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Trends
A huge body of evidence suggests that
viral infections promote MS; however,
no single causal virus has been identi-
fied. Multiple viruses could promote
MS via bystander effects.

Molecular mimicry is an established
pathogenic mechanism in selected
autoimmune diseases. It is also well
documented inMS, but its contribution
to MS pathogenesis is still unclear.

Bystander activation upon viral infec-
tion could be involved in the generation
of the autoreactive and potentially
encephalitogenic T helper (Th)-1/17
central memory (Th1/17CM) cells found
in the circulation of patients with MS.

Autoreactive Th1/17CM cells could
expand at the cost of antiviral Th1CM
cells in patients with MS, in particular in
those undergoing natalizumab ther-
apy, because these cells are expected
to compete for the same homeostatic
niche.

Autoreactive Th1/17 cells and antiviral
Th1 cells are recruited to the CSF of
patients with MS following attacks,
suggesting that viral reactivations in
the CNS induce the recruitment of
pathogenic Th1/17 cells. Autoreactive
Th1/17 [670_TD$DIFF]cells in the CNS might also
induce de novo viral reactivations in
a circuit of self-induced inflammation.
Review
The Enigmatic Role of Viruses
in Multiple Sclerosis:
Molecular Mimicry or
Disturbed Immune
Surveillance?
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Multiple sclerosis (MS) is a T cell driven autoimmune disease of the central
nervous system (CNS). Despite its association with Epstein-Barr Virus (EBV),
how viral infections promote MS remains unclear. However, there is increasing
evidence that the CNS is continuously surveyed by virus-specific T cells, which
protect against reactivating neurotropic viruses. Here, we discuss how viral
infections could lead to the breakdown of self-tolerance in genetically predis-
posed individuals, and how the reactivations of viruses in the CNS could induce
the recruitment of both autoaggressive and virus-specific T cell subsets, caus-
ing relapses and progressive disability. A disturbed immune surveillance in MS
would explain several experimental findings, and has important implications for
prognosis and therapy.

Genetic and Environmental Factors Contribute to the Risk of MS
MS is themost common inflammatory autoimmune disorder of the CNS [1,2]. It is characterized
by the destruction of the protective myelin sheath of neurons, resulting in macroscopic lesions
in the brain and causing progressive disability. MS can be subdivided into relapsing–remitting
(RR), primary progressive (PP) or secondary progressive (SP; i.e., the RR subtype worsening
over time to SP-MS) forms. RR-MS is the dominant form at disease onset, and is characterized
by acute clinical attacks followed by apparent disease stability. Symptoms can be alleviated
with several therapies, but, in some patients, there is no beneficial effect and the disease may
evolve to a SP form. PP-MS and SP-MS remain difficult to treat and are also mechanistically
poorly understood [3].

The etiology of MS is still unknown, but both genetic and environmental factors contribute to the
risk of developing MS [1,2]. The major genetic risk factor maps to the human leukocyte antigen
(HLA) gene cluster, and the strongest risk is conferred by HLA-DRB1*15:01 in the class II region
[4,5]. The principal function of MHC class II proteins is to present peptide ligands to CD4+[664_TD$DIFF]
lymphocytes and these T cells are consequently believed to have a key pathogenic role in MS.
However, the MHC class I cluster, which regulates cytotoxic lymphocyte responses, contains
polymorphic regions that are associated with protection against MS [4]. Several other gene
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polymorphisms associated with MS are involved in immune responses, in particular in the
activation and homeostasis of T cells [6], consistent with the concept that MS is a T cell-driven
autoimmune disease.

The importance of the environment in determining whether a genetically susceptible individual
develops MS has been underlined by studies of monozygotic twins and of genetically suscep-
tible individuals migrating from low- to high-risk areas. The strongest environmental risk factors
are Vitamin D deficiency, smoking, and viral infections [7]. Interestingly, infections with hel-
minths have been shown to have a protective effect [7,8]. Among viral infections, EBV shows
the strongest association, and it was estimated that EBV-induced infectious mononucleosis
increases the risk of MS to a similar degree as the strongest genetic risk factor (HLA-
DRB1*15:01) [4,9–11]. In addition to EBV, several other viruses have been implicated in
MS [12], in particular neurotropic viruses, including human herpes virus-6 (HHV-6) [13], herpes
zoster virus [14] and John Cunningham virus (JCV) [15], but also endogenous retroviruses [16].
Based on this evidence, a possible viral etiology of MS has been proposed [9,13,15,17] and
continues to stimulate intense research in the field [671_TD$DIFF](see Outstanding Questions).

The risk of life-threatening JCV-induced progressive multifocal leukoencephalopathy
(PML) in patients with MS undergoing therapy with natalizumab [18], a therapeutic antibody
that binds to the a4-integrin adhesion receptor and blocks lymphocyte migration to the CNS,
has highlighted the importance of antiviral immune surveillance of the CNS. Indeed, the
presence of a lymphatic system in the CNS has challenged the view of the CNS being an
immune-privileged site [19,20], and it is now widely accepted that the CNS is surveyed and
protected by antiviral T cells [21] [672_TD$DIFF](Box 1).

Given this updated view of immune responses in the CNS, here we discuss different models of
how viral infections could promote MS, and illustrate how a defective antiviral immune surveil-
lance could be a driving force in its pathogenesis.

The Most Widely Studied Animal Models of MS Induce CNS Inflammation in
the Absence of Viral Infections
Although the epidemiological data clearly indicate that viral infections are a critical risk factor for
MS, the underlying mechanisms are poorly understood [12]. Animal models that induce
experimental autoimmune encephalomyelitis (EAE) in the absence of viral infections by
priming pathogenic CD4+ T cells with myelin antigens are widely used to study neuroinflam-
mation andMS [22]. Self-tolerance has to be broken in thesemodels by adjuvants such as CFA,
which contain killed mycobacteria, intracellular pathogens that potently activate the innate
immune system. Alternative models of MS, in which demyelination is induced by neurotropic
viruses, such as mouse hepatitis virus or Theiler’s murine encephalomyelitis virus (TMEV), are
less studied, but enable researchers to address how viral infections could promote MS [23].
TMEV induces chronic inflammation and demyelination in the brain and, importantly, both virus-
specific and myelin-reactive effector T cells are generated in this MS model [23]. Thus, antiviral
immune responses in the CNS can result in the breakdown of self-tolerance to myelin antigens,
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Box 1. CNS Immune Privilege

The notion that the CNS is a tolerogenic, ‘immune-privileged’ site, where immune reactions that occur in peripheral
tissues are inefficient and slow, stems from seminal studies with transplanted allogenic tissues that were not or were
only slowly rejected in the brain, unless animals had been immunized previously [150]. In addition, it is well known that
entry of macromolecules and immune cells into the CNS from the blood is restricted by the BBB and, until recently, the
CNSwas also believed to lack lymphatic drainage. However, the presence of a lymphatic system of the meninges in the
brain and of occasionally reactivating neurotropic viruses suggest that the CNS is constantly surveyed by the immune
system, although in a manner that limits the type of collateral tissue damage that occurs in MS.
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Glossary
Blood–brain barrier (BBB):
comprises two physical barriers of
endothelial cells and the
parenchymal base membrane that
strongly limit the access of
macromolecules and cells to the
CNS parenchyma. The endothelial
and parenchymal basement
membranes define the inner and
outer limits of the perivascular space,
which is filled by cerebrospinal fluid
(CSF), which drains macromolecules
and immune cells into deep cervical
lymph nodes.
Central memory (TCM) and
effector memory T (TEM) cells:
distinguished by CCR7 expression in
humans and by CD62L expression in
mice; these cells home preferentially
to lymphoid and nonlymphoid
tissues, respectively. TEM produce
higher levels of proinflammatory
cytokines than do TCM, but both TCM
and TEM contain Th1, Th17, and
Th1/17 cells. Moreover, TCM express
adhesion and chemokine receptors,
enabling them to home to the CNS.
Clinically isolated syndrome
(CIS): a first attack is classified as
CIS unless MS is diagnosed
following the demonstration of lesion
dissemination in space over time at
MRI or the occurrence of a second
clinical attack.
Experimental autoimmune
encephalopathy (EAE): the most-
studied animal model of MS. CNS
inflammation and disability is induced
by immunization with myelin antigens
and adjuvants, or by the adoptive
transfer of activated, myelin-specific
Th cells.
Progressive multifocal
leukoencephalopathy (PML): an
often fatal demyelinating CNS
disease caused by uncontrolled JCV
replication. It is largely limited to
individuals where CD4+ T cell
responses are impaired, such as
patients with AIDS or MS, where
which is normally prevented by regulatory T cells (Tregs) [24]. In addition, viruses and antiviral T
cells can also lead directly to damage and demyelination in the CNS [23,25–28]. Thus, viral MS
models are highly relevant, but less studied than are those of EAE, and this is one reason why
the role of viruses in MS is still poorly understood.

The Antigen Specificity of Encephalitogenic T Cells Is Incompletely Defined
The use of myelin antigens to induce EAE is consistent with demyelination in the brain of
patients withMS andwith the presence of autoreactive CD4+ T cells recognizingmyelin-derived
antigens that are restricted by the major MS risk allele, HLA-DRB1*15:01 [29,30]. However,
myelin-reactive CD4+ T cells are rare and were found at similar frequencies in the peripheral
blood of healthy individuals and of patients with MS [30]. However, myelin-reactive T cells have
more proinflammatory properties in patients with MS than in healthy donors [31,32], and are
enriched in the CSF of patients with MS shortly after an attack [32,33]. Nevertheless, myelin-
derived antigens are probably not the only relevant self-antigens inMS. In particular, pathogenic
T cells in MS may have a degenerate T cell receptor (TCR) that cross-reacts with several
structurally related self-peptides, or potentially even directly with the backbone of some MHC
molecules [34–37]. These autoreactive T cells have a high pathogenic potential because they
could be activated by any antigen-presenting cell (APC) that expresses MHC class II and co-
stimulatory molecules. Finally, virus-specific CD4+ and CD8+ T cells could also cause collateral
damage in the CNS following an antiviral immune response, in particular those that cross-react
with relevant self-antigens due to a phenomenon known as ‘molecular mimicry’ [38,39].

Molecular Mimicry Is unlikely to be the only Virus-Related Pathogenic
Mechanism in MS
Molecular mimicry is the most frequently discussed mechanism for how viruses could induce
autoimmunity and MS (Box 2), and excellent reviews have been published on this topic
[34,39,40]. Some TCRs recognize several similar peptides, and this cross-reactivity is relevant
for autoimmunity [41] and might be exploited by pathogens, such as viruses, to avoid
recognition by the adaptive immune system [42]. Indeed, autoreactive T cells are either deleted
in the thymus, rendered unresponsive in the periphery, or even redirected to the Treg lineage
that induces dominant immune suppression [43,44]. Some viral proteins contain peptide
sequences that are similar to the self-proteins of their hosts [39]. In the case of MS, molecular
mimicry between myelin basic protein (MBP) and the EBV latency antigen EBNA-1 is well
documented, since CD8+[673_TD$DIFF] T cell clones isolated from patients with MS could be activated by
bothMBP- and EBNA-1-derived peptides [38]. In addition, CD4+ T cells that cross-reactedwith
both EBNA-1 and MBP were identified [45], and molecular mimicry might also be exploited by
HHV-6 [13]. Interestingly, commensal bacteria are known to be essential for autoimmune
demyelination [46], and T cells expressing a TCR that cross-reacted with MBP and a common
bacterial peptide was able to induce MS-like disease in humanized mice [37]. However, while
molecular mimicry is largely accepted as the driving force in some autoimmune diseases, such
as Streptococcus-driven rheumatic fever, its relevance in MS is still debated [39,40]. Moreover,
CNS immune surveillance is inhibited
by natalizumab.
T helper 1 (Th1) and T helper 17
(Th17) cells: uncommitted naïve
CD4+ T cells can differentiate upon
antigenic activation under the
influence of different cytokines to
IFN-g-producing Th1- or IL-17-
producing Th17 cells. Th1 cells are
induced by IL-12 and mediate
protection against intracellular
pathogens, such as viruses, while
Th17 cells are induced by TGF-b, IL-

Box 2. Molecular Mimicry

Mimicry is an evolutionary process whereby one organism acquires a similarity to another organism to obtain a survival
advantage. Molecular mimicry is a phenomenon whereby molecules of a pathogen, in particular peptides, are similar to
peptides of its host. T cells mount an immune response when they are activated by foreign peptides, but do not normally
react against self-peptides. The latter is ensured by a combination of central and peripheral tolerance mechanisms,
which lead to the deletion of highly autoreactive T cells in the thymus and ensures that T cells with an intermediate
autoreactivity are not aberrantly activated in the periphery. Themolecular mimicry hypothesis of autoimmunity proposes
that T cells cause autoimmune disease following an antipathogen immune response when they cross-react with self-
peptides from healthy, uninfected tissues. Molecular mimicry is thought to be a driving force in, for example,
Streptococcus-driven rheumatic fever and has also been documented for the EBNA-1 protein of EBV and myelin
basic protein in MS.

500 Trends in Immunology, July 2017, Vol. 38, No. 7



1, IL-6, and Il-23, and are vital for
dealing with extracellular bacteria
and fungi. Th1/17 cells co-produce
IFN-g and IL-17 and can respond to
both intra- and extracellular
pathogens.
it was found T cell responses to antigens derived from EBV, JCV, and myelin were largely
confined to T helper type 1 (Th1) and Th1/17 cell subsets in patients with MS [32]. Therefore,
CD4+[674_TD$DIFF] T cell responses in MS against these viruses and myelin antigens are predominantly
mediated by distinct Th cell subsets rather than by virus-specific T cell clones that cross-react
with self-antigens. Nevertheless, Th1/17 cells isolated from the CSF reacted with autologous
APC in the absence of exogenous antigens, and they might cross-react with peptides from
other viruses or bacteria. Thus, although molecular mimicry is likely to contribute to the MS risk
conferred by infections, other mechanisms are also likely to be important[675_TD$DIFF].

The Complex Relationship between MS and Antiviral Immune Responses
In addition to CD4+ T cells, B cells and CD8+ T cells are also involved in human MS, as
evidenced by their presence in the cerebrospinal fluid (CSF) and in demyelinated brain lesions in
patients [47]. In particular, the production of oligoclonal antibodies in the CSF is highly
characteristic for MS and, therefore, has been used as a supportive criterion for diagnosis
[48,49]. Moreover, B cell depletion with rituximab reduces relapses in patients with RR-MS
[50,51]. This therapeutic effect could reflect the capacity of B cells to present antigens to
pathogenic T cells [52], since rituximab does not deplete plasma cells and antibody levels are
poorly affected [51]. However, rituximab could also inhibit viral delivery to the brain, because B
cells represent a cellular reservoir of both EBV and JCV [53] and, therefore, are a likely vehicle
for these viruses to pass across the blood–brain barrier (BBB). Interestingly, secondary
progressiveMS is characterized by tertiarymeningeal lymphoid structures, whichmight contain
infected B cells as a constant local source of EBV [54]. Oligoclonal antibodies in the CSF were
first thought to represent non-sense IgG [55], and their physiological relevance is a matter of
debate. However, several groups found that they could react with neurotropic viruses [56,57].
Conflicting results have been published on EBV-specific antibodies in the CSF [9,58], but
several groups reported that antibodies against measles, Rubella, and herpes zoster viruses,
known as the ‘MRZ reaction’, are present in 80–100% of patients with MS [57], and might
predict whether patients with a clinically isolated syndrome (CIS) will go on to develop MS
[49]. The presence of virus-specific antibodies in the CSF suggests that demyelination in MS is
accompanied by antiviral immune responses. Consistent with this notion, EBV-specific CD8+[676_TD$DIFF] T
cells are specifically expanded in the CSF of patients with MS [59], and CD8+ T cells interacting
with lytically infected B cells have been identified in MS brain lesions [60,61]. However, whether
the presence of EBV in brain lesions is characteristic for MS is debated [62]. Of note, several
viruses persist in a latent stage, are neurotropic and, thus, might be present in the brain.
Moreover, herpes simplex virus (HSV) was shown to trigger the generation of autoantibodies in
the brain [63], and the neurotropic viruses HHV-6, JCV, and herpes zoster were proposed to
have a role in MS [13,15,18]. Direct detection of viral nucleic acids is limited to a minority of
patients [64], but localized viral reactivation in the parenchyma might not be necessarily
detectable in the CSF by standard techniques [65]. Of note, many viruses, including EBV
and JCV, are efficiently controlled in healthy individuals, but can cause life-threatening infec-
tions in immuno-compromised individuals [66,67]. These findings raise the question whether
patients with MS mount a somehow altered immune response against viruses, in particular in
the tolerogenic environment of the CNS. The association of MHC class I polymorphisms with
protection is consistent with an inefficient antiviral cytotoxic immune response in patients with
MS. However, so far, antiviral immune responses in patients with MS were found to be either
normal or even increased, in the case of EBV [60], and patients with MS treated with strong
immune suppressants, with the notable exception of natalizumab, do not experience increased
viral reactivations. Nevertheless, more qualitative approaches might be required to monitor
antiviral immune responses in patients with MS [54,68]. For example, antiviral T cell responses
are normally measured by IFN-g production; however, central memory T cells (TCM), which
could perform antiviral immune surveillance of the CNS (see below), produce only limited
amounts of IFN-g, but can be efficiently expanded with viral antigens [69]. In summary, the role
Trends in Immunology, July 2017, Vol. 38, No. 7 501



of different viral infections in MS is debated, and more research is needed to understand the
regulation of antiviral immune responses in patients with MS and how they might impact
pathogenesis and disease progression.

T Cell Migration from Lymph Nodes to the CNS Is Required for Antiviral
Immune Surveillance and Relapse
A required feature of T cells to not only induce relapse, but also perform antiviral immune
surveillance is their capacity to migrate from lymph nodes to the CNS. Access to the CNS by
immune cells is tightly controlled, and the brain is separated from the blood by the BBB [678_TD$DIFF][70].
Nevertheless, autoreactive effector T cells induced in the EAE model can spontaneously home
to the CNS upon adoptive transfer and cause disease [679_TD$DIFF].

The migration of leukocytes into different tissues is controlled by specific adhesion molecules
and chemokine receptors. The a4/b1-integrin is known to be a key adhesion molecule for CNS
entry [70], although Th17 cells can home to the CNS independently of the a4/b1-integrin
[71,72]. Nevertheless, natalizumab inhibits relapses and promotes JCV reactivation and PML in
patients with MS, indicating that the a4/b1-integrin has a critical role for CNS homing of both
pathogenic and protective, antiviral T cells. Integrins have to be activated by inside-out signaling
and, in human Th1 cells, different chemokine receptors can induce a4/b1-driven adhesion [73].
However, the relevant chemokine receptors in CNS homing and MS are debated. One
candidate is CCR6, which is induced by TGF-b and proinflammatory cytokines [74] and is
stably expressed on human IL-17-producing Th17 cells [75–77]. CCR6 was proposed to allow
access of T cells to the CNS via the lumbar spinal cord upon EAE induction [78] or at steady
state via the choroid plexus [79], paving the way for the consecutive recruitment of additional T
cells upon ensuing inflammation. Inflammatory chemokine receptors implicated in CNS homing
and MS are CXCR3 and CCR5 [80]. These two chemokine receptors are selectively expressed
on IFN-g-producing Th1 and Th1/17 cells, which fight viruses [81]; the CXCR3 ligand, CXCL10/
IP-10, is induced upon viral infections in the canonical response to interferons [82]. Finally,
CCR7 is also implicated in T cell migration in the CNS andMS [83]. This is somewhat surprising,
since a key function of CCR7 on T cells is to mediate homing of naïve and CCR7-expressing
TCM to lymph nodes, while homing of CCR7� [677_TD$DIFF] effector memory T cells (TEM) to nonlymphoid
tissues is predominantly mediated by inflammatory chemokine receptors, such as CCR5 [84].
However, relevant fractions of TCM express the a4/b1-integrin [84], CXCR3 [69], and CCR6
[77], suggesting that some TCM shuttle between lymph nodes and the CNS. Indeed, CCR7+ T
cells are highly abundant in the CSF of patients withMS [85] andCCR7 ligands are expressed in
the CNS, including in MS lesions [86]. The expression of CCR7 and of other chemokine
receptors is dynamic in antigen-activated T cells [87] and, therefore, it is uncertain whether
CCR7 expression reliably identifies TCM and TEM in the CNS of patients with active MS [85].
Nevertheless, an encephalitogenic role for TCM in MS is suggested by the therapeutic efficiency
of fingolimod (FTY20), which sequesters naïve and TCM in lymph nodes, but spares TEM [88].
Furthermore, in the CSF of patients with natalizumab-treated MS, CCR7+VLA-4+ T cells were
depleted, while CCR7�VLA-4� T cells were strongly enriched [72]. Since these patients had
stable disease, these findings are consistent with the view that TCM-derived cells drive
pathogenic CNS inflammation in MS. CCR7 ligands are also crucial for protective antiviral T
cell responses in the CNS in mice [27], further suggesting that the CNS migrations of antiviral
and pathogenic T cells rely on similar mechanisms. In summary, different migratory routes for T
cells to reach the CNS have been described, but the a4/b1-integrin appears to be critical for
both antiviral immune surveillance and relapse, while the identities of the relevant chemokine
receptors are uncertain.
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Different Cytokine Requirements of Pathogenic T Cells in MS and its Animal
Models
The EAE model was instrumental for the identification of proinflammatory cytokines that can
drive pathogenic CNS inflammation. A seminal finding in autoimmunity was that IL-23, but not
the closely related cytokine IL-12, has a nonredundant pathogenic role [89–91]. IL-12 potently
induces Th1 cells, whereas IL-23 induces the maturation of Th17 cells, suggesting that Th17
but not Th1 cells are the key pathogenic cells. This concept was rapidly expanded to human
organ-specific immune-mediated diseases, because single nucleotide polymorphisms (SNPs)
in IL-23R, which reduces IL-23-mediated signaling [92], were shown to have a strong protec-
tive effect in psoriasis [93] and Crohn’s disease [94]. However, a similar protective effect of
SNPs in IL-23R was not found for MS [95]; instead, polymorphisms in the gene locus encoding
the IL-12-specific subunit p35 showed a strong association [4–6,95]. Interestingly, in viral
encephalitis induced by neurotropic coronavirus in mice, IL-12, but not IL-23, enhanced
morbidity, and this was associated with enhanced T cell IFN-g production [25]. Thus, while
IL-23 has a nonredundant pathogenic role in EAE, IL-12 appears to be relevant in viral MS
mouse models and possibly also in human MS [95].

In the EAE model, different T cell subsets, including both Th1 and Th17 cells, could induce
pathogenic neuroinflammation, although with different characteristics [89]. Th1/17 cells that
co-produce IFN-g and IL-17 have high pathogenic potential and are also enriched in brain
lesions of patients with MS [96]. In humans, they can be induced from not only naïve T cells with
IL-1b and IL-23 [97,98], but also from conventional Th17 cells with IL-1b and/or IL-12
[32,76,99]. IL-17 can enhance BBB permeability [100] and has neurotoxic potential [101];
in addition, promising results were obtained in a clinical trial with a neutralizing anti-IL-17
antibody in RR-MS [102]. However, deficiency for neither IL-17 [103,104] nor IFN-g [105]
completely prevents [681_TD$DIFF]EAE induction, while GM-CSF is absolutely required [106,107]. The
proposed pathogenic mechanism in EAE is that dendritic cell (DC)-derived IL-23 induces
Th17 cells to produce GM-CSF, which in turn leads to the recruitment and activation of
additional myeloid cells [89]. GM-CSF-producing T cells are also abundant in the CSF of
patients with MS, but GM-CSF appears to be regulated differently in humans compared with
[682_TD$DIFF]mice [98,108], and is produced not only by Th17 cells, but also by Th1 cells [32,108]. In
summary, relevant differences exist in the regulation and pathogenicity of key proinflammatory
cytokines, including IL-12, IL-23, and GM-CSF, in EAE, viral MSmodels, and patients with MS.

MS Could Be Initiated by Virus-Induced Bystander Activation of
Autoreactive CCR6+[680_TD$DIFF] T Cells: The Original Sin?
An alternative mechanism that could explain a pathogenic role of viral infections in MS is
bystander activation [683_TD$DIFF](Box 3). Viruses potently induce the maturation of DCs that consequently
upregulate MHC and co-stimulatory molecules [109], thus favoring the activation of not only
virus-specific, but also potentially autoreactive T cells. In addition, lytic viruses, such as JCV,
can induce the death of myelin-producing oligodendrocytes [28], inducing the release and
Box 3. Bystander Activation

Bystander activation is a process whereby an adaptive immune response against a specific pathogen leads to the
activation not only of pathogen-specific T cells, but also of ‘bystander’ T cells that are not specific for the pathogen. Two
different mechanisms have been described: bystander T cell activation can occur in a TCR-independent fashion via
homeostatic cytokines, such as IL-7 or IL-15. The latter allows established CD8 memory T cells and antiviral CD4+[656_TD$DIFF] T
cells to survive despite the high number of new effector and memory T cells that are generated to protect against a new
invading pathogen. This has been well documented in the case of viral infections in mice, and TCR-independent
proliferation induced by cytokines [657_TD$DIFF]has been documented in humans. Second, bystander T cells can be activated via the
TCR, because pathogens induce DC maturation and, thus, upregulate MHC and co-stimulatory molecules. This TCR-
driven bystander activation is particularly important for autoreactive T cell responses, and can be further modulated by
cytokines.
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Figure 1. Viral Infections Could Induce Bystander Generation of Pathogenic T Helper (Th)-1/17Cells. Local reactivations of neurotropic viruses in the
central nervous system (CNS) parenchyma (A) leads to tissue damage and the uptake of both viral and myelin-derived antigens by dendritic cells (DCs). Virus-activated
DCs thenmigrate via the cerebrospinal fluid (CSF) to draining deep cervical lymph nodes (B), present both viral andmyelin-derived antigens to naïve and central memory
T cells, and produce antiviral and proinflammatory cytokines, such as IL-12 and IL-1b. This not only leads to the priming of virus-specific Th1 cells, but could also result in
the inappropriate stimulation of autoreactive CCR6+ T cells that are present in healthy individuals. Under the influence of IL-1b and/or IL-12, T cell receptor (TCR)-
activated autoreactive CCR6+ central memory T cells (TCM) could acquire CXCR3 expression and IFN-g-producing capacities, and downregulate IL-10 production, thus
differentiating into potentially encephalitogenic Th1/17CM cells that are specifically expanded in patients with relapsing–remitting multiple sclerosis (RR-MS).
presentation of myelin-derived self-antigens in deep cervical lymph nodes by DCs [19]
(Figure 1). The inhibition of bystander activation of autoreactive T cells is the task of Tregs
[24], but several Treg subsets appear to be defective in patients with MS [110]. Moreover, the
MS-associated polymorphisms in genes regulating T cell activation suggest that Th cells are
more resistant to suppression [6]. However, naïve T cells have a high activation threshold and,
therefore, it appears more likely that autoreactive memory T cells are aberrantly activated.
Importantly, healthy individuals harbor a population of autoreactive memory T cells that secrete
IL-10 in response to low-level TCR stimulation, such as self-MHC, to inhibit their own prolifera-
tion [74]. These autoreactive T cells express CCR6, possibly as a consequence of exposure to
TGF-b at steady state and, thus, appear to be closely related to Th17 cells [74,77]. They are
distinct from autoreactive CD25+ Tregs because they do not express Foxp3, and can also be
distinguished from Foxp3� IL-10-producing regulatory ‘Tr1’ cells [111–113]. Interestingly,
some of these autoreactive CCR6+ memory T cells are specific for recall antigens, such as
tetanus toxoid [74], suggesting that they have a degenerate TCR specificity. In response to
optimal TCR stimulation or to recall antigens, they behave in a similar way to conventional
memory T cells, suggesting that they contribute to protective recall responses in healthy
individuals [74]. Intriguingly, patients with RR-MS have an expanded population of autoreactive
CCR6+ T cells, which express CXCR3 and co-produce IL-17 and IFN-g [32]. IL-10 production is
reduced in CXCR3+CCR6+ T cells [32], suggesting that these autoreactive Th1/17 cells are
more pathogenic [114] and have a reduced capacity to inhibit their own activation in response
to low-level TCR stimulation [74]. Notably, Th1/17 cells can be induced from CCR6+ T cell
precursors in response to IL-1b and/or IL-12 [32,76,99,115], proinflammatory cytokines
that are produced by DCs in response to viruses [109,116]. A conversion of Th17 cells to
504 Trends in Immunology, July 2017, Vol. 38, No. 7



IFN-g-producing Th1/17 cells also occurs in inflamed tissues in mice in vivo [117–119]. In
addition, the expanded Th1/17 cells in patients with MS proliferated with myelin antigens,
produced high levels of GM-CSF and expressed the a4/b1-integrin and CCR7 [32], indicating
that these cells are potentially encephalitogenic. Consistent with this hypothesis, these Th1/
17CM cells are selectively expanded in patients with RR-MS with a high disease severity score,
and might represent a cellular ‘Sword of Damokles’. Following their generation, which could be
a key pathogenic event in MS, these Th1/17CM cells probably no longer require IL-12,
consistent with the unexpected failure of anti-IL-12/23p40 antibodies to inhibit relapse in
established RR-MS [120]. In summary, virus-induced DC maturation and cytokine production
could lead to the generation of potentially pathogenic Th1/17CM cells from autoreactive, IL-10-
producing CXCR3�CCR6+ memory T cells, which are constitutively present in healthy individ-
uals [32,74] (Figure 1).

Competition between Autoreactive and Antiviral T Cells Could Favor
Relapses and PML
Genome-wide association studies have identified SNPs in the loci of IL-2Ra and IL-7Ra asMS-
associated risk factors [6,121]. These cytokine receptors not only control the homeostasis of
CD4+[684_TD$DIFF] regulatory and Th cells, respectively [81,122], but are also essential for protective CD8+ T
cell responses [123,124]. Notably, the risk-conferring SNP of the IL-7R reduces IL-7R expres-
sion [6,121], suggesting that IL-15, which controls memory T cell homeostasis together with IL-
7 [69,125–128], is particularly important in patients with MS. Based on T cell repopulation
studies following therapeutic lymphocyte depletion with anti-CD52 antibodies, it was previously
proposed that IL-15-dependent T cell homeostasis might be disturbed in MS [129]. It was
found that, while Th1/17CM cells were expanded in patients with MS with a high disease score,
conventional Th1 cells were selectively decreased, in particular Th1CM cells in patients treated
with natalizumab [32]. The latter was unexpected, since natalizumab leads to the accumulation
of proinflammatory T cells in the circulation [130]. Notably, in healthy individuals, both Th1 and
Th1/17 cells respond to viruses [77,99], including JCV [32]. Conversely, in patients with RR-
MS, Th1/17CM cells failed to respond to JCV, but instead proliferated spontaneously with
autologous DCs [32]. Consequently, the natalizumab-associated decrease in Th1CM cells
might explain the risk of patients with MS developing PML following prolonged natalizumab
treatment. Indeed, patients with PML and MS treated with natalizumab have an impaired JCV-
specific Th1 response [131], but additional studies are needed to establish whether a decrease
in Th1CM cells is associated with the risk of PML.

What could be the mechanism of the selective shift from Th1 to Th1/17 cells in the analyzed
patients with MS? Among CD4+ T cells, only the Th1 and Th1/17 subsets express high levels of
T-bet [32], which induces not only IFN-g and CXCR3 [81], but also the IL-2/15Rb chain
(CD122), consequently rendering T cell homeostasis sensitive to IL-15 (Figure 2A) [69,126].
Importantly, persistence of antiviral, but not of conventional, CD4 memory T cells requires IL-
15, and they compete with other CD122+ lymphocytes for IL-15 in vivo [126]. In humans, TCM
proliferate slowly in the steady state [132], and CXCR3+ ‘pre-Th1’ cells, which contain both
Th1CM and Th1/17CM cells, express the highest levels of CD122 among CD4+ TCM, and
proliferate most extensively with IL-15 in the absence of TCR stimulation [32,69,84]. Thus,
Th1CM and Th1/17CM cells are expected to compete for IL-15 in secondary lymphoid organs
[133], and this competition could be intensified when natalizumab limits their access to IL-15-
rich peripheral tissues, such as bone marrow or the lungs [134]. Of note, the lung is a niche for
resting, myelin-reactive memory T cells in Lewis rats with EAE [135]. Moreover, the bone
marrow is a key site for memory T cell maintenance [136,137], and human antiviral CD4+ T cells
are enriched at this site [136]. Interestingly, natalizumab inhibits bone marrow homing of stem
cells [138], although it is unclear whether it also interferes with T cell homing to bone marrow or
the lung [130,139]. In lymph nodes, DCs are expected to expand preferentially autoreactive
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Figure 2. Hypothetical Mechanism of Competition between Protective Central Memory T Helper Type 1 (Th1CM) and Pathogenic Th1/17CMCells. (A)
Th1CM and Th1/17CM cells express increased levels of the transcription factor T-bet, which induces the expression of the IL-2/15Rb-chain that renders T cells
responsive to the homeostatic cytokine IL-15, which is required to maintain antiviral CD4 memory in the absence of antigen. (B) In healthy individuals (i) Th1CM and Th1/
17CM cells are in equilibrium, and both compete successfully for IL-15, which is most abundant in peripheral tissues, but is also produced by stromal and epithelial cells
in lymph nodes. In addition, they occasionally interact with dendritic cells (DCs) in lymph nodes and sense self-major histocompatibility complexes (MHCs). In patients
with multiple sclerosis (MS) (ii) autoreactive Th1/17CM cells could expand at the cost of virus-specific Th1CM cells, because they proliferate with self-MHC-presenting
DCs in lymph nodes during the remission phase. In addition, natalizumab could limit the access to IL-15 in peripheral tissues and, thus, intensify competition. However,
while Th1/17CM cells might have preferential access to IL-15 that is trans-presented on IL-15Ra by DCs (iii), Th1CM cells might be less fit under these conditions and die
by neglect.
Th1/17CM cells in the absence of viral reactivation [32] (Figure 2B). Indeed, an important
function of DCs is to present self-MHC to CD4+ T cells at steady state to induce naïve T cell
survival [140] and allow secondary expansions of CD4+ memory T cells [141]. Moreover, DCs
also trans-present IL-15 to lymphocytes (Figure 2B), including CD4+ T cells [142–144], and
could induce the survival and IL-15-dependent proliferation of antiviral Th1 cells [126]. Thus,
competition for self-MHC and IL-15 presented by DCs in lymph nodes is a possible mechanism
whereby autoreactive, pathogenic Th1/17CM cells could expand selectively at the cost of virus-
specific, protective Th1CM cells in patients with natalizumab-treated MS (Figure 2). Whatever
the mechanism, such disequilibrium would render patients with MSmore vulnerable not only to
relapses, but also to JCV [67,131]. In summary, CD4+ T cell homeostasis appears to be
disturbed in patients with MS, but more research is needed to understand the maintenance of
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Outstanding Questions
Is there a single virus that causes MS,
or could several different viruses pro-
mote MS in a partially redundant man-
ner by bystander mechanisms?

Do viral reactivations in the CNS lead
to the recruitment of proinflammatory,
myelin-reactive T cells? Do relapses
triggered by autoreactive T cells
induce viral reactivations?

How are pathogenic immune
responses in relapses regulated and
terminated? What is the role of differ-
ent Treg subsets in MS?

How could pathogenic T cells be tar-
geted without interfering with antiviral
immune surveillance? Could their gen-
eration be prevented in high-risk
individuals?

Are humoral and cellular antiviral
immune responses [687_TD$DIFF]altered in patients
with MS? What is the role of CTL, B
cells, and antibodies in MS?

What is the role of viruses in progres-
sive MS? Is the same immune
response compartmentalized in the
CNS, or is it a completely different
response?
antiviral and autoreactive helper T cells in humans, and the equilibrium between Th1CM and
Th1/17CM cells.

Relapses Could Be Triggered by Viral Reactivations in the CNS that Induces
the Recruitment of Autoreactive Bystander Th1/17Cells
As discussed above, at least two different pathways could lead to the recruitment of pathogenic
T cells to the CNS, and consequently to relapses. On the one hand, autoreactive T cells could
enter the CNS in the absence of infections via CCR6 [78,79] and, on the other hand, viral
reactivations in the CNS could induce CXCL10/IP10 and consequently attract autoreactive
and/or virus-specific CXCR3+ T cells [82]. Notably, since Th1/17 cells co-express CXCR3 and
CCR6, they could use either pathway to reach the CNS. However, antiviral Th1 cells that lack
CCR6 expression are strongly enriched in the CSF of patients with active MS [32], suggesting
that the IP10/CXCR3 axis is relevant for relapses. Consistent with this notion, in the circulation
of patients with MS where CNS homing is blocked by natalizumab, there is a selective increase
in CXCR3+ B cells [145] and CXCR3-expressing Th1/17 cells [32,130]. The requirements for
CXCL10/IP10 in different animal models of MS is variable [82], but a role for CXCL10/IP10 inMS
is further suggested by the fact that it is expressed in brain lesions of patients with MS [80], and
that SNPs in its gene locus are associated with a worse prognosis [146]. In healthy individuals,
CXCR3+ Th1 and CXCR3+CCR6+ Th1/17 cells respond to viruses and express the a4/b1-
integrin and, thus, both could contribute to the physiological antiviral immune surveillance in the
CNS [147] (Figure 3A, Key Figure). Conversely, in patients with MS, Th1 and Th1/17 cells
responded selectively to viral and myelin-derived antigens [32], respectively, suggesting that,
while Th1 cells also mediate antiviral immune responses in patients with MS, Th1/17 cells could
attack uninfected tissue and promote relapses (Figure 3A). In this scenario, relapses could be
triggered by viral reactivation that lead to bystander recruitment of autoreactive Th1/17 cell to
the CNS via IP10/CXCR3. EBV is one obvious candidate virus to induce bystander Th1/17 cell
recruitment, but the high frequency of JCV-specific Th1 cells in the CSF of patients with active
MS [32] also supports a role for JCV reactivation in relapses [15]. This ‘bystander recruitment
model’ has important implications for MS therapy, because it predicts that selective targeting of
autoreactive Th1/17 cells could be as efficient as natalizumab therapy, but would not induce
PML if antiviral Th1 cells were spared. Surprisingly little is known about the signals that induce
neurotropic viruses to switch from latency to a lytic stage and, therefore, stress is often
suggested as a common explanation [15,148]. In the case of JCV, TNF-a, which is produced
by effector T cells upon antigenic activation, can deliver critical reactivation signals [149].
Therefore, it is possible that autoreactive Th1/17 cells induce de novo viral reactivation in the
CNS, thus fueling a vicious feed-forward loop that leads to the recruitment of new waves of
pathogenic T cells and possibly also of virus-infected B cells [53]. Alternatively, it is possible that
autoreactive Th1/17 cells home first to the CNS during the remission phase of MS via CCR6,
and induce then viral reactivation and the recruitment of antiviral Th1 cells via IP-10 (Figure 3 [686_TD$DIFF]B).
However, the latter model fails to fully explain why relapses are characteristic for patients with
MS, since healthy individuals also harbor autoreactive CCR6+[685_TD$DIFF] T cells [74] that produce
substantial amounts of GM-CSF and also some IL-17 [32]. In any case, the concomitant
enrichment of virus-specific Th1 and myelin-reactive Th1/17 cells in the CSF of patients with
active MS further underlines the close relationship of antiviral immune responses and MS, and
warrants further investigation.

Concluding Remarks and Future Perspectives
How infections promote autoimmune diseases is a fascinating and clinically relevant topic. In
MS, the field has been dominated by the search for a single causative infectious agent and, due
to strong epidemiological evidence, EBV has attracted the most attention. The intriguing
molecular mimicry hypothesis has further underlined a possible role of EBV. However,
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Key Figure

Viral Reactivation Could Lead to Bystander Recruitment of Autoreactive Central Memory T Helper
Type 1/17 (Th1/17CM) Cells
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Figure 3. (A) In healthy individuals, the central nervous system (CNS) is surveyed by antiviral T cells. Upon viral reactivation (i), IP-10 is induced via IFNs and leads to the
recruitment of antiviral CXCR3+[655_TD$DIFF] T cells, likely both Th1/17- and Th1 cells, to the CNS parenchyma from the blood stream (ii). Antiviral T cells rapidly control the virus, and
tissue repair mechanisms ensure that damage to the CNS is limited. Relapses could be triggered when the same immune surveillance mechanism leads to the
erroneous bystander recruitment of autoreactive Th1/17CM cells to the CNS in patients with multiple sclerosis (MS). In addition, infected CXCR3+ B cells could be
recruited that transport viruses, such as Epstein-Barr virus (EBV) and John Cunningham virus (JCV) to the CNS. Th1/17CM cells in patients with MS, but not in healthy
individuals, react with myelin-derived self-antigens and, thus, could attack healthy, uninfected tissues, inducing extensive tissue damage and relapses (iii). (B)
Alternatively, autoreactive Th1/17CM cells could home spontaneously to the CNS parenchyma via CCR6 during the remission phase of patients with MS (i), and induce
de novo viral reactivations and, consequently, the recruitment of CXCR3+ lymphocytes (ii). Reactivation of viruses in the CNS induced by autoreactive Th1/17CM cells
could either trigger relapses or represent an amplification loop of virus-induced relapses. Notably, autoreactive Th17 cells in healthy individuals could also induce viral
reactivation in the CNS by this mechanism, but they are less pathogenic.
accumulating evidence indicates that several neurotropic viruses, including JCV, could have a
role in MS, and it is also possible that different viruses could be important in individual patients
with MS. In this review, we discussed some poorly understood, intensively debated, and
understudied aspects in the field. We have proposed possible mechanisms for how viral
infections could generate pathogenic Th1/17CM cells from autoreactive memory cells upon
bystander activation, how these Th1/17CM cells could progressively expand at the cost of
protective, antiviral Th1 cells in the remission phase, and how they could finally be recruited to
the CNS upon viral reactivation to promote relapses. Notably, the molecular mimicry concept
and this bystander generation/recruitment model are not mutually exclusive. However, the
finding that JCV-specific and autoreactive T cells in patients with MS are largely segregated into
two different subsets of Th1 and Th1/17 cells with different properties suggests that selective
targeting of Th1/17 cells could inhibit relapses without inducing PML.More research on antiviral
immune responses in animal models of MS and in patients will be necessary to unravel the
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complex relationships between viruses and MS, to predict relapses, and, ultimately, to develop
more efficient and/or selective therapies.
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