Group. 
Spearman rank order correlation values (r) are shown from blue (− 1.0) to red (1.0); r values are indicated by color and circle size. Yellow rectangles 
denote correlation between neutrophil counts and scores of psychosocial questionnaires. c Correlogram of NU-LC Group. Spearman rank order 
correlation values (r) are shown from blue (− 1.0) to red (1.0); r values are indicated by color and circle size. Yellow rectangles denote correlation 
between neutrophil counts and scores of psychosocial questionnaires. Red rectangles denote correlation between neutrophil counts and other 
inflammatory indexes
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COVID subgroups, suggesting different immunologi-
cal profiles [11, 13]. In the study by Woodruff et al., the 
long COVID subgroup with neutrophil elevation is also 
identified with upregulation of other inflammation bio-
markers, including IL-6, IL-8 and IL-1B. Furthermore, 
in another study, long COVID patients are further 
classified into two subgroups with different inflamma-
tory profiles, as one of the subgroups have increased 

neutrophil degranulation and displayed separate immu-
nological features distinct from its counterpart, which 
has relatively lower cytokine and chemokine levels [11]. 
Researchers have reported that, abnormal elevation of 
neutrophils and their associated functions, as well as 
successive NETosis, indicating immunothrombosis and 
damaging of blood vessels inner linings, can be associ-
ated with severe COVID-19 [12, 53]. Besides, elevated 
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neutrophil counts and activity reflect an inflammatory 
immune status related to possible presence of inflam-
matory infiltration in some organs or tissues, thereby 
resulting in corresponding clinical symptoms. However, 
psychological factors could contribute to symptoms of 
the other group without neutrophil activation, given 
their normal indicators and mild clinical symptoms.

In this study, we employed machine learning tech-
niques and identified a cluster of 5 genes classifiers for 
precise discrimination of long COVID population with 
different neutrophil activity status. It might be possible 
to categorize long COVID patients by rapidly assessing 
the expression levels of these 5 genes in future clinical 
applications without utilizing highly specialized tech-
nology, although their prediction abilities of the disease 
outcome were yet to be explored. Our research enriches 
current understanding of long COVID heterogenicity, 
serves as the basis for research of its mechanism and 
development, and provides insights for long COVID 
prevention, targeted therapeutics, and in-depth epide-
miological investigations.
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