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a b s t r a c t

Since the beginning of the Covid19 pandemic, many efforts have been devoted to identifying approaches
to neutralize SARS-CoV-2 replication within the host cell. A promising strategy to block the infection con-
sists of using a mutant of the human receptor angiotensin-converting enzyme 2 (ACE2) as a decoy to
compete with endogenous ACE2 for the binding to the SARS-CoV-2 Spike protein, which decreases the
ability of the virus to enter the host cell. Here, using a computational framework based on the 2D
Zernike formalism we investigate details of the molecular binding and evaluate the changes in ACE2-
Spike binding compatibility upon mutations occurring in the ACE2 side of the molecular interface. We
demonstrate the efficacy of our method by comparing our results with experimental binding affinities
changes upon ACE2 mutations, separating ones that increase or decrease binding affinity with an Area
Under the ROC curve ranging from 0.66 to 0.93, depending on the magnitude of the effects analyzed.
Importantly, the iteration of our approach leads to the identification of a set of ACE2 mutants character-
ized by an increased shape complementarity with Spike. We investigated the physico-chemical proper-
ties of these ACE2 mutants and propose them as bona fide candidates for Spike recognition.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) infection, caused by a new coronavirus emerged as a very
infectious human pathogen, has rapidly spread all over the world
and caused serious consequences for public health [1,2]. This coro-
navirus is related to bat coronaviruses and crossed into humans in
late 2019 [3] where it causes large and heterogeneous symptoms
such as fever and pneumonia, collectively called COVID-19 [2,4,5].

The entry of the virus in the human cells is mainly mediated by
the Spike protein, a trimeric assembly that protrudes from the
SARS-CoV-2 envelope [6–8]. Indeed, as repeatedly observed exper-
imentally, each chain of the Spike trimer has a Receptor Binding
Domain(RBD) able to bind the human protease angiotensin-
converting enzyme 2 (ACE2), thus causing the Spike transition to
a new conformation that allows the membrane fusion and release
of viral genetic material in the host cell cytosol [7,9–11].

The identification of possible molecular drugs able to prevent
the Spike-ACE2 recognition is still an open problem. For instance,
it has been demonstrated that monoclonal antibodies, targeting
Spike protein, can represent an effective tool for the treatment of
SARS-CoV-2 infection[12]. Moreover, the protective effect of Lacto-
ferrin against SARS-CoV2 has been studied, even if the molecular
mechanism of this action is still to be defined [13,14]. Another
interesting approach is the one proposed by this recent work
[15], where peptides mimicking ACE2 binding sites were designed
in order to prevent the virus cell entry.

Among other strategies, soluble ACE2 (without trans-
membrane region) has been proposed as a possible drug, compet-
ing for the binding with the viral Spike protein and thus repressing
the SARS-CoV-2 infection [16,17], since all the atomic contacts
between Spike protein and ACE2 receptor occur in the extracellular
domain of the human protease. Moreover, differently from the case
of anti-Spike monoclonal antibodies recently identified and
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currently in clinical or pre-clinical stage [18–21], the eventual viral
escape from this binding is very likely to consequently reduce also
the affinity with the ACE2 receptor [22]. In this scenario, the iden-
tification of ACE2 mutants that increase the binding affinity with
SARS-CoV-2 Spike protein can be extremely useful, both from diag-
nostic and therapeutic points of view [23].

Remarkably, in the recent work by Chan et al. [22], 117 sites on
ACE2 sequence were identified, structurally sparse on the whole
protein and each was mutated into all the other 19 possible natural
residues. The resulting 2340 single mutations were analyzed in
terms of affinity change with respect to the binding between wild
type ACE2 and the Spike protein. Interestingly, several ACE2 muta-
tions with improved binding to Spike RBD domain were identified,
and an ACE2 engineered version with a combination of three of
these single mutations was proposed.

However, if multiple simultaneous ACE2 residues mutations are
considered, the amount of possible binding configurations dramat-
ically increases, making the experimental exploration very diffi-
cult. An additional level of complexity is caused by the fact that
Spike, as other parts of the virus, is subject to mutations that can
affect the binding propensity to the corresponding receptor.
Indeed, viral genomes undergo fast mutational processes that can
produce variants with higher complementarity to the cell receptor
and facilitate its inter-species transmission. As a matter of fact,
even considering just one viral protein, the number of possible
variants eventually occurring in its receptor-binding domain is
very large. For these reasons, fast computational methods could
be extremely useful to explore the space of possible mutations in
terms of binding affinity to its receptor. In the last years, the com-
putational molecular design has proven its importance and efficacy
as a guide for optimizing molecular binding [24–27], which indi-
cates that the strategy has a high chance for success.

Here we present a computational approach, based on the local
shape characterization of protein surface through the 2D Zernike
polynomial mathematical formalism, for the identification and
the analysis of ACE2 mutants characterized by an increased geo-
metrical complementarity with SARS-CoV-2 Spike protein. In
recent years the 3D Zernike approach has been applied to study
the compatibility of interacting molecular surfaces [28–31] prov-
ing to be a powerful, albeit computationally expensive, tool. We
employed the 2D Zernike formalism to evaluate the shape comple-
mentarity of protein–protein interfaces and in particular the Spike-
ACE2 one [32]. Indeed, Using the 2D formalism allows us to gain an
order of magnitude advantage in terms of computational time and
no significant loss in description accuracy, since the complemen-
tarity calculated with 3D or 2D formalism highly correlate (see
Supplementary Fig. 1).

Once a patch of the molecular surface is extracted, its points can
be properly projected on a plane and the region shape can be rep-
resented as a 2D function and then expanded on the basis of the
Zernike polynomials. This allows us to summarize the geometrical
properties of a protein region in an ordered set of numerical
descriptors invariant under rotation.

In this work, we first performed a computational mutagenesis
approach reproducing all the interfaces mutations evaluated in
the work of Chan et al. [22], demonstrating that the shape comple-
mentarity measure obtained with our Zernike formalism achieves
a very good agreement with experimental results. Thanks to the
low computational cost of the protocol for protein–protein com-
patibility evaluation upon mutation, independently of the number
of substituted residues, we next modeled and ranked also all the
possible double amino-acid mutations, evaluating a number of
mutants largely inaccessible for any experimental technique.
Finally, combining our approach with a coarse-grained technique
for the evaluation of electrostatics at the interface, we devised a
general and widely applicable algorithm for the identification of
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the set of ACE2 mutants characterized by a very high compatibility
with Spike RBD and specific physico-chemical features.

Remarkably, these designed mutants can represent interesting
candidates for a soluble inhibitor for SARS-CoV-2 infection, com-
peting with membrane-anchored ACE2 for Spike binding.

2. Methods and theory

2.1. Surface construction

The experimental structure of RBD-Spike complex we used is
the one labeled with the PDB code 6vw1 [33]: it was solved with
X-ray crystallography with a resolution of 2.68 A. The structure
report ACE2 residues from Serine 19 to Alanine 614 and RBD resi-
dues from Asparagine 334 to Proline 527. Starting from the exper-
imental structure, the computational mutagenesis has been
performed using the SCWRL4 software [34].

Atomic charges and radiiwere assignedusing PDB2PQR [35]. Sol-
vent Accessible Surface and are computed using dms software [36].

2.2. Interface representation and complementarity evaluation

We defined the ACE2 and Spike binding sites as the set of resi-
dues closer than 5 Å to any atom of the molecular partner. As evi-
dent in Fig. 1A, the interaction between these two proteins Spike
and ACE2 receptor is mediated by two separate molecular regions
(region A and region B).

Given the structure of the experimental molecular complex
(PDB: 6vw1), we extracted the surface of the interacting regions
(Spike A, Spike B, ACE2 A, ACE2 B) from the whole surface and,
using the procedure we developed in [32], we represent these
patch surfaces as 2D functions (see Fig. 1B). We then expanded
the patch surfaces in the 2D Zernike polynomial basis, compactly
summarizing their geometrical shape in an ordered and invariant
set of numerical descriptors. Since the shape of two perfectly fit-
ting surfaces is the same in the Zernicke formalism, adopting a
pairwise metric between the descriptors we can efficiently mea-
sure the complementarity between corresponding regions in the
ACE2-Spike interface (Spike A – ACE2 A, Spike B – ACE2 B, where
the lower is the distance the higher is the complementarity). By
defining SA; SB; AA; AB as the vector of Zernike descriptors regard-
ing Spike region A, Spike region B, ACE2 region A and ACE2 region B
respectively, the shape complementarity is defined as:

C ¼ dðSA;AAÞ þ dðSB;ABÞ
2

ð1Þ

where d(X, Y) represents the euclidean distance between two
vectors.

To evaluate the long-range Coulomb contributions to the bind-
ing compatibility, we adopted a Coarse Grained atomic representa-
tion. After assigning to each atom its partial charge at physiological
pH, we schematize each residue with a main chain bead and a side
chain bead. These beads, given their corresponding atoms, are
located at their geometrical center and are charged with the sum
of their partial charges. The coordinates and the charges of the
beads regarding the interface residues of both Spike and ACE2
are available in Supporting Information (Supplementary Tables 1
and 2). In this way we can compute the total interface Coulomb
Energy, summing up all the contributions of the beads closer than
10 Å to beads of the molecular partner (See Fig. 1C). In particular,
selected the i ¼ 1; . . . ;N ACE2 interface beads and the j ¼ 1; . . . ;M
Spike interface beads, we define the electrostatic interface energy:

Eint ¼
XN
i¼1

XM
j¼i

Eij ¼
XN
i¼1

XM
j¼1

1
4p�0

qiqj

rij
ð2Þ



Fig. 1. Surface complementarity and electrostatic evaluation A) Molecular surface and cartoon representation of the ACE2-Spike RBD complex (PDB id:6vw1). Residues found
in structural proximity (nearer than 5 Å) are highlighted by red dots in the matrix on the right. The molecular contact between these 2 proteins occurs through 2 different
regions, therefore we defined 4 set of residues: Spike A (453 Y, 455 L, 456 F, 473 Y, 475 A, 476 G, 477 S, 486 F, 487 N, 489 Y, 490 F, 492 L, 493 Q) colored in purple, ACE2 A (19 S,
24 Q, 27 T, 28 F, 30 D, 31 K, 34 H, 35 E, 37 E, 79 L, 82 M, 83 Y) colored in cyan, Spike B (439 R, 446 T, 449 Y, 496G, 497 F, 498 Q, 500 T, 501 N, 502 G, 505 Y) colored in red, ACE2 B
(38 D, 41 Y, 42 Q, 45 L, 329 E, 330 N, 353 K, 354 G, 355 D, 357 R, 393 R) colored in green. As shown in the matrix, residues of ACE2 A (cyan) interact only with ones of Spike A
(purple), as well as ACE2 B (green) contacts only Spike B (red). B) Zernike disks associated with the interaction region ACE2 A(enclosed in cyan), ACE2 B (green), Spike A
(purple), Spike B (red). In the disks the palette ranges from yellow (low distance from observation point) to green (high distance from the observation point). In the center the
atomic details of the interactions are reported, where the interacting regions are shown with the corresponding color. C) Coarse-Grained representation of a couple of
interacting surface residues. Each residue is associated with two beads, one in place of main chain atoms and another for side chain ones (see Methods).
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where qi and qj are the bead charges, rij is the distance between the
beads and �0 is the permittivity. Note that the favorable energy is
achieved when Eint is negative.

2.3. 2D Zernike polynomials and invariants

Given a function in a 2D space defined in the unit circle, f ðr;/Þ,
it can be expanded in the Zernike polynomials basis as:

f ðr;/Þ ¼
X1
n¼0

Xm¼n

m¼0

cnmZnm ð3Þ

where

cnm ¼ ðnþ 1Þ
p

hZnmjf i ¼ ðnþ 1Þ
p

Z 1

0
drr

Z 2p

0
d/Z�

nmðr;/Þf ðr;/Þ: ð4Þ

being the expansion coefficients, while the complex functions,
Znmðr;/Þ are the Zernike polynomials.

Since the modulus of each coefficient (znm ¼ jcnmj) does not
depend on the phase, the zernike description is invariant for rota-
tions around the origin of the unitary circle. Therefore the shape
complementarity between any two patches, disregarding their size
or orientation, can be evaluated using the Zernike descriptors of
their 2D projections.
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In particular, we assessed the complementarity between patch i
and j as the euclidean distance between the invariant vectors:

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM¼121

k¼1

ðzki � zkj Þ
2

vuut ð5Þ

All the procedure for the calculation and the comparison of the
Zernike invariants is made using an in-house python code, available
on GitHub at: https://github.com/matmi8/Zernike2D.
2.4. Chemical physical properties of the mutants

A number of properties, including hydrophobicity, a-helical, b-
sheet, disorder, burial, aggregation, membrane, and nucleic acid-
binding propensities, are employed to build physico-chemical ’pro-
files’ of ACE2 mutants. For each mutant, the profile is calculated
directly from the primary structure, where we have chosen 80
scales that, for each amino acid, furnishes a numerical value quan-
tifying a given feature. [37]. The Physico-chemical properties are
compared to identify similarities and differences.

To compute how a mutated sequence have changed with
respect to the wt one, we defined the formula (8), and we normal-
ized the obtained values using Z-score.
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Following the CleverMachine approach [37,38], we also check
consistencies among predictors of the same Physico-chemical
propensity by grouping them and generating a ‘consensus’
(Fig. 5B). The used properties can be divided into 8 macro cate-
gories corresponding to the following properties: Aggregation,
Disorder, Membrane Propensity, Hydrophobicity, Burial, Nucleic
Acid Binding, a Helix, b sheet. Since each scale takes a different
approach to compute its score, to give an overall characterization
of the resulting sequence, we average the Xdiff over all the scale
belonging to the same macro group.
3. Results and discussions

In this work, we extensively studied the effects of mutations of
ACE2 residues on the ACE2-Spike interface. While carrying out
residue substitutions, we assessed the interface shape complemen-
tarity and the electrostatic compatibility of the mutated molecular
complex.

We first tested our modeling approach on the available experi-
mental data by evaluating shape and electrostatics changes caused
by previously studied mutations. Comparing our results with the
ones presented in the recent paper by Chan et al. [22], our formal-
ism recognize with an Area under the ROC curve of 0.66 the favor-
able mutations from unfavorable ones (taking in consideration the
mutations with the greatest effects ROC AUC increase up to 0.93).
Because of the high accuracy of our method, we set up an iterative
mutation process that leads to the computational design of ACE2
soluble variants optimized for strong binding to SARS-CoV-2 Spike
protein. We analyzed the physico-chemical properties of the
mutants and observed that the increased molecular complemen-
tarity is accompanied by a decreased propensity to form a-helix,
promoting hydrophobicity and tendency to aggregation.

The computational modeling we adopted for the analysis of the
ACE2-Spike binding interface is summarized in Fig. 1. Once identi-
fied the interacting fraction of molecular surfaces, we calculated
their Zernike descriptors obtaining a set of numerical values
describing the shape of proteins binding regions. Simply calculat-
ing the Euclidean distance between two sets of descriptors we esti-
mate the complementarity between the corresponding molecular
regions. Moreover, we developed a coarse-grained representation
for the evaluation of the electrostatic compatibility between these
two proteins (See Methods section for details).

3.1. Mutations and changes in binding affinity

We studied the effect of several ACE2 residues substitutions on
Spike interfaces.

For each mutation, we performed the mutagenesis, obtaining a
new ACE2 structure (see Methods section). We assessed the com-
patibility of the mutated version with SARS-CoV-2 Spike, in terms
of both shape and electrostatics. The shape complementarity is
studied by evaluating the distance between the Zernike descriptors
of the mutated structure and the ones of the Spike protein, deter-
mining if the mutation has caused an increase or a decrease of the
shape complementarity (Eq. (1)). In parallel, we evaluated the elec-
trostatic compatibility analyzing the electrostatic interface energy
produced by mutated arrangements (Eq. (2)). The overall shape
complementarity balance is:

DC ¼ Cwt � Cmut ð6Þ
where C is the shape complementarity defined in Eq. (1) and the
subscripts wt and mut refer to the complementarity obtained with
the wild type and mutated ACE2. When two interfaces are charac-
terized by an high complementarity the C value calculated between
their Zernike descriptors is low: therefore when DC > 0 the
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mutation is favourable. Similarly the electrostatics energy balance
can be written as:

DE ¼ Ewt � Emut ð7Þ

where E represent the interface electrostatic energy calculated
using Eq. (2), obtained in the wild type or mutated interface. A
favorable mutation results in a DE > 0.

To test the reliability of our procedure we compared the results
of our computational approach with the experimental ones
obtained by [22], focusing only on the mutation involving the
ACE2 binding site residues. Indeed, since the Zernike approach
deals with shape complementarity at the interface, we selected
the set of ACE2 residues closer than 5 Å to any atom of Spike resi-
dues, assuming that their mutation can significantly alter the ACE2
binding site shape. In other words, we focused on 23 ACE2
sequence positions that correspond to a total number of 437 point
amino acid substitutions since each residue can be mutated in each
of the 19 other residues.

In Fig. 2 we reported the results of this study, focusing on shape
complementarity. For each mutation we have both the experimen-
tal and the computational score (calculated using Eq. (6)): ordering
the mutations according to their experimental scores and selecting
the top and bottom N%, we built a binary classifier based on the
computational scores. Performing a Receiver Operating Character-
istics (ROC) curve analysis, we show in Fig. 2A the Area Under the
ROC curve (AUC) as a function of the considered top (highest
experimental scores) and bottom (lowest experimental scores)
cases (N%).

Examining the most diverse cases, i.e. the mutations character-
ized by a very high increase and decrease in binding affinity, we
found that the Zernike computational protocol distinguishes very
well favorable from deleterious mutations. Indeed, for a low frac-
tion of the dataset (from 8% to 2% of the dataset considered) the
AUC ranges in high values (the best value we obtained is 0.93 con-
sidering 2% top and bottom of the dataset). Increasing N the AUC
decreases, notwithstanding stabilizing its value to 0.66 (N = 50%,
whole dataset), a satisfactory result considering that the computa-
tional prediction of residues mutation effects, in terms of binding
affinity of protein–protein interaction, is still an open problem
(especially when no machine-learning approaches are used)[39].
To further highlight the reliability of the procedure in identifying
the favorable/deleterious mutations, in panels B and C we report
the ROC curves and the distributions of shape Zernike scores when
are considered the top and bottom 8% and 50% mutations, respec-
tively. A detailed description of the statistical comparison between
our results and experimental data can be found in Supporting
Information. In Supplementary Fig. 2 we show the correlation
between experimental and computational score, highlighting as,
at least in terms of mean behavior, the variations in terms of shape
complementarity correlate with the experimental variations in
binding affinity upon mutations. Moreover, in Supplementary
Fig. 3, we show the distribution of the DE obtained for these point
mutations. As evident, the most probable DE value is around 0
kcal/mol (60% of mutations have an effect between �2 and 2 kcal/-
mol), meaning that most of the mutations do not cause a remark-
able effect on the electrostatic pairing between ACE2 and Spike. As
one could expect, only a minority of mutations (9%) causes a signif-
icant energetic gaining (DE > 2Kcal=mol) in respect to the wild
type, while a larger fraction of mutants worse the electrostatic
compatibility (DE < �2Kcal=mol). In Supplementary Fig. 4 we
report the AUC of the ROC curve as well the AUC of the
Precision-Recall curve and the global accuracy we get as a function
of the fraction of the dataset each time considered. In Supplemen-
tary Table 3 we report the 10 top and 10 bottommutations, ranked
according to their experimental score of variation in Spike-ACE2



Fig. 2. Agreement between experimental and computational scores of binding affinity changes upon mutation. A) Area under the Receiving Operating Characteristics (ROC)
curve of the classifier employing the computational Zernike scores of variations in shape complementarity, as a function of the fraction of cases considered. Note that N%
means (i.e. 10%) that we defined 2 groups of cases selecting the N% of mutations from top and bottom experimental changes in binding affinity (e.g. taking N = 50% means
dealing with 100% of the dataset, simply dividing it in two groups). The experimental data are taken from [22]. B) and C) ROC curves and computational scores boxplot
distributions regarding the cases with N = 8% and N = 50% respectively.
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binding affinity, in order to underline that such mutations are not
localized in some specific positions.

These analyses confirm that our computational modeling is
effective in capturing the main aspects of the effect of the muta-
tions on the binding.

3.2. Design of multiple ACE2 mutants increasing SARS-CoV-2 Spike
complementarity

The described computational framework evaluates the effects of
an ACE2 residue substitution, in terms of binding compatibility
with SARS-CoV-2 Spike, in a very limited amount of time and with
good agreement with experimental data. In principle, it is therefore
possible to push the complementarity assessment to the level of
multiple mutations, evaluating the consequences of a number of
mutations inaccessible to any experimental technique, due to their
cost in terms of time and money.

We modeled all the possible double mutations obtainable from
the 23 ACE2 interface residues, and we analyzed the results
obtained in terms of Zernike descriptors. We note that the mutants
proposed with this procedure are over 91000, which indicates the
large-scale possibility of our protocol. We initially investigated to
what extent the effects of double mutations can be described as
the sum of the 2 single mutations composing it. Indeed, in Fig. 3
we plotted the sum of the effects of 2 mutations when considered
independently as a function of the effect of the corresponding dou-
ble mutation. Not surprisingly, the vast majority of the points lies
on the diagonal line meaning that the consequences of the muta-
tions are substantially independent. Fitting the observed value to
the diagonal straight line, we calculated the residual for each point,
that is the difference between the observed value and the expected
one. In our case, since the estimated trend is simply y = x, the
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residual for each point is the difference between the Zernike scor-
ing obtained considering jointly two mutations and the sum of the
two mutations independent scoring. In Supplementary Fig. 5 we
report the values and cumulative distributions of such residuals.
In absolute values, 95% of the points have a residual lower than
0.102 or, in other words, 95% of the scatter points falls between
the 2 dashed lines flanking the diagonal. The points in Fig. 3 are
colored according to the distance between the Ca of the involved
residue: as expected, the points that deviate from the general trend
are the ones corresponding to a couple of very close residues, since
their combined mutations modify the conformations observed
individual case. To quantify this effect, defining as ”positive” the
cases with double mutation score higher than 0 and as ‘‘negative”
the cases with Double mutation score lower than 0, we can con-
sider the sum of the Zernike score of the single mutations as the
”predictor” (See Fig. 3). With this framework, we obtained a sensi-
tivity of 95.6%, a specificity of 98.9%, and precision of 92.9%.

It is interesting to discuss the upper left corner points, forming a
second linear trend. These points are only 367 (out of over 91000)
characterized by residual higher than 0.7, representing therefore
the points more distant from the diagonal. Analyzing the couples
of residues involved in these doublemutations, interestingly it turns
out that 355 (97% to all these points) are due to the simultaneous
mutation of Asp 30 and Lys 31. These are oppositely charged, large
and consecutive residues: therefore it is expectable that the effect
of their combined substitution has to be considered cooperatively.
Inparticular,whenonly oneof these2 residues is singularlymutated
is very unlikely to obtain an improvement in shape complementar-
ity: when, on the contrary, these 2 residues are jointly mutated can
be caused a overall positive effect on the compatibility with Spike.

In light of these considerations, we developed an algorithm for
the design of ACE2 mutants characterized by compatible interface



Fig. 3. Comparison between the Zernike scores obtained after a double mutation or combining two single mutation scores. Dots are colored from cyan to dark blue as the
distance between the considered residues increases. The black lines enclose the 95% of the points, those characterized by deviation from to the straight line y = x lower than
0.1. The TP quadrant includes couples of mutations that increase the shape complementarity if they are considered both independently or combined. The FP quadrant
included couples of mutations that increase shape complementarity if they are considered separately, while the combined effect on the contrary worsen it. The TN quadrant
includes couples of mutations that decrease the shape complementarity if they are considered both independently or combined. The FN quadrant included couples of
mutations that decrease shape complementarity if they are considered separately, while the combined effect on the contrary increases it.
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electrostatics and by a notably increased shape complementarity
(see Fig. 4A). In particular, starting from the wild type ACE2
sequence, we modeled all the possible point mutations. Filtering
only the mutations characterized by non-deleterious electrostatics
(DE > 0), we selected the best two mutations in terms of shape
complementarity (max(DC)). Established these mutations as a
starting point for a new iteration, we repeated twice the mutation
protocol on the remaining binding site residues, obtaining 4 double
site substitutions. Performing on 5 levels of point mutations, we
identified 32 possible ACE2 mutants characterized by increased
shape complementarity and compatible electrostatics. For a single
case, in which we selected each time the best mutation, we contin-
ued the mutation protocol until all the binding site residues are
mutated: interestingly, after 5 mutations the shape complementar-
ity reaches a plateau value, meaning that the inclusion of other
substitutions does not advantage the ACE2-Spike interaction (Sup-
Fig. 4. Outcomes of the mutational protocol for ACE2 optimization. A) Schematic repre
possible single mutations are explored and the two best variants in terms of shape comp
time starting from the selected variants, ending with 32 novel versions of ACE2. The bars
B) Frequencies of the mutations observed in the mutagenesis protocol.

3011
plementary Fig. 6). For this reason, we decided to deal with 5 resi-
dues mutants.

The shape complementarity gaining of the mutants built with
this protocol are shown in Fig. 4B. Note that, since the distance
between wild type Zernike descriptors is 1.48 and the best gaining
in shape complementarity is 0.45, we improve the shape comple-
mentarity by over 30% with respect to the wild type. Analyzing
the sum of the effect of the single mutations as a function of the
combined effects of the 5 position mutations (Supplementary
Fig. 7), we note that the majority of the points lies in the proximity
of the diagonal, testifying to substantial independence of the vari-
ous mutation consequences. In Fig. 4C, we reported the most fre-
quent mutations we obtained: it is worth noting that, to gain
complementarity with Spike, the residues H34, L79, K31, N330
and L45 result to be mutated in more than 60% of the proposed
mutants.
sentation of the mutational protocol: starting from the wild type form of ACE2, all
lementarity and electrostatic energy are selected. The process is then iterated, each
represent the shape complementarity gaining of the mutants built with the protocol.
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3.3. Physico-chemical characterization of mutants

In this section, we analyze the properties of the ACE2 sequences
we found with the optimization protocol we described above, in
particular computing the physico-chemical characteristics changes
of the mutant with respect to the wild type.

We used 80 amino acid property scales, describing features
ranging from amino acid hydrophobicity to the probability to be
found in a given secondary structure or involved in aggregation,
as defined in a previous work [37]. In these scales, each of the 20
amino acids is characterized by a numerical value describing its
propensity to a specific feature. These scales can be grouped into
8 categories, according to the described amino acid tendency (the
propensity of aggregation, disorder, to be in the membrane,
hydrophobicity, to be a buried residue, nucleic acid binding, a-
helix, and b-sheet). We preliminary correlate the scales belonging
to the same categories (See Supplementary Fig. 8): since we aim
to obtain a stable characterization, we removed from the analysis
the scales marked by a mean correlation with the other scales of
the same category lower than 0.562 (p-value 0.01). Considering
the remaining scales, therefore, each position of ACE2 sequences,
Fig. 5. Analysis of the physico-chemical properties of the 32 proposed ACE2 variants. A)
procedure and for each of the 8 macro-characteristics analyzed. B) Pearson Correlation va
in terms of Zernike descriptors. C) Molecular representation of the interface between AC
procedure are highlighted in cyan.
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wild type or mutants, was substituted with the value of the corre-
sponding residue: in order to consider even the surrounding
effects, each sequence position value in the final description is
obtained averaging on the 7 residue interval centered on it.

In this framework, aiming to a compact quantification of the
extent of changes occurring between mutated and wild type
sequence, we defined the following formula:

Xdiff ¼ n0

N

XN
1¼1

Xmut
i � Xwt

i

Xwt
i

ð8Þ

where i indicates the position on the ACE2 sequence of length N, n0

is the number of sequence positions experiencing changes in
physico-chemical properties upon mutation, and X is a generic
scale. In other words, Xdiff represent the variation in percentages
caused by the amino acid substitutions concerning the examined
property: therefore we have a Xdiff for each of 32 mutants and for
each of the remaining 56 amino acid tendency.

Grouping these scales according to the described characteristics
[37] and performing a Z-score normalization, we obtained the col-
ormap reported in Fig. 5A (the colormap before the normalization
Colormap of the Xdiff descriptors for each of the 32 mutants we identified with our
lues of the 8 mean descriptors Xdiff with the mutants shape complementarity gaining
E2 (blue) and Spike (orange). The positions that have undergone a mutation in our
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is provided in Supplementary Fig. 9): the color represents the
extent of the variation, Xdiff , for each mutant we identified and
for each property. The mutants in this colormap are ordered
according to the gaining in shape complementarity according to
Zernike formalism.

The correlations between the Zernike scores and the change in
the analyzed properties are shown in the barplot in Fig. 5B. Inter-
estingly, the main result of this analysis is that the best mutations
identified, for which shape complementarity to Spike is increased,
are characterized by a decrease in a-helix secondary structure
propensity and increase in hydrophobicity. This result acquires sig-
nificance if we consider that the dominant secondary structure of
ACE2 protein is a-helical(See Fig. 5C): the mutants we identified
are characterized by the tendency to slightly alter the structure
of ACE2 binding site in favour of tighter interactions. This result
is in agreement with previous reports indicating that the
hydrophobicity and aggregation propensities of interfaces are key
characteristics that promote formation of stable contacts [40,41].
In Supplementary Table 4 we report the Xdiff we obtained when
all the single mutations we encounter are performed alone.

In order to evaluate the effects of such mutations on the overall
protein secondary structure stability, we predict for both the wild
type and the mutants sequences the secondary structure using
NetSurfP WebServer [42]. Analogously, we perform a graph analy-
sis, where each residue represent a node in order to underline that
we work on peripheral residues and that their mutations should
not interfere with the global protein fold. The results of our analy-
sis (See Supplementary Figs. 10 and 11) testify that the residue
substitution occurs on peripheral residues and the caused
physico-chemical modifications are slightly enough to not consti-
tute a danger for protein secondary and tertiary stability.
4. Conclusions

Current protein and mRNA vaccines require the expression of
SARS-CoV-2 Spike protein in the human cell. After Spike is repro-
duced in the cell, its presence causes a T-lymphocytes and B-
lymphocytes response that protects the cell from future SARS-
CoV-2 infection. Several monoclonal antibodies have been recently
validated and more are under investigation for antiviral clinical use
[12,43–45].

An alternative approach is to use a ’mock’ ACE2 without trans-
membrane region to compete for the binding to Spike when infec-
tion occurs [16,17], making them unavailable for binding with cell
membrane-anchored ACE2 and cell invasion.

To effectively adopt such a strategy, in addition to further stud-
ies needed to understand how strengthening the solubility of the
protein to guarantee a stronger concentration and, therefore, better
response in the host cell, it is fundamental the mutants ACE2 affin-
ity for Spike is increased [22].

Indeed, through an innovative approach we recently developed
that exploits Zernike’s formalism [32], we developed a computa-
tional protocol for the design of mutants that increase the binding
propensity of ACE2 for Spike.

Given the very high number of mutations we modeled in this
work, after each substitution we can not fully relax the structure
since it would require a too time-consuming minimization proce-
dure: for this reason, we have to evaluate the interface electrostatic
compatibility with a coarse-grained approach, since the computa-
tional mutagenesis procedure could turn out in atom–atom inter-
action unphysically too close and energetic. Indeed, even if the
size of the ACE2-RBD system is affordable using a full-atomic
model, for example classical molecular dynamics have produced
many interesting results [46], we would need to perform a molec-
ular simulation for each of the tens of thousands of the mutations
3013
considered, after whom we can proceed to the full-atomic electro-
static judgment. This would require an unaffordable computational
cost. In addition, it is worth noting that in our work we deal with
only static models, and therefore the importance of well-
documented dynamics effects in ACE2-RBD recognition
[47,48,46,49,50] can not be fully captured by our protocol.

This notwithstanding, the efficacy of such formalism in under-
standing the main effects of residues mutations in Spike-ACE2
compatibility is demonstrated comparing our results with a large
experimental campaign recently conducted [22], achieving a ROC
AUC ranging from 0.93 to 0.66 according to the magnitude of
experimental binding affinity changes considered.

Performing iterative cycles of single mutations upon ACE2 bind-
ing site, our protocol identifies a set of mutants characterized with
an increased shape complementarity and compatible electrostatics
with Spike binding region. Indeed, even if when the protein inter-
face undergoes a considerable number of mutations the possibility
of errors due to methodology limits obviously increases, the main
advantage of our protocol is the possibility to evaluate with a low
computational cost the combined effects of the possible mutations,
making judgeable a very large volume in the space of the possible
interface configurations.

Interestingly, the selected residues substitutions are correlated
with an increase in hydrophobicity, which indicates augmentation
of the propensity to form more stable interactions, as proposed in
previous works [40,41].

We envisage that these mutants could represent a promising
starting point for the identification of SARS-CoV-2 Spike inhibitors.
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