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Abstract: Anxiety disorder (AD) is a major mental health illness. However, due to the many symp-
toms and confounding factors associated with AD, it is difficult to diagnose, and patients remain
untreated for a long time. Therefore, researchers have become increasingly interested in non-invasive
biosignals, such as electroencephalography (EEG), electrocardiogram (ECG), electrodermal response
(EDA), and respiration (RSP). Applying machine learning to these signals enables clinicians to rec-
ognize patterns of anxiety and differentiate a sick patient from a healthy one. Further, models with
multiple and diverse biosignals have been developed to improve accuracy and convenience. This
paper reviews and summarizes studies published from 2012 to 2022 that applied different machine
learning algorithms with various biosignals. In doing so, it offers perspectives on the strengths and
weaknesses of current developments to guide future advancements in anxiety detection. Specifically,
this literature review reveals promising measurement accuracies ranging from 55% to 98% for studies
with sample sizes of 10 to 102 participants. On average, studies using only EEG seemed to obtain
the best performance, but the most accurate results were obtained with EDA, RSP, and heart rate.
Random forest and support vector machines were found to be widely used machine learning methods,
and they lead to good results as long as feature selection has been performed. Neural networks are
also extensively used and provide good accuracy, with the benefit that no feature selection is needed.
This review also comments on the effective combinations of modalities and the success of different
models for detecting anxiety.

Keywords: digital health; anxiety biomarkers; physiological measures; wearable devices; digital
psychological assessment

1. Introduction

Anxiety disorders (ADs) are the most common type of mental illness in the world,
affecting 264 million people worldwide [1]. The clinical features of AD include considerable
and persistent uneasiness, as well as autonomic nerve activity excitation, and excessive
vigilance, all of which are linked to the nervous system [2]. ADs can be categorized as a
generalized anxiety disorder (GAD) [3], panic disorder [4], or social anxiety disorder [5].

GAD is characterized by a combination of somatic and mental symptoms, including
tremors, muscular tension, sweating, and stomach discomfort, as well as restlessness,
sleeplessness, inattention, memory problems, irritability, high sensitivity, and palpitation [3].
Due to the broad range of symptoms, most patients suffering from anxiety have not been
diagnosed; therefore, they do not receive adequate treatment [4]. While psychiatrists may
now determine whether a patient has an AD based on clinical symptoms, such as self-
assessment and pathophysiological reports, these might be erroneous or incorrectly stated.

Traditional psychophysiology studies (i.e., those that do not use machine learning)
frequently show no major correlations between physiological parameters and anxiety lev-
els, whereas other research [5] that uses machine learning techniques shows that anxiety
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recognition through physiological analysis is possible. These challenges and inconsistencies
have prompted researchers to create novel technologies to improve well-being while low-
ering morbidity, mortality, and healthcare expenditures. Different biomarkers, including
respiration (RSP), electrocardiogram (ECG), photoplethysmography (PPG), electrodermal
response (EDA), and electroencephalography (EEG), can be used to detect physiological
responses related to stress and anxiety [6].

The electrical activity of brain neurons in the cerebral cortex or scalp can be recorded
using EEG [7]. This approach is ideal for researching the electrophysiological and cognitive
states of the human brain because it provides an immediate assessment of the underlying
neural activity with a high temporal resolution of a few milliseconds [8].

Mental stress has been measured using ECG signals [9] or PPG, which is an optical
measurement of arterial volume using a single photodiode. ECG and PPG signals may
be used to extract heart rate (HR) and heart rate variability (HRV). However, according
to Jan et al. [10], PPG is a more convenient way to measure HRV than ECG at rest since
respiration could be a confounding factor in HRV evaluation. HRV analysis is generally
performed using ECG recordings that are longer than 24 h (long-term HRV) or less than five
minutes (short-term HRV). Because the general physiological regulations of the individual
are represented over this period, the 24 h records are regarded as having a high degree of
accuracy. Nevertheless, short-term HRV analysis is thought to be more practical because of
its simplicity of use and reduced analysis of time, although it is highly dependent on the
window length of the processed ECG signal [11–14]. Two of the studies [15,16] that are part
of this review used ultra-short HRV as a feature (<5 min) to detect anxiety. The key benefit
of ultra-short HRV is that it is well suited for mobile applications; consequently, it generates
data quickly with a significantly shorter recording time than standard methods [12].

RSP is known to be an indication of psychological stress and anxiety [17,18] and can
be influenced by emotional events. Breathing rate, which is determined by measuring the
number of breathing cycles per minute, rises when tension or worry increases, resulting
in hyperventilation in severe cases [19]. Finally, EDA is a measurement of changes in the
skin’s electrical conductance as a result of sweat generation. It has two parameters, skin
conductance level, and skin conductance response, and it is extensively utilized as a stress
and anxiety indicator [20].

Other studies not discussed in this review aimed to detect anxiety from audio signals,
written texts, or functional magnetic resonance imaging (fMRI). The fMRI mechanism elim-
inates the potential disadvantages associated with the task frameworks of other modalities.
However, in comparison to these other modalities, fMRI is somewhat expensive, has a low
temporal resolution, and its data are very sensitive to head movements [21,22].

These different biomarkers (ECG, EEG, RSP, and EDA) are used as inputs to machine
learning algorithms. The same pipeline was applied in almost all the reviewed articles.
First, feature selection was performed using probabilistic distributional clustering (PDC),
phase lag index (PLI) algorithms, and sequential feature selection, among other related
approaches. Then, classification of anxiety into two (no anxiety vs. anxiety) or three
classes (low vs. mid vs. severe anxiety) was performed using a convolutional neural
network (CNN), long short-term memory (LSTM), one-vs-one (OVO), random forest, or
support vector machine. The aim of this review was to provide an overview of the different
combinations of features and models for each type of signal, compare them, and determine
which one leads to better results.

2. Method

We used the PubMed, IEEE, and Embase databases to conduct the literature searches.
We opted to include research from the most recent decade—that is, papers published
between 1 January 2012 and 31 March 2022—since we were interested in the most cur-
rent technological breakthroughs, specifically applying artificial intelligence and machine
learning to biosignals. We used a mix of medical subject heading phrases in our search,
including “anxiety”, “panic disorder”, “phobia disorder”, as well as the general terms “de-
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tection”, “prediction”, “machine learning”, “artificial intelligence”, “signals”, “biosignals”,
and “biomedical signals”. The advanced feature in PubMed allows for all derivatives of
the keyword to be searched; for example, it does not limit itself to “detection” but also
searches for “detect” [All Fields] OR “detectabilities” [All Fields] OR “detectability” [All
Fields] OR “detectable” [All Fields] OR “detectables” [All Fields] OR “detectably” [All
Fields] OR “detected” [All Fields] OR “detectible” [All Fields] OR “detecting” [All Fields]
OR “detection” [All Fields] OR “detections” [All Fields] OR “detects” [All Fields].

3. Results

Figure 1 shows the 150 articles that were found in the database search; three duplicates
were eliminated. A total of 29 items were rejected after the titles and abstracts were
screened. Following the full-text screening, 40 papers were dropped for failing to fulfill the
inclusion criteria, which consisted of not mentioning AD, having unclear results, or having
an unsuitable research design. For our analysis, we looked at the remaining 15 studies, four
of which were based on EEG, two of which were based on EEG plus other biosignals, and
nine of which were based on a mix of biosignals, such as ECG, RSP, and EDA.

Diagnostics 2022, 12, x FOR PEER REVIEW 3 of 13 
 

 

2. Method 
We used the PubMed, IEEE, and Embase databases to conduct the literature 

searches. We opted to include research from the most recent decade—that is, papers 
published between 1 January 2012 and 31 March 2022—since we were interested in the 
most current technological breakthroughs, specifically applying artificial intelligence and 
machine learning to biosignals. We used a mix of medical subject heading phrases in our 
search, including “anxiety”, “panic disorder”, “phobia disorder”, as well as the general 
terms “detection”, “prediction”, “machine learning”, “artificial intelligence”, “signals”, 
“biosignals”, and “biomedical signals”. The advanced feature in PubMed allows for all 
derivatives of the keyword to be searched; for example, it does not limit itself to 
“detection” but also searches for “detect” [All Fields] OR “detectabilities” [All Fields] OR 
“detectability” [All Fields] OR “detectable” [All Fields] OR “detectables” [All Fields] OR 
“detectably” [All Fields] OR “detected” [All Fields] OR “detectible” [All Fields] OR 
“detecting” [All Fields] OR “detection” [All Fields] OR “detections” [All Fields] OR 
“detects” [All Fields]. 

3. Results 
Figure 1 shows the 150 articles that were found in the database search; three 

duplicates were eliminated. A total of 29 items were rejected after the titles and abstracts 
were screened. Following the full-text screening, 40 papers were dropped for failing to 
fulfill the inclusion criteria, which consisted of not mentioning AD, having unclear 
results, or having an unsuitable research design. For our analysis, we looked at the 
remaining 15 studies, four of which were based on EEG, two of which were based on 
EEG plus other biosignals, and nine of which were based on a mix of biosignals, such as 
ECG, RSP, and EDA. 

 
Figure 1. Flow diagram of the included studies. Fifteen studies were identified from 150 articles in 
the initial database search. 

The literature review returned 15 scientific publications. To compare the articles, we 
attended to the number of participants; the signal types; the number of classes, 
experiments, features, and algorithms; and the best accuracy for each. 

Figure 1. Flow diagram of the included studies. Fifteen studies were identified from 150 articles in
the initial database search.

The literature review returned 15 scientific publications. To compare the articles, we
attended to the number of participants; the signal types; the number of classes, experiments,
features, and algorithms; and the best accuracy for each.

As seen in Figure 2a, EDA was the signal most often used in the studies, followed by
ECG and EEG. The studies were usually based only on EEG, and they generally did not
combine EEG with other signals, except for Gonzalez-Carabarin et al. [23], who combined
EEG with ECG, and Xu et al. [24], who combined EEG with ECG, EMG, and EDA. Figure 2b
shows the sample size by study according to the gender of the participants. We noted
a majority of male participants in the studies, and more than half did not report the
gender of their participants. Only two studies, including those by Al-Ezzi et al. [25]
and Perpetuini et al. [26], used a sample size of more than 80 subjects. Four studies had
around 55 to 57 subjects, three had between 20 and 40 subjects, and the rest had less than
20 subjects.
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Figure 2. Study characteristics. (a) Number of studies investigated each biosignal for anx-
iety detection and (b) Gender breakdown per each study. EDA = electrodermal activity;
ECG = electrocardiogram; EEG = electroencephalography; RSP = respiration; ST = skin temperature;
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Figure 3 shows the age distribution of the participants across the studies. Most of the studies
reported only the age range of the subjects, not the mean age. Rodríguez-Arce et al. [27] and
Chen et al. [28] conducted their studies with students; therefore, they used young participants
ranging in age from 18 to 23. The mean age across the studies was approximately 30, and the
oldest subject was 49.8 years of age.
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4. Experiments

We observed two main anxiety classifications. First, most of the publications on
EEG focused on a healthy control group and people who suffered from AD. They aim to
differentiate between participants with and without AD. Publications about other biosignals
only included a health control group or an AD group, and the signals were classified into
states of anxiety and rest periods.

Ihmig et al. [15], Gazi et al. [29], and Selzler et al. [30] belong to this second category
and focused only on phobic participants. Specific phobia is a common mental disorder that
affects about 7.4% of the population at least once in their lives. One of the most prevalent
sorts of specialized phobias is the pathological fear of spiders. Patients who present with
phobic indications experience severe physical anxiety symptoms, such as tachycardia,
sweating, and shortness of breath. In all investigations employing ECG, RSP, and EDA,
these signals were recorded during exposure therapy, which is the prevalent approach
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for the treatment of specific phobias. The patients alternated between phases of rest and
phases of exposure, in the latter of which they were confronted with the feared object under
controlled conditions.

Most of the other experiments used task and rest period cycles, stress-inducing proto-
cols, or the Trier Social Stress Test (TSST) [36]. All these studies had the same aim of putting
the participant in an uncomfortable situation so that he/she would feel anxious.

In order to train machine learning models, it is necessary to assess the ground truth.
For this purpose, most of the studies were subject-based and used State-Trait Anxiety
Inventory (STAI) labeling. To evaluate the participants’ anxiety levels, they were asked to
fill in a questionnaire during or after the experiment. The STAI questionnaire is divided into
two sections. The state section measures state anxiety (i.e., how an individual feels right
now), and the trait section measures trait anxiety (i.e., how an individual feels generally).
Another method used by Gazi et al. [29] and Miranda et al. [31] consisted of labeling the
time-series data according to the video clips stimulating anxiety and no-anxiety events.

5. Pipeline

Various signals and experiments were used and applied in the reviewed studies, but
we observed the same global pipeline in all of them, as shown in Figure 4.
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Figure 4. General pipeline applied in all studies. The studies follow the same structure: data col-
lection from one or a combination of signal is performed, and the data are labelled. Then, the data
are preprocessed, and feature selection is applied to obtain the input of the classification model.
EEG = electroencephalography; ECG = electrocardiogram; RSP = respiration; EDA = electroder-
mal activity; Nmean = normalized mean; RMSSD = root mean square of successive normal-to-
normal interval differences; HR: heart rate; LF/HF = ratio of low frequency to high frequency;
NFD = mean of the absolute values of the normalized first differences; NOR = number of orienting
responses; mmOR = mean magnitude of orienting responses; PNN50 = proportion of NN50 divided
by the total number of NN (R-R) intervals; IBI = inter-beat interval; ACF = autocorrelation function;
Ti = inspiration time; Te = expiration time; SD = standard deviation.

6. Features

Feature selection is a key factor in the development of robust classification models.
For example, as seen in one study [27], the same algorithm (SVM) had an accuracy of 98%
with six features and an accuracy of 86% with 13 features. In contrast, an accuracy of 94%
was achieved using RF with 13 features, but the accuracy was only 88% with six features.
In this study [27], feature selection was performed using a Student’s t-test.

Sequential feature extraction is another method applied by Ihmig. et al. [15] to select
the most significant feature subset. This method starts with an empty set and sequentially
adds a candidate feature until a given criterion, the accuracy of each classifier, is fulfilled.
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Thus, the sequential function stops adding new features when there is no further improve-
ment in accuracy. In another study, Gazi et al. [29] employed a permutation approach to
quantify feature importance. Specifically, this consisted of randomly permuting feature
j ∈ 1, 2, . . . , J of the testing set K = 30 different times and averaging the resulting accuracy
decreases across all iterations of k ∈ 1, 2, . . . , K. This process was then repeated for each
of the J = 31 features. In addition to this analysis, six experiments (i.e., hyperparameter
optimization, training, and testing) were conducted to assess the efficacy of each of the
three signal features. The results showed that RSP or ECG signals alone do not allow for
any conclusions to be drawn, but when combined with EDA, this approach achieved the
best performance. Figure 5 shows the most frequently used features for the most frequently
used signals.
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Figure 5. RSP, EDA, and ECG features as the most often used in the reviewed literature.
Nmean = normalized mean; RMSSD = root mean square of successive normal-to-normal interval dif-
ferences; HR = heart rate; LF/HF = ratio of low frequency to high frequency; NFD = mean of the abso-
lute values of the normalized first differences; NOR = number of orienting responses; mmOR = mean
magnitude of orienting responses; PNN50 = proportion of NN50 divided by the total number of
NN (R-R) intervals; IBI = inter-beat interval; ACF = autocorrelation function; Ti = inspiration time;
Te = expiration time; SD = standard deviation.

Regarding EEG signals, other specific methods for feature selection were used. For
instance, Xie et al. [32] applied the PLI connectivity algorithm, which is a commonly used
method in undirected networks. This algorithm calculates phase synchronization. The
main purpose of PLI is to avoid the influence of common sources and obtain reliable phase
synchronization prediction values—that is, to eliminate phase lock. The adjacency matrix
obtained by the PLI algorithm was then converted into a binary matrix that determined
whether there was an edge choosing an appropriate threshold, which was 0.04 in this
experiment. The brain network (BN) was used as an input for the CNN-2, DBN, and
LDA algorithms.

Instead of the BN, prefrontal lateralization can be used. This approach is actually one
of the most commonly used methods to evaluate patients with anxiety and depression. The
score is defined by the equation of InR–InL, where R is the power spectral density of each
band in the right brain, and L is that of the left brain. If the score is positive, the activity is
stronger in the left prefrontal lobe than in the right prefrontal lobe. If the score is negative,
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there is no left lateralization. As seen in Table 1, BNs perform better with CNN than with
prefrontal lateralization, but CNN is better when combined with DBN and LDA.

Table 1. Summary of the findings of the 15 papers included in this review. EEG = electroen-
cephalography; ECG = electrocardiogram; EDA = electrodermal activity; EMG = electromyography;
RSP = respiration; ST = skin temperature; PPG = photoplethysmogram; HR = heart rate; HC = healthy
control; AD = anxiety disorder; HAM-A = Hamilton Anxiety Rating Scale; SAM = Self-Help for Anxi-
ety Management; SB = subject based; STAI = state-trait anxiety inventory; NE = natural experiment;
TSST = Trier Social Stress Test; GRNN = generalized regression neural network; SVM = support
vector machine; BN = brain network; PL = prefrontal lateralization; LDA = latent Dirichlet al-
location; CNN = convolutional neural network; DBN = deep belief network; OVO = one-vs-one;
KNN = K-nearest neighbor; GLM = generalized linear models; RF = random forest; DT = decision
tree; N/R = not reported.

Publication Participant
(HC: AD) Signal Type Experiment Categories Labeling ML Algo Validation Accuracy (%)

Muhammad
et al.

(2022) [34]
23 (23: 0) EEG Exposure

therapy
Low/high low/norm

al/medium/high
HAM-A
+ SAM

Random
Forest

Leave-one-
out cross

validation
9492

Selzler et al.
(2021) [30] 57 (0: 57) ECG, EDA Exposure

therapy
Low/high

low/medium/high SB Random
Forest

10-fold
cross

validation
7860

Gazi et al.
(2021) [29] 55 (0: 55) ECG, EDA,

RSP
Exposure
therapy Anxiety/no anxiety Video

levels
Random

Forest
Leave-one-
out cross

validation
88

AL-Ezzi
et al.

(2021) [25]
88 (22: 66) EEG

Social per-
formance

task

Mild/mode
rate/severe N/R

CNN + LS
TM CNN

LSTM
N/R 939,186

Vulpe-
Grigoras, i

and Grigore
(2021) [16]

57 (0: 57) ECG, ST, RSP Exposure
therapy Anxiety/no anxiety N/R 1D-CNN N/R 77

Aristizabal
et al.

(2021) [33]
18 (18: 0) EDA, PPG,

ST TSST Anxiety/no anxiety STAI NN N/R 96

Chen et al.
(2021) [28] 34 (17: 17) EEG Task-rest

cycle HC/anxiety N/R SVM: RB
F + OVO N/R 92

Gonzalez-
Carabarin

et al.
(2021) [23]

24 (24: 0) EEG, ECG
Stress-

inducing
protocol

Mild/moderate/severe N/R
K-means for
EEG + SVM

KNN
DT RF

N/R 79,787,169

Ihmig et al.
(2020) [15] 57 (0: 57)

ECG, EDA,
RSP6

features

Exposure
therapy

Low/high
low/medium/high SB Bagged

trees
10-fold
cross

validation
8974

Perpetuini
et al.

(2020) [26]
102 (102: 0)

PPG 4
features

(including
the gender)

N/R N/R STAI GLM
Leave-one-
out cross

validation

Rodríguez-
Arce et al.
(2020) [27]

21 (21: 0)
ST, EDA,
oximetry,
RSP, HR6
features

Stress-
inducing
protocol

Anxiety/no anxiety STAI
SVM

KNNLogR
RF

10-fold
cross

validation
98,959,588

Xie et al.
(2020) [32] 20 (10: 10) EEG Task-

restcycle HC/anxiety N/R

BN +
CNN2BN +
DBNBN +
LDAPL +

LDA

N/R 675,563,556,267

Mozos et al.
(2017) [35] 18 (18: 0) EDA, PPG,

HRV TSST Anxiety/no anxiety STAI Adaboost N/R 79

Miranda
et al.

(2016) [31]
10 (10: 0) EDA, ECG9

features NE Anxiety/no anxiety Task
level SVM: RBF

Leave-one-
out cross

validation
Precision: 77

Recall: 38

Xu et al.
(2015) [24] 39 (39: 0)

EEG, ECG,
EMG,

EDA15
features

Task-rest
cycle Anxiety/no anxiety STAI K-means+

GRNN
Leave-one-
out cross

validation
85
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7. Models

Neural networks are widely used, particularly CNNs, which are applied to both EEG
and a combination of physiological signals. When working on EEG, a two-dimensional (2D)
CNN was used [21,32]; for other signals, a one-dimensional (1D) CNN was used [16,33].
CNN is a multilayer perceptron with several convolution-pooling layers and fully con-
nected layers at the output. Input features are convolved with multiple-dimensional filters
in the convolution layer and sub-sampled to produce a smaller scale in the pooling layer.
The shared network weights and filters in the convolution layer are learnable through the
back-propagation algorithm, which minimizes classification errors.

SVM [27,29,31] and RF [29,30,34] were the predominant algorithms used in the re-
maining studies. The RF consists of many individual decision trees that work as ensembles.
Every tree produces a class prediction, and the class receiving the most votes becomes the
model’s prediction. The main difference between bagging and RF is that, in RFs, only a
subset of features is selected at random out of the total, and the best split feature from
the subset is used to split each node in a tree, unlike in bagging, where all the features
are considered for splitting a node. In contrast, SVM is based on the idea of finding a
hyperplane that best divides a dataset into two classes.

The two studies combining EEG with other signals first applied K-means [24] and
then another cluster-wise classification [23]. On the one hand, Xu et al. [24] used K-means
to divide the subjects into different categories, and then regression analysis was conducted
using the generalized regression neural network (GRNN) for individual clusters based
on the training dataset belonging to the task load and recovery stages. This led to a set
of K GRNN models that minimized the cluster-wise error. On the other hand, Gonzalez-
Carabarin et al. [23] used unsupervised learning to cluster the EEG features into stress
and non-stress periods (plus an extra cluster to categorize data points that were not part
of previous categories) and then applied supervised learning. As seen in Table 1, for the
same experiment, classification into two categories was more accurate than classification
into three categories; thus, it was still difficult to accurately classify levels of anxiety.
Finally, in many cases, a validation technique, such as leaving one out or 10-fold cross
validation, was applied. Note that the impact of using different cross-validation methods
was not discussed.

The best performance for RF was achieved with EEG, then with a combination of ECG
and EDA, and, finally, with a combination of ECG, EDA, and RSP. However, this result
contradicts the results of Gazi et al. [29], who found an accuracy of 78% with a combination
of ECG and EDA and 85% with a combination of ECG, EDA, and RSP. A combination of
skin temperature (ST), EDA, RSP, and HR led to the best performance using SVM, followed
by a study [28] using only EEG and a study [23] that combined ECG and EEG. For neural
networks, the best accuracy was obtained with the study [33] that combined EDA, PPG,
and ST. Good performance corresponding to accuracy above 85% was also achieved with
EEG or EEG combined with ECG, EDA, and EMG. In contrast, a study [16] using ECG, ST,
and RSP had lower accuracy results of 77%.

As mentioned previously (Figure 2), the most used signals were ECG, EDA, and RSP.
However, it is also interesting to look at the influence of anxiety on skin temperature.
Aristizabal et al. [33] did not find a significant effect of anxiety on the ST. According to
them, the body temperature can give information about the intensity of the stress response
but is also highly influenced by environmental conditions such as the temperature or the
humidity and is, therefore, more suitable for laboratory studies. Rodriguez-Arce et al. [27]
has a more nuanced finding since an anxious-induced task significantly influenced two out
of four skin temperature features they used.

8. Discussion and Future Directions

In this review, we investigated the detection and classification of anxiety using biosig-
nals. The feature selection is one of the critical elements of this classification as it has a
direct impact on accuracy. As seen in Figure 4, the researchers followed approximately
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the same pipeline applying various machine learning algorithms to biosignals extracted
during one of the two main experiments discussed previously.

As a positive point in this review, we can note the diversity of approaches used in the
mentioned studies. Indeed, several experiments are used but also several machine learning
algorithms and biosignals. This gives the readers a wide range of potential directions.
However, this strength also has its limits because if there are many possible combinations,
only a few are exploited, and the researchers are finally interested in the same variety of
experiments with the same model and the same signals, making it difficult to compare.

Table 1 and Figure 6 reported different accuracy results using more or less similar
combinations of signals. Here is a breakdown of the inconsistencies that led to this issue:

• Small sample sizes;
• Omission of a discussion about confounding factors, such as psychiatric and

medical comorbidity;
• Limited information on the subjects’ medication intake status before running the study;
• Lack of information about what kind of AD the patients had;
• Limited information on the genders and ages of the participants;
• Limited information about the feature selection and exact features used;
• Many different combinations of signals and machine learning models were used,

which made comparisons difficult;
• Divergence in the classification scheme: general as opposed to person-specific classification;
• Lack of differentiation and comparison between anxiety and anxiety disorder.
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Figure 6. Comparison of the accuracy achieved with SVM, RF, and neural networks according
to different combinations of signals. EDA = electrodermal activity; ECG = electrocardiogram;
EEG = electroencephalography; RSP = respiration; ST = skin temperature; PPG = photoplethys-
mogram; Ox = oximetry; HR = heart rate; SVM = support vector machines; RF = random forest;
NN = neural networks.

When conducting the literature search, it was difficult to find studies on AD instead of
simple stress. It was also difficult to find a consistent definition of anxiety in all the studies.
It should be noted that up to 60% of AD patients have comorbid depression [34]. As a
result, distinguishing between people with and without mental comorbidity is challenging.
Moreover, in many studies, there was a lack of information about which type of anxiety was
detected. This is troubling because the symptoms are not necessarily the same, and it would
be valuable to determine which features are more impacted by which kind of anxiety.

Two studies [23,27] used small sample sizes from a student population characterized
as young, active, and healthy. One might therefore question the usefulness of studies
such as this performed on a non-representative sample in real life. However, according
to Perpetuini et al. [26], no correlation between state anxiety and age was found, but a
significant difference between males and females was found for state anxiety.
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A distinction must also be made between studies that use general classifications
relying on the data of a group of people as a training set but test the model on a differ-
ent set of people, as well as the person-specific classification, which uses samples from
the same participants for the training and testing. All results reported in Table 1 are
from general classification studies, except for Chen et al. [28]. Mozos et al. [35] and
Gonzales-Carabarin et al. [23], who used both kinds of classifications, came to the same
conclusion: general models perform worst in comparison with the subject-oriented model.
This observation can be inferred from the fact that subtle features, as used in all the studies
of this review, are highly dependent on the individual.

The comparison between anxiety and anxiety disorder is one of the limitations of
this review. Indeed, some studies [23,24,26,27,31,35,37], focus on detecting anxiety as an
induced experience in danger, whereas others [15,16,19,25,26,28,32] aim to detect ADs
subjects which need a timeline to be categorized, from health control.

Finally, due to limited information about the feature selection and exact features
used, it was not possible to compare the efficiency of the different methods since no study
(except for that of Xie et al. [32]) used multiple feature selection for the same signals and
algorithm. We encountered a similar issue with the models used in the studies. Indeed,
having many different combinations of signals across the studies made it difficult to draw
conclusions about the advantages of one type over another or to compare the performance
of the models.

Wearable technologies that analyze and forecast ECG, EDA, RSP, and EEG waveforms
in real time might enable a more thorough examination of AD during the day. As a result,
the role of machine learning algorithms that can detect and forecast AD patterns are likely
to increase in clinical medicine and outpatient care. The use of biosignals to detect (or
monitor) different types of AD is a relatively new area. Indeed, only three of the 15 papers
included in this review were published before 2020. Because the topic is challenging,
the recent attempts used a small and less-representative sample size. However, we have
seen an increase in interest in this topic, and it is thus necessary to propose the following
recommendations for researchers:

• Collect biosignals from a large number (>100) of study subjects; a pure control
group and a pure AD group (with no confounding factors) need to be used for
study validation.

• Have more diversity in the subjects in terms of age and gender.
• Ensure consistency and more detail in diagnosing the participants and have the project

monitored by a clinician from start to finish of the pipeline (i.e., from the selection of
participants to the interpretation of the results).

• Compare studies on various ads to determine if the type of anxiety has an impact on
the results and whether the selected features can detect it.

• Include more information about the feature selection and the features used.

We emphasize that these recommendations be followed, as most studies did not
determine or achieve them. Having a larger number of study subjects would allow for
more data to be obtained and would ensure that studies provide indisputable evidence.
Moreover, the consistency of the participants’ diagnoses and signal processing is part of
what it means to have a complete dataset. Furthermore, studies should focus on only one
type of anxiety and have doctors select the participants, ensuring that they are in good
health or have the ability to assess their own levels of anxiety. Clinicians should also
check how the experiments are performed and help interpret the results. Regarding papers
that do not use neural networks, it would be interesting to compare the feature selection
methods on the same signals. As a future direction, it would be interesting to measure the
effect of therapies using biosignals.

9. Conclusions

The main markers of human well-being employed in clinical settings are features
taken from ECG, EDA, EEG, and RSP signals. Early discovery and intervention in cases



Diagnostics 2022, 12, 1794 11 of 12

of AD are critical since any mental condition may be improved with early recognition
and care. In this study, we examined methods for detecting and predicting AD utilizing
a combination of biosignals. Most of the experiments were conducted under controlled
conditions during different sessions. Despite the fact that the trials were controlled and
did not fully reflect real activities, they are valuable scientific attempts in the field since
they provide a consistent and safe procedure for creating a stressful atmosphere. This is
the natural first step in verifying any new system in a controlled environment such as
this. A personal interview is also an example of a social activity that many individuals
may encounter.

The review also showed the feature importance and benefits of multi-modality. The
results suggest that methods that incorporate a combination of ECG and EDA signals
should be encouraged. Models such as SVM and RF are widely used and achieve good
performance, but their results depend on the features used, and they require strong feature
selection methods. Neural networks or Adaboost also lead to good results without the need
for feature selection, which is performed directly during training. Generally, the results
of the classification presented here demonstrate that some methods and analyses already
provide useful tools for AD prediction. In the long run, this may allow other researchers to
consider, for example, the effects of real-time feedback and even identify specific triggers
that lead to high and inappropriate levels of anxiety.
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