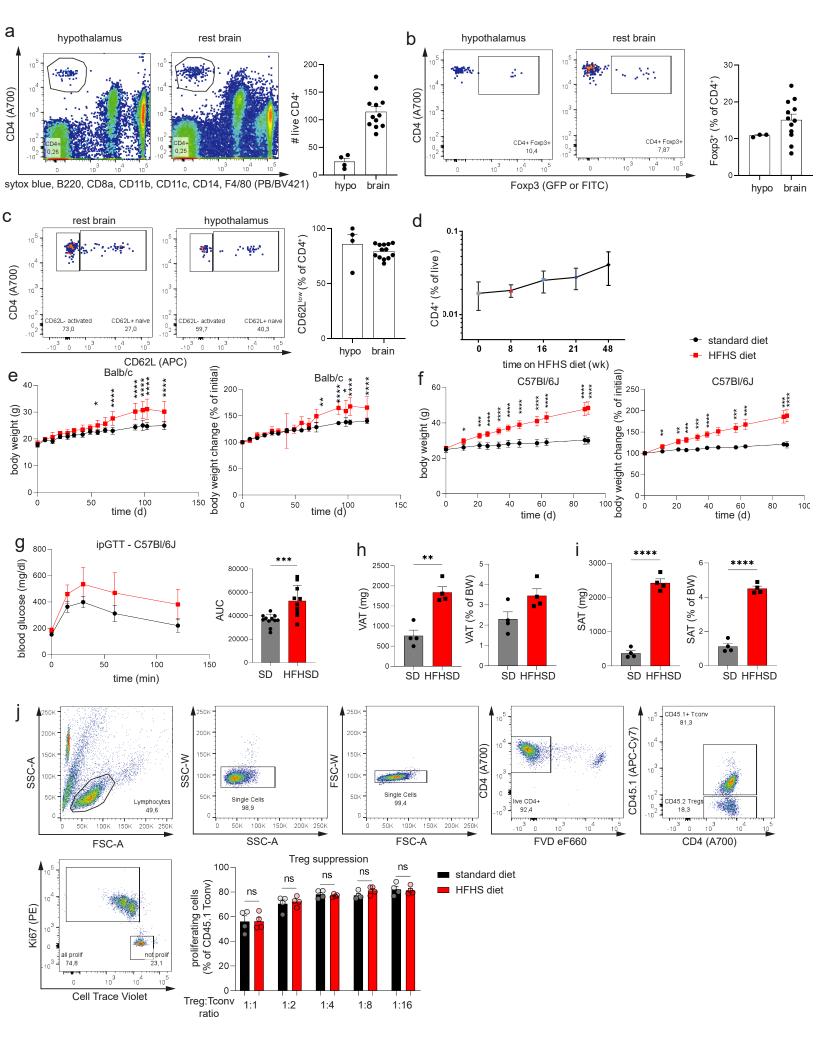
#### **Supplementary Information**

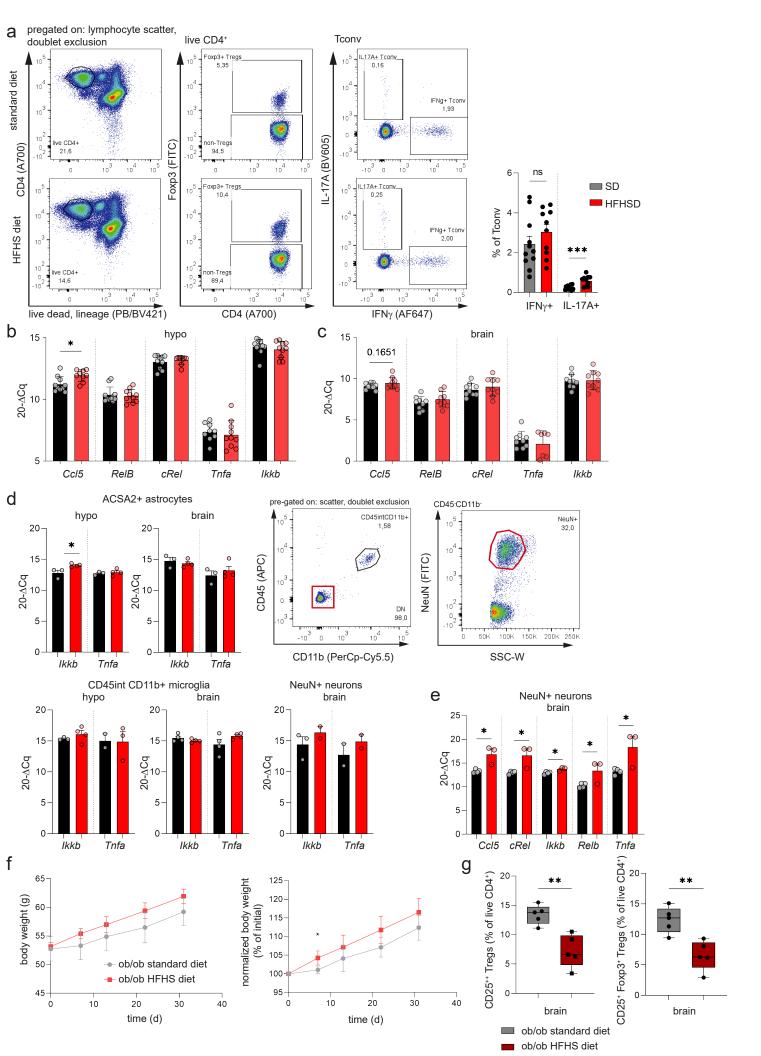
Contains 10 Supplementary Figures


and

3 Supplementary Tables.

Regulatory T-cells in the murine hypothalamus control immune activation and improve metabolic impairments upon high-calorie environments

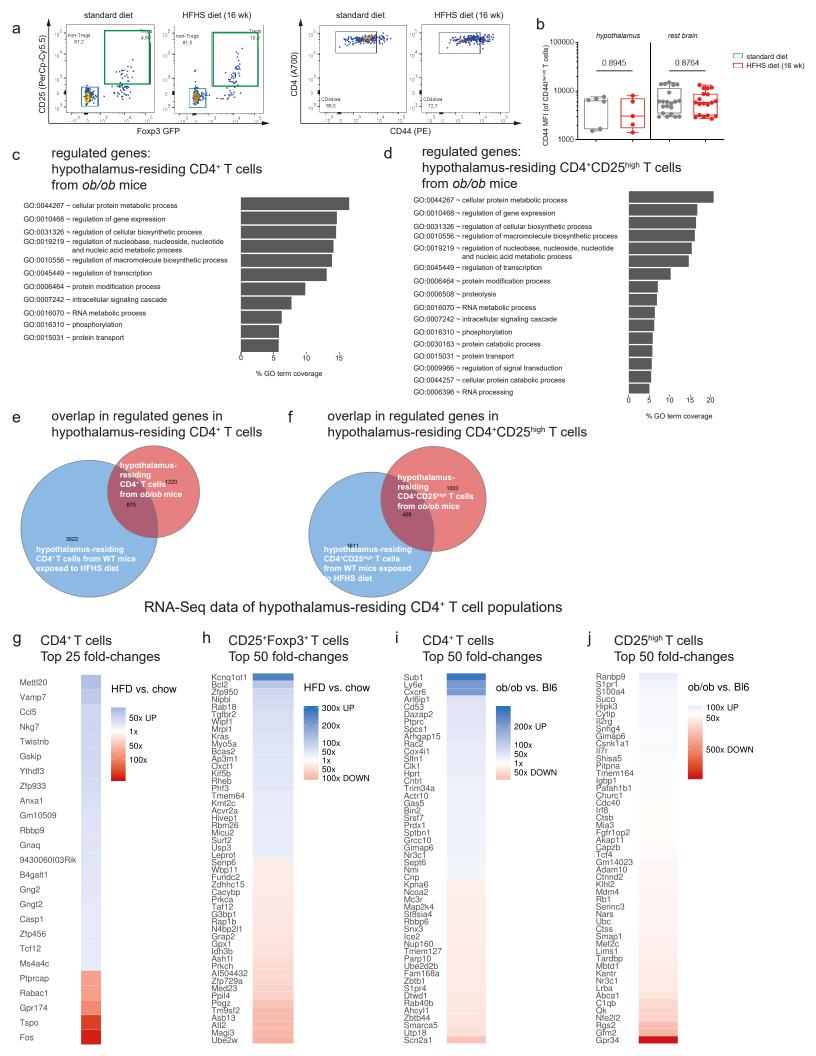
#### **Authors**


Maike Becker<sup>1,2,</sup> Stefanie Kälin<sup>3,2,</sup> Anne H. Neubig<sup>1,2</sup>, Michael Lauber<sup>1,2</sup>, Daria Opaleva<sup>1,2</sup>, Hannah Hipp<sup>1,2</sup>, Victoria K. Salb<sup>1,2</sup>, Verena B. Ott<sup>3,2</sup>, Beata Legutko<sup>3</sup>, Roland E. Kälin<sup>4,5</sup>, Markus Hippich<sup>6,2</sup>, Martin G. Scherm<sup>1,2</sup>, Lucas F. R. Nascimento<sup>1,2</sup>, Isabelle Serr<sup>1,2</sup>, Fabian Hosp<sup>7</sup>, Alexei Nikolaev<sup>8</sup>, Alma Mohebiany<sup>8</sup>, Martin Krueger<sup>9</sup>, Bianca Flachmeyer<sup>9</sup>, Michael Pfaffl<sup>10</sup>, Bettina Haase<sup>11</sup>, Chun-Xia Yi<sup>12</sup>, Sarah Dietzen<sup>13</sup>, Tobias Bopp<sup>13</sup>, Stephen C. Woods<sup>14</sup>, Ari Waisman<sup>8</sup>, Benno Weigmann<sup>15</sup>, Matthias Mann<sup>7</sup>, Matthias H. Tschöp<sup>2,3,\*</sup> and Carolin Daniel<sup>1,2,16,\*</sup>



# Supplementary Figure 1: Identification of CD4<sup>+</sup>T cells in brains of healthy mice. Related to Figures 1 and 2:

- (a-c) Representative FACS plots and the corresponding quantification of (a) CD4<sup>+</sup>T cells, (b) Foxp3GFP<sup>+</sup>Tregs and (c) CD4<sup>+</sup>CD62L<sup>low</sup>T cells in murine hypothalamus vs. rest brain after transcardial perfusion using 10 U/ml heparin in 0.9% NaCl. N=3-14 biological replicates. Mean±SEM. Two-tailed student's unpaired *t*-test. P(a)=0.0001; p(b)=0.2050; p(c)=0.2706.
- (d) Frequencies of CD4<sup>+</sup>T cells isolated from murine hypothalamus after exposure of 8-48 weeks to a HFHS diet. Mean±SD.
- (**e-f**) Body weight curves of mice fed the standard diet vs. HFHS diet. Mean±SD. Two-way ANOVA with Šidák post-hoc test. Exact *p*-values and N numbers are provided in the Source Data file.
- (g) ipGTT and the area under the curve (AUC) of C57Bl/6J mice fed the standard diet vs. HFHS diet for 16 weeks. Mean $\pm$ SD and n=10-11 biological replicates per group. Two-tailed student's unpaired *t*-test, p=0.0010.
- (**h-i**) Visceral adipose tissue (VAT, h) and subcutaneous adipose tissue (SAT, i) mass at the end of the study (of g). Mean±SEM and n=4 biological replicates. Two-tailed student's unpaired *t*-test, p(VAT, mg)=0.0014; p(VAT, %)=0.0561; p(SAT, mg)<0.0001; p(SAT, %)<0.0001.
- (j) Representative FACS plots and the corresponding quantification of an *in vitro* Treg suppression assay using naïve CD45.1 Tconv cells that were suppressed by Tregs from mice that were fed with the standard diet or the HFHS diet as in (a). Treg:Tconv ratio was titrated from 1:1 to 1:16. n=4 biological replicates per group. Two-tailed student's unpaired *t*-test per condition with p(1:1)=0.9895; p(1:2)=0.6641; p(1:4)=0.5605; p(1:8)=0.1410; p(1:2)=0.7955.


Source data are provided as a Source Data file. \*=p<0.05; \*\*=p<0.01, \*\*\*=p<0.001, \*\*\*=p<0.0001.



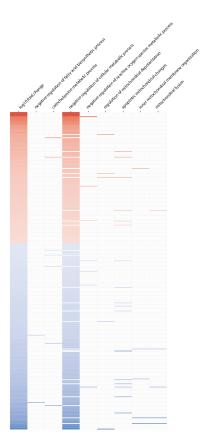
# Supplementary Figure 2: Cytokine profiles of T cells and suppressive capacity of Tregs isolated from mice fed a HFHS diet. Related to Figure 2.

- (a) Representative FACS plots and the corresponding quantification of cytokine expression in CD4<sup>+</sup>T cells isolated from lymph nodes of wildtype C57Bl/6J mice fed a standard diet vs HFHS diet. n=10-11 biological replicates per group. Two-tailed Student's unpaired *t*-test with *p*(IFNg)=0.2780; *p*(IL17A)=0.0006.
- (**b-c**) Gene expression analyses of (b) hypothalamic and (c) rest brains of standard diet vs HFHS diet-fed wildtype C57Bl/6J mice. Gene expression was normalized to *Histone*. Mean±SEM. N=9-11 biological replicates per group. Two-tailed Student's unpaired *t*-test. Hypothalamus: p(Ccl5)=0.0115; p(Relb)=0.7463; p(cRel)=0.4826; p(Tnfa)=0.6135; p(lkkb)=0.403. Brain: p(Ccl5)=0.1651; p(Relb)=0.2800; p(cRel)=0.4284; p(Tnfa)=0.9020; p(lkkb)=0.7943.
- (d) Gene expression analyses of sorted cell populations. ACSA2<sup>+</sup> astrocytes were MACS-sorted. For sorting plots for microglia (CD45<sup>int</sup>CD11b<sup>+</sup>) and Neurons (CD45<sup>-</sup> CD11b<sup>-</sup>NeuN<sup>+</sup>) see representative FACS plots. Sorted cell populations were from either standard diet- or 16 wk HFHS diet fed wildtype C57Bl/6J mice. Gene expression was normalized to *Histone H3* and plotted as 20-Delta Cq. N=3-4 biological replicates per group. Mean±SEM. Two-tailed Student's unpaired *t*-test. Hypothalamus: p(Ikkb)=0.0278; p(Tnfa)=0.6712; Brain: p(Ikkb)=0.5421; p(Ikkb)=0.4495.
- (e) FACS-sorted NeuN+ neurons from rest brains of Balb/c mice fed a standard diet vs. a HFHS diet for 16 wk. Gene expression was normalized to *Histone H3* and plotted as 20-Delta Cq. N=3-4 biological replicates per group. Mean±SEM. Two-tailed Student's unpaired *t*-test with p(Ccl5)=0.0124; p(cRel)=0.0252; p(lkkb)=0.0178; p(Relb)=0.0488; p(Tnfa)=0.0403.
- (f) Body weight curves of ob/ob mice fed a standard diet or HFHS diet. n=5 biological replicates per group. Mean±SD.
- (**g**) Treg frequencies in brains of ob/ob mice of (E). n=5 biological replicates per group. Depicted are box-and-whisker plots (min to max with all data points). Two-tailed Student's unpaired t-test.  $p(CD25^{+++})=0.0025$ ; p(Foxp3+)=0.0037.

Source data are provided as a Source Data file. \*=p<0.05; \*\*=p<0.01.



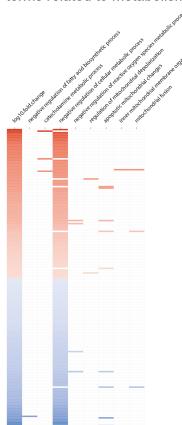
# Supplementary Figure 3: Transcriptome analyses of hypothalamic CD4<sup>+</sup>T cells. Related to Figure 3:

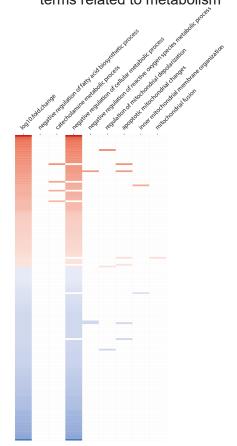

- (a) Representative sorting scheme for T cells used for RNA-Seq showing CD4+CD25-Foxp3 GFP-CD44<sup>low+int</sup> and CD4+CD25<sup>hi</sup>Foxp3 GFP+ cells. Cells were pre-gated based on lymphocyte scatter, doublet exclusion, and live CD4+T cells.
- (**b**) analyses of the mean fluorescence intensity (MFI) of CD44 abundance on CD4+CD25-Foxp3 GFP-CD44<sup>low+int</sup> T cells as in (a) to demonstrate the absence of a difference in maturational status of sorted input cell populations used for sequencing experiments. N=5-21 biological replicates. Two-tailed Student's unpaired *t*-test with p(Hypo)=0.5888; p(brain)=0.6646.
- (**c-d**) DESeq2 normalized read counts regulated more than 2.5-fold (*ob/ob* vs. C57Bl/6J) were functionally annotated to Gene Ontology Biological Processes (GOBP) level 5 using DAVID Bioinformatics Resources 6.7. Terms are depicted as percentage GO term gene coverage for (**c**) hypothalamic CD4+T cells and (**d**) hypothalamic CD4+CD25<sup>high</sup>Foxp3+T cells.
- (**e-f**) Venn-diagram of regulated genes of (**e**) hypothalamic CD4<sup>+</sup>T cells and (**f**) CD4<sup>+</sup>CD25<sup>high</sup>Foxp3<sup>+</sup>T cells from *ob/ob* mice and C57Bl/6J mice fed HFHS diet.
- (g-j) Top fold-changes of DESeq2 normalized read counts of (g) CD4<sup>+</sup> and (h) CD4<sup>+</sup>CD25<sup>+</sup>Foxp3GFP<sup>+</sup> T cell populations from HFHS diet- vs. SD-fed Foxp3GFP reporter mice, as well as of (i) CD4<sup>+</sup> T cells and (j) CD4<sup>+</sup>CD25<sup>hi</sup> T cells from *ob/ob* vs. C57Bl/6J mice. A cutoff of 30 reads was applied.

### Supplementary Figure 4: Transcriptome analysis of hypothalamic CD4<sup>+</sup>T cells. Related to Figure 3:

- (a) Representative FACS plot for activated T cells (non-Tregs) used for RNA-Seq (revision). Cells were pre-gated based on lymphocyte scatter, doublet exclusion. Activated T cells (non-Tregs) were gated as live CD4+CD25-Foxp3GFP-CD44highCD62Llow and Tregs were gated as live CD4+CD25+Foxp3GFP+. The final Treg gate is shown in green, the final activated T cell gate shown in blue. Depicted is a representative plot for cells isolated from perfused brains of Foxp3GFP reporter mice on 16-18 wks of a HFHSD, n=5 mice were pooled for each sequencing sample.
- (**b-e**) Volcano plot of differentially expressed genes in FACS-sorted activated T cells (as shown in a), comparing T cells from (b, d) hypothalami and (c, e) brains of Foxp3<sup>GFP</sup> reporter mice that were on a HFHSD vs SD.
- (**f-g**) Volcano plot of differentially expressed genes comparing Tregs vs activated T cells isolated from brains of mice on a HFHSD.
- (h) Gene set enrichment analysis of activated T cells from hypothalami on mice on a HFHSD vs SD. A positive normalized enrichment score (NES) refers to gene sets upregulated in response to hypercaloric feeding.
- (i) Volcano plot for activated T cells isolated from hypothalami of HFHS diet vs. SD mice in which genes of the leading edge (of h) on cell cycle terms are highlighted in red.

a regulated genes:
hypothalamus-residing CD4<sup>+</sup>T cells
from mice exposed to HFHS diet:
terms related to metabolism

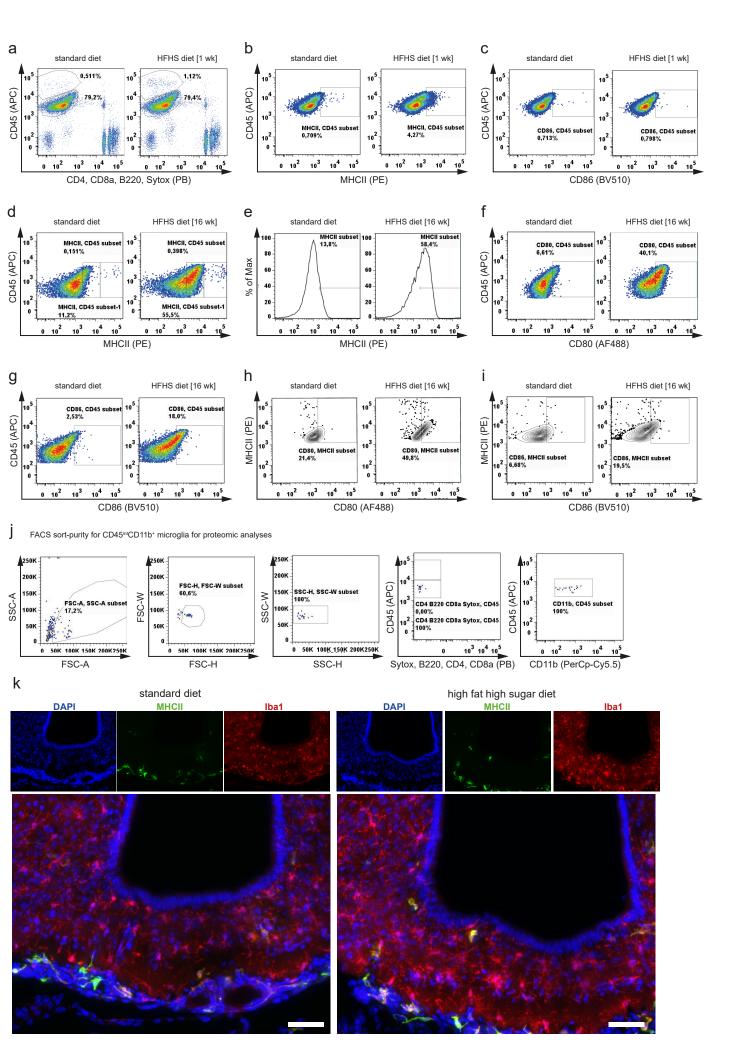

b regulated genes: hypothalamus-residing CD4<sup>+</sup>CD25<sup>high</sup>Foxp3<sup>+</sup> T cells from mice exposed to HFHS diet: terms related to metabolism




The state of the s

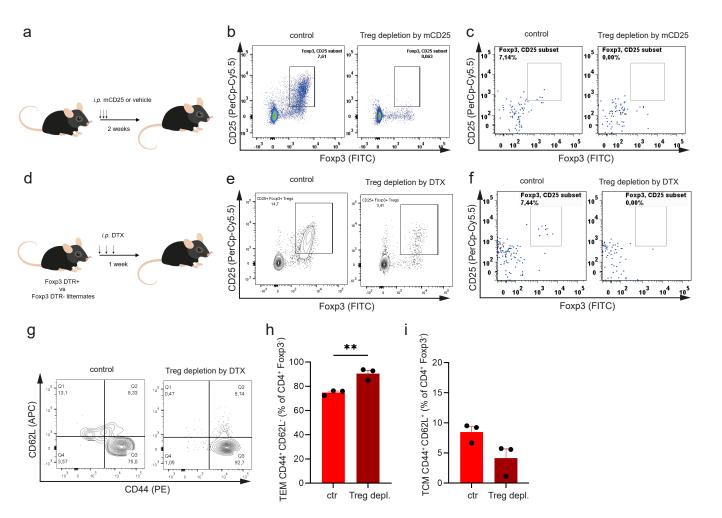
c Regulated genes in hypothalamic CD4<sup>+</sup> T cells from *ob/ob* mice: terms related to metabolism

d Regulated genes in hypothalamic CD4+CD25<sup>high</sup> T cells from *ob/ob* mice: terms related to metabolism





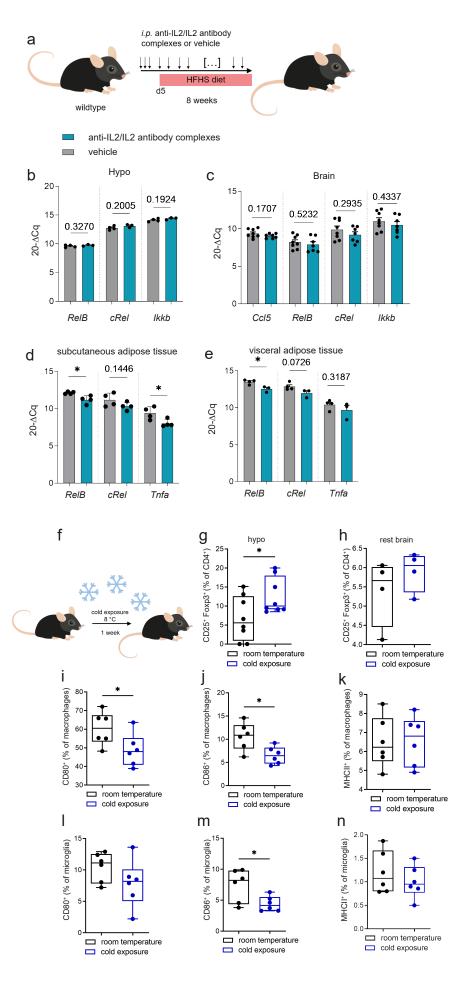

# Supplementary Figure 5: Transcriptome analysis of hypothalamic CD4<sup>+</sup>T cells. Related to Figure 3:


(a-b) Regulated genes (HFHS vs. standard diet) were annotated to selected metabolism-associated GOBP terms and color-coded by log<sub>10</sub>-fold-change; (a) hypothalamic CD4<sup>+</sup> T cells and (b) hypothalamic CD4<sup>+</sup>CD25<sup>high</sup>Foxp3<sup>+</sup>T cells from mice exposed to the HFHS diet.

(c-d) Regulated genes (*ob/ob* vs. HFHS diet-fed C57Bl/6J mice) were annotated to selected metabolism-associated GOBP terms and color-coded by log<sub>10</sub>-fold-change; (c) hypothalamic CD4<sup>+</sup>T cells and (d) hypothalamic CD4<sup>+</sup>CD25<sup>high</sup>T cells.



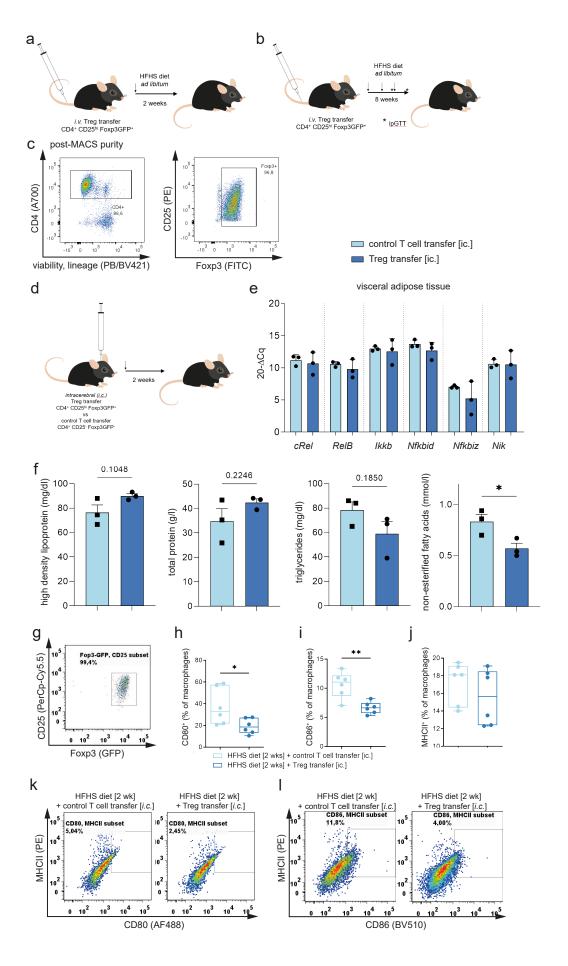
# Supplementary Figure 6: Immune activation of microglia upon hyper-caloric challenge. Related to Figure 4:


- (**a-i**) Antigen-presenting functions of (**a**) CD45<sup>int</sup>CD11b<sup>+</sup> microglia upon exposure to HFHS diet (**a-c**) for 1 wk or (**d-i**) 16 wk as assessed by co-stainings of CD80, CD86 and MHCII.
- (j) Representative FACS plot for sort-purity of CD45<sup>int</sup>CD11b<sup>+</sup> microglia used for proteomic analyses.
- (**k**) Immunofluorescence of nuclei (DAPI, blue), microglia (Iba1, red), MHCII (green) and the merged image of mice exposed to standard diet or one year of HFHS diet. The scale bar is  $50~\mu m$ .



# Supplementary Figure 7: Two loss-of-function models of *in vivo* Treg depletion. Related to Figure 5 and 6:

- (a) Scheme of the *in vivo* Treg depletion using *i.p.* administration of mCD25 antibodies.
- (**b-c**) Representative FACS plots showing the efficacy of the Treg depletion by *i.p.* mCD25 administration in (b) inguinal LNs and (c) hypothalamus after 1 wk HFHS diet as determined by intracellular staining for Foxp3.
- (d) Scheme of the *in vivo* Treg depletion using *i.p.* diphtheria toxin (DTX) administration in Foxp3 DTR mice.
- (e-f) Representative FACS plots showing the efficacy of Treg depletion by *i.p.* diphtheria toxin (DTX) administration in Foxp3 DTR mice. Shown are the effects on the CD4<sup>+</sup>T cell population in (e) inguinal LNs and the (f) hypothalamus after 2 wk of HFHS diet as determined by intracellular staining for Foxp3.
- (g-i) Representative FACS plots and quantification of (h) CD4+Foxp3-CD44hiCD62Llow effector memory T cells (TEM) and (i) CD4+Foxp3-CD44hiCD62L+ central memory T cells (TCM) in rest brains of Foxp3 DTR mice with or without Treg depletion by *i.p.* DTX administration. N=3 biological replicates per group. Mean±SEM. Two-tailed student's unpaired *t*-test, p(TEM)=0.2592; p(TCM)=0.0706.

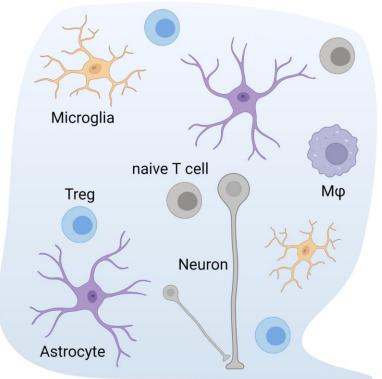

Source data are provided as a Source Data file. \*=p<0.05; \*\*=p<0.01.



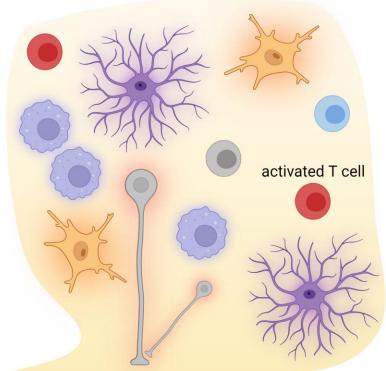
# Supplementary Figure 8: Treg modulation by anti-IL2/IL2 antibody complexes or cold exposure. Related to Figure 7:

- (a) Scheme of the *in vivo* Treg expansion experiment using anti-IL2/IL2 antibody complexes.
- (**b-e**) Gene expression analyses of (b) hypothalami, (c) brains, (d) subcutaneous adipose tissue and (e) visceral adipose tissue of the mice from (a). Gene expression was normalized to *Histone H3*. N=3 biological replicates per group. Mean±SEM. Two-tailed student's unpaired *t*-test. Hypo: p(RelB)=0.3270; p(cRel)=0.2005; p(lkkb)=0.1924. Brain: p(Ccl5)=0.1707; p(Relb)=0.5232; p(cRel)=0.2935; p(lkkb)=0.4337. Subcutaneous adipose tissue: p(Relb)=0.1446; p(cRel)=0.0155; p(Tnfa)=0.0309. visceral adipose tissue: p(Relb)=0.0726; p(cRel)=0.0129; p(Tnfa)=0.3187.
- (f) Scheme of the *in vivo* cold exposure experiments. Mice were subjected to 8°C ambient temperature for one week.
- (**g-h**) CD25<sup>hi</sup> Foxp3<sup>+</sup> Treg frequencies in (g) hypothalamus (p=0.0435) and (h) rest brain (p=0.3400) after *in vivo* cold exposure. Two-tailed student's unpaired t-test. N=8 or 4 biological replicates. Depicted are box-and-whisker plots (min to max with all data points).
- (i-k) Flow cytometric analysis of the expression of co-stimulatory molecules (i: CD80, j: CD86) or MHCII (k) on CD45<sup>hi</sup>CD11b<sup>+</sup> macrophages after *in vivo* cold exposure. N=6 biological replicates. Depicted are box-and-whisker plots (min to max with all data points). p(CD80)=0.0460, p(CD86)=0.0168, p(MHCII)=0.9319.
- (**I-n**) Flow cytometric analysis of the expression of co-stimulatory molecules (I: CD80, m: CD86) or MHCII (n) on CD45<sup>int</sup>CD11b<sup>+</sup> microglia after *in vivo* cold exposure. N=6 biological replicates. Depicted are box-and-whisker plots (min to max with all data points). p(CD80)=0.1775, p(CD86)=0.0292, p(MHCII)=0.4065.

Source data are provided as a Source Data file. \*=p<0.05.




### Supplementary Figure 9: Treg transfer models as a gain-of-function model to improve metabolic health. Related to Figure 8 and Figure 9


- (a-b) Scheme of *i.v.* Treg transfer experiments.
- (c) Post-MACS sort purity for the enrichment of CD4<sup>+</sup>CD25<sup>hi</sup> Tregs analyzed by intracellular Foxp3 staining post-transfer of the *i.v.* Treg transfer cohort.
- (d) Scheme of *i.c.* Treg vs control T cell transfer experiments.
- (e) Gene expression analyses of visceral adipose tissue of the mice from (d). Gene expression was normalized to *Histone H3*. Mean±SEM. N=3 biological replicates per group. Two-tailed student's unpaired *t*-test. P(cRel)=0.6686; p(Relb)=0.4268; p(Ikkb)=0.7329; p(Nfkbid)=0.2890; p(Nfkbiz)=0.2971; p(Nik)=0.9315.
- (f) Plasma analyses of (d). Mean±SEM. N=3 biological replicates per group. Two-tailed student's unpaired t-test. P(HDL)=0.1048; p(total protein)=0.2246; p(triglycerides)=0.1850; p(NEFAs)=0.0392.
- (**g**) Representative plot of the FACS post sort-purity of dump-CD4+CD25<sup>hi</sup>Foxp3GFP+ Tregs used for *i.c.* transfer experiments.
- (**h-j**) Flow cytometric analysis of (h) CD80, (i) CD86 and (j) MHCII expression on CD45<sup>high</sup>CD11b<sup>+</sup> macrophages after *i.c.* Treg or control T cell transfer and exposure to 2 wk HFHS diet. N=6 biological replicates. Depicted are box-and-whisker plots (min to max with all data points). Two-tailed student's unpaired *t*-test with p(CD80)=0.0363; p(CD86)=0.0027; p(MHCII)=0.3338.
- (**k-I**) Analysis of costimulatory molecule co-expression on hypothalamic CD45<sup>int</sup>CD11b<sup>+</sup> microglia after *i.c.* Treg or control T cell transfer and exposure to 2 wk HFHS diet.

Source data are provided as a Source Data file. \*=p<0.05.

#### standard diet

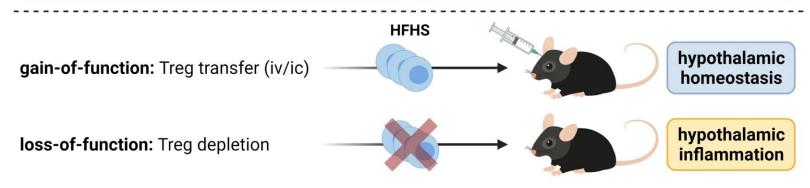


#### high-fat high-sugar diet (HFHS)



#### hypothalamic homeostasis

steady-state microglia and Mp


balance between hypothalamic Tregs and activated hypothalamic CD4<sup>+</sup> T cells

#### hypothalamic inflammation

activation of microglia and Mφ reactivity: CD80 ↑, CD86 ↑, MHCII ↑

decrease in hypothalamic Tregs

Th1-like activation of hypothalamic CD4<sup>+</sup> T cells



# Supplementary Figure 10: Regulatory T-cells in the hypothalamus control immune activation and improve metabolic impairments upon high-calorie environments.

A visual summary of the key findings from this study, highlighting that a hypercaloric challenge leads to microglia and macrophage reactivity, a significant reduction in hypothalamic Tregs, and a Th1-like activation of conventional CD4+ T cells in the hypothalamus. Gain-of-function experiments, including i.v. and i.c. Treg transfers, can restore hypothalamic immune activation following exposure to an HFHS diet, while loss-of-function experiments involving Treg depletion exacerbate hypothalamic inflammation. Created in BioRender. Scherm, M. (2025) https://BioRender.com/y95o387.

#### **Supplementary Table 1**

| antibody                   | manufacturer   | clone, cat#, RRID                |
|----------------------------|----------------|----------------------------------|
| CD4 Biotin                 | BioLegend      | Clone: GK1.5; Cat# 553728;       |
|                            |                | RRID:AB_395012                   |
| CD8a Pacific Blue          | BioLegend      | Clone: 53-6.7; Cat# 100725;      |
|                            |                | RRID:AB_493425                   |
| CD11b Pacific Blue         | BioLegend      | Clone: M1/70; Cat# 101224;       |
|                            |                | RRID:AB_755986                   |
| CD11c Brilliant Violet 421 | BioLegend      | Clone: N418; Cat# 117330;        |
|                            |                | RRID:AB_11219593                 |
| B220 Pacific Blue          | BioLegend      | Clone: RA3-6B2; Cat# 103227;     |
|                            |                | RRID:AB_492876                   |
| F4/80 Pacific Blue         | BioLegend      | Clone: BM8; Cat# 123124;         |
|                            |                | RRID:AB_893475                   |
| CD25 PerCP-Cy5.5           | BioLegend      | Clone: PC61; Cat# 102030;        |
| ,                          |                | RRID:AB_893288                   |
| CD44 PE                    | BioLegend      | Clone: IM7; Cat# 103008;         |
|                            |                | RRID:AB_312959                   |
| Ki67 APC                   | BioLegend      | Clone: 16A8; Cat# 652406;        |
|                            |                | RRID:AB_2561930                  |
| Ki67 Brilliant Violet 605  | BioLegend      | Clone: 16A8; Cat# 652413;        |
|                            |                | RRID:AB_2562664                  |
| CD4 Alexa Fluor 700        | eBioscience    | Clone: RM4-5; Cat# 56-0042-82;   |
|                            |                | RRID:AB_494000                   |
| CD62L APC                  | eBioscience    | Clone: MEL-14; Cat# 17-0621-82;  |
|                            |                | RRID:AB_469410                   |
| Foxp3 FITC                 | eBioscience    | Clone: FJK-16s; Cat# 11-5773-82; |
|                            |                | RRID:AB_465243                   |
| CD14 V450                  | BD Biosciences | Clone: rmC5-3; Cat# 560639;      |
|                            |                | RRID:AB_1727429                  |
| CD4 Pacific Blue           | BioLegend      | Clone: GK1.5; Cat# 100428        |
|                            |                | RRID:AB_493647                   |
| CD11b PerCp-Cy5.5          | BioLegend      | Clone: M1/70; Cat# 101228        |
|                            |                | RRID:AB_893232                   |
| CD45 APC                   | BioLegend      | Clone: 30-F11; Cat# 103112       |
|                            |                | RRID:AB_312977                   |
| CD45 Alex Fluor 700        | BioLegend      | Clone: 30-F11; Cat# 103128       |
|                            |                | RRID:AB_493715                   |
| CD45 PE-Cy7                | BioLegend      | Clone: 30-F11; Cat# 103113       |
|                            |                | RRID:AB_312978                   |

| CD45.1 APC-Cy7                     | BioLegend                         | Clone; A20; Cat# 110716; RRID: AB_313505          |  |
|------------------------------------|-----------------------------------|---------------------------------------------------|--|
| CD86 Brilliant Violet 510          | BioLegend                         | Clone: GL-1; Cat# 105039<br>RRID:AB_2562370       |  |
| CD86 APC-Cy7                       | BioLegend                         | Clone: GL-1; Cat# 105029<br>RRID:AB_2074993       |  |
| CD80 Alexa Fluor 488               | BioLegend                         | Clone: 16-10A1; Cat# 104715<br>RRID:AB_492823     |  |
| MHCII I-A PE                       | eBioscience                       | Clone: NIMR-4; Cat# 12-5322-81<br>RRID:AB_465930  |  |
| NeuN-                              | Sigma Aldrich                     | Clone: A60; Cat# MAB377X;<br>RRID:AB_2149209      |  |
| Goat anti-GFP                      | Acris antibodies                  | Polyclonal; Cat# R1091P<br>RRID:AB_1002036        |  |
| Rabbit anti-GFAP                   | Dako                              | Cat# Z0334; RRID:AB_10013382                      |  |
| Rabbit anti-Iba1                   | Synaptic Systems                  | Polyclonal; Cat# 234 003<br>RRID:AB_10641962      |  |
| Armenian hamster anti-CD3          | BioLegend                         | Clone: 145-2C11; Cat# 100301<br>RRID:AB_312666    |  |
| Rat anti-Foxp3                     | eBioscience                       | Clone: FJK-16s; Cat# 14-5773-82<br>RRID:AB_467576 |  |
| Rat anti-CD4                       | BD                                | Clone: GK1.5; Cat# 553727<br>RRID:AB_395011       |  |
| Rabbit anti-Collagen IV            | Millipore                         | Clone: AB756P; Cat# AB756P<br>RRID:AB_2276457     |  |
| Anti-mouse CD25 (mCD25)            | BioXCell                          | Clone: PC-61.5.3; Cat# BE0012;<br>RRID:AB_1107619 |  |
| CellTrace Violet                   | Invitrogen                        | Cat#C34557                                        |  |
| Fc-Block                           | BD Pharmingen                     | Clone: 2.4G2; Cat# 553142;<br>RRID:AB_394657      |  |
| Donkey anti-goat Alexa Fluor 488   | Life Technologies                 | Cat# A11055; RRID:AB_2534102                      |  |
| Donkey anti-rabbit Alexa Fluor 568 | Life Technologies                 | Cat# A10042; RRID:AB_2534017                      |  |
| Goat anti-hamster Alexa Fluor 488  | Jackson<br>ImmunoResearch<br>Labs | Cat# 127-545-160;<br>RRID:AB_2338997              |  |
| Biotinylated rabbit anti-goat      | Vector                            | Cat# BA-5000; RRID:AB_2336126                     |  |
| Biotinylated goat anti-rat         | Jackson<br>ImmunoResearch<br>Labs | Cat# 112-065-175;<br>RRID:AB_2338180              |  |
| Goat anti-rabbit Alexa Fluor 488   | Jackson<br>ImmunoResearch<br>Labs | Cat# 111-545-144;<br>RRID:AB_2338052              |  |

#### **Supplementary Table 2**

| Mouse line                                                       | Source                | RRID                 |
|------------------------------------------------------------------|-----------------------|----------------------|
| CD90.1 Balb/c; genotype: CBy.PL(B6)-                             | Jackson Laboratory    | RRID:IMSR_JAX:005443 |
| Thy1 <sup>a</sup> /ScrJ                                          |                       |                      |
| CD90.2 Balb/c; genotype: Balb/cByJ                               | Jackson Laboratory    | RRID:IMSR_JAX:001026 |
| Foxp3 GFP Balbc; genotype: C.Cg-                                 | Jackson Laboratory    | RRID:IMSR_JAX:006769 |
| Foxp3 <sup>tm2Tch</sup> /J                                       |                       |                      |
| Foxp3 GFP Bl6; genotype: B6.Cg-                                  | Jackson Laboratory    | RRID:IMSR_JAX:006772 |
| Foxp3 <sup>tm2Tch</sup> /J                                       |                       |                      |
| CD45.1 Bl6 "wt"; genotype: B6.SJL-                               | Jackson Laboratory    | RRID:IMSR_JAX:002014 |
| Ptprc <sup>a</sup> Pepc <sup>b</sup> /BoyJ                       |                       |                      |
| <i>ob/</i> ob mice; genotype: B6.Cg- <i>Lep</i> <sup>ob</sup> /J | Jackson Laboratory    | RRID:IMSR_JAX:000632 |
| Foxp3-DTR; genotype: C57BL/6-                                    | Tobias Bopp, Johannes | RRID:MMRRC_032050-   |
| Tg(Foxp3-DTR/EGFP)23.2Spar/Mmjax                                 | Gutenberg University  | JAX                  |
|                                                                  | Mainz, Germany        |                      |
| Wildtype C57Bl/6J                                                | Jackson Laboratory    | RRID:IMSR_JAX:000664 |
| Wildtype Balb/cByJ                                               | Jackson Laboratory    | RRID:IMSR_JAX:001026 |

#### **Supplementary Table 3**

| gene   | forward primer          | reverse primer          | source           |
|--------|-------------------------|-------------------------|------------------|
| Relb   | gcc ttg ggt tcc agt gac | tgt att cgt cga tga ttt | Vigo Heissmeyer; |
|        |                         | cca a                   | LMU Munich       |
| cRel   | TTTCCTTCCTGATGAACATGG   | CACGGCAGATCCTTAATTCT    | Vigo Heissmeyer; |
|        |                         |                         | LMU Munich       |
| Ikkb   | ccg gaa agt gtc agc tgt | cct cag ctg gaa gaa gga | Vigo Heissmeyer; |
|        | atc                     | ga                      | LMU Munich       |
| Nik    | tcc aca gaa tga agg aca | tac ccg aaa cac ctc gag | Vigo Heissmeyer; |
|        | agc                     | tc                      | LMU Munich       |
| Nfkbid | ttt cta ccc tcc gtc aga | tac agc cgg gta tcc aga | Vigo Heissmeyer; |
|        | cc                      | ga                      | LMU Munich       |
| Nfkbiz | gag tcc cgt ccc aga ggt | ttc acg cga aca cct tga | Vigo Heissmeyer; |
|        |                         |                         | LMU Munich       |
| Ccl5   | TGCAGTCGTGTTTGTCACTC    | ATGCCCATTTTCCCAGGACC    | Self-designed    |
| Tnfa   | ATGAGAAGTTCCCAAATGGC    | CTCCACTTGGTGGTTTGCTA    | Self-designed    |