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Abstract
Background: The impact of environmental gradients on the evolution of life history traits is a
central issue in macroecology and evolutionary biology. A number of hypotheses have been
formulated to explain factors shaping patterns of variation in animal mass. One such example is
Bergmann's rule, which predicts that body size will be positively correlated with latitude and
elevation, and hence, with decreasing environmental temperatures. A generally accepted
explanation for this phenotypic response is that as body mass increases, body surface area gets
proportionally smaller, which contributes to reduced rates of heat-loss. Phylogenetic and non-
phylogenetic evidence reveals that endotherms follow Bergmann's rule. In contrast, while previous
non-phylogenetic studies supported this prediction in up to 75% of ectotherms, recent
phylogenetic comparative analyses suggest that its validity for these organisms is controversial and
less understood. Moreover, little attention has been paid to why some ectotherms conform to this
rule, while others do not. Here, we investigate Bergmann's rule in the six main clades forming the
Liolaemus genus, one of the largest and most environmentally diverse genera of terrestrial
vertebrates. A recent study conducted on some species belonging to four of these six clades
concluded that Liolaemus species follow Bergmann's rule, representing the only known phylogenetic
support for this model in lizards. However, a later reassessment of this evidence, performed on
one of the four analysed clades, produced contrasting conclusions.

Results: Our results fail to support Bergmann's rule in Liolaemus lizards. Non-phylogenetic and
phylogenetic analyses showed that none of the studied clades experience increasing body size with
increasing latitude and elevation.

Conclusion: Most physiological and behavioural processes in ectotherms depend directly upon
their body temperature. In cold environments, adaptations to gain heat rapidly are under strong
positive selection to allow optimal feeding, mating and predator avoidance. Therefore, evolution of
larger body size in colder environments appears to be a disadvantageous thermoregulatory
strategy. The repeated lack of support for Bergmann's rule in ectotherms suggests that this model
should be recognized as a valid rule exclusively for endotherms.
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Background
Geographical variation in environmental conditions is a
major ecological factor involved in evolutionary diversifi-
cation [1,2]. Since thermal regimes are particularly sensi-
tive to latitude and altitude, geographical location
imposes profound selection on organisms' metabolism,
morphology and behaviour [3-5], leading to covariation
between phenotypic traits and geographical gradients [5-
7]. Body size is known to exhibit substantial variation in
relation to thermal differences among habitats [4,8,9].
However, factors other than environmental temperature
(e.g. sexual selection, predation) may also impose selec-
tion on body size [2,10-16]. As a result, models predicting
patterns of evolutionary change in body mass in response
to thermal variation are controversial [17-20]. One such
example is Bergmann's rule [18], which suggests that spe-
cies body size increases with increasing latitude and eleva-
tion, and hence, with decreasing environmental
temperatures [6,21-23].

Different hypotheses have attempted to elucidate the
causal factors promoting the pattern predicted by Berg-
mann's rule [18,24-26]. Potential explanations have
focused on heat-conservation strategies [4,6,20,27], later
maturation to larger body size [28,29], phylogenetic con-
straints [4,30], interspecific variation in migration [4], dif-
ferential resistance to starvation [31-33], and effects on
somatic cell sizes [18,26,34,35]. So far, the heat-conserva-
tion hypothesis, based on the fact that increases in body
volume lead to decreases in relative surface area appears to
be the most likely explanation [27].

Since the formulation of Bergmann's rule more than 150
years ago [21], several studies have explored the universal-
ity of its predictions across different lineages. In general,
the validity of this rule appears to depend on the ther-
moregulatory physiology of the studied model systems.
For endotherms, most evidence has supported Berg-
mann's rule [36-38]. This is presumably because the ben-
efits of reducing heat-loss rates through larger body size
are advantageous for cold climate organisms that main-
tain optimal body temperatures by metabolic generation
of heat. However, the relevance of Bergmann's rule for
ectotherms is less obvious, and supportive evidence is elu-
sive [6,20,31,39].

Bergmann's rule in ectotherms
More than 99% of species are ectotherms [40]. Conse-
quently, no biological prediction can be considered uni-
versal if it is not supported by these organisms. The first
tests to evaluate Bergmann's rule in ectotherms [41,42]
claimed that up to 75% of studied species support its pre-
dictions. However, these studies were based on simplistic
statistical approaches, when the importance of conduct-
ing phylogenetic comparative studies was not yet appreci-

ated [6,31,43,44]. Unsurprisingly, the development of
phylogenetic comparative analyses to test Bergmann's rule
over the last decade has provided divergent lines of evi-
dence. While a series of studies confirmed previous find-
ings [26,27,31,39,45], others were more equivocal
[18,24,26,29-31]. For example, Ray [42] gathered data
from previously published studies to evaluate Bergmann's
rule. Regarding fishes, this author concluded that it is
"obeyed by a great number of fishes as shown by numer-
ous reports in the literature". Curiously, no citations were
provided to support this claim [29,42]. More recently
however, in a rigorous study conducted on more than 600
fish populations of different freshwater species from
North America, Belk and Houston [29] observed that
these ectotherms tend to reverse Bergmann's rule.

With regard to tetrapod ectotherms (i.e. amphibians and
reptiles), evidence is similarly controversial [31]. A
number of phylogenetic studies have shown that groups
of primarily aquatic and tropical-subtropical species fol-
low Bergmann's rule. For example, some anurans, and
most urodeles (salamanders and newts) and turtles
exhibit a negative relationship between body mass and
environmental temperatures [30,31,41]. On the other
hand, debate has progressively intensified in relation to
squamate reptiles (lizards, snakes). Non-phylogenetic
[41] and phylogenetic [30,31] studies have revealed that
squamates exhibit only a weak tendency to conform to
this model. Nevertheless, research conducted on some
widespread groups has concluded that these reptiles can
exhibit body size trends predicted by Bergmann's rule
[20,27,46]. For example, a recent phylogenetic study con-
ducted on Liolaemus lizards supported this temperature-
size model [27]. Cruz et al. [27] observed that species of
the clade Liolaemus boulengeri [11] show larger body size at
higher latitudes and elevations. An additional integrative
analysis including species belonging to congeneric clades
led Cruz et al. [27] to conclude that "the strong, positive,
size-latitude relationship in the L. boulengeri clade appar-
ently accounted for the pattern observed for the entire
dataset". However, after enlarging the sample of taxa
belonging to one of the studied clades (clade boulengeri),
Pincheira-Donoso et al. [39] observed that these species
do not support Bergmann's rule.

Among factors that might explain the disparity observed
across studies testing Bergmann's rule in ectotherms, the
limited availability of phylogenetic studies is perhaps the
most obvious [29,31,47]. Only scarce or generalized tests
have been conducted on ectotherms, and most of this
research focuses on the analyses of few species per clade
(e.g. a single species representing clades consisting of
more than 100 taxa) [20,31]. Moreover, studies focused
on analysing explicit patterns of body size variation in the
species of the same clade in response to continuous geo-
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graphical gradients are still rare [27,29,46]. Recent criti-
cism suggests that a rigorous test of Bergmann's rule
should focus on species belonging to a monophyletic
clade exhibiting substantial variation in patterns of body
size and occurring in a broad geographical area encom-
passing a wide range of environmental conditions
[6,39,46].

Lizards of the South American genus Liolaemus offer
unique opportunities to test predictions concerning the
impact of selection on traits recognized as labile to varia-
tion in environmental temperatures, such as body size
[11,27,48]. This clade represents one of the most diverse
known amniote lineages. Consisting of more than 190
named species, Liolaemus occurs in the widest range of
environmental conditions recorded for any lizard genus
[49-53]. These iguanians range from tropical-subtropical
areas in Brazil and Peru, and the Atacama Desert in Chile,
to austral Patagonia in Tierra del Fuego, the southernmost
place where reptiles have been recorded [53-59]. The alti-
tudinal distribution of Liolaemus is also one of the broad-
est known among squamate reptiles, occurring from sea
level to over 5000 m in the Andes range [48,50,57,60,61].
These biological features satisfy all of the requirements
recognized as essential for a model group employed to test
predictions concerning evolutionary radiations [6,39,46].

Here, we investigate the effect that continuous variation in
environmental temperatures imposes on the evolution of
body size among species of the Liolaemus genus, using a
comparative approach. We studied a set of more than 120
species (see additional file 1: Supplementary table), 63 of
which are included in an explicit phylogenetic hypothesis
(Fig. 1). This species sample represents almost the entire
biogeographical, ecological and morphological diversity
known for these lizards. We aim to test the hypothesis that
increasing latitude and elevation (and therefore, decreas-
ing environmental temperatures) are associated with
larger body size [6,21]. We suggest as an alternative
hypothesis that large body size is disadvantageous for
ectotherms in cold-climates, because it demands longer
time basking to achieve optimal metabolic temperatures.
Therefore, we expect to find weak or no evidence in sup-
port of Bergmann's rule.

Results
Body size patterns under environmental gradients
We found non significant relationships between environ-
mental gradients and body size in most of the tests per-
formed. In none of the studied clades was Bergmann's rule
supported (Table 1). For both methods of data analysis,
significantly high or low standardized residual (z-scores)
values revealed the presence of outliers which might affect
the accuracy of the models. For independent clade analy-
ses, extreme z-scores (see methods) were found in the

clades montanus (one case with z-scores > 2.05) and Dono-
solaemus-magellanicus (one case with z-scores < -2.26). The
relationship between independent contrasts for body size
and adjusted latitudinal midpoint (ALM, latitude
adjusted for altitude, see below) revealed the presence of
five outliers affecting the model (over 8.06% of the cases
with z-scores > 2.12, and < -2.21). The observed differ-
ences in the correlation and regression analyses including
and excluding outliers are detailed below.

Linear bivariate regression analyses showed that body size
does not vary predictably with adjusted latitudinal mid-
point (ALM) in the genus Liolaemus. For analyses con-
ducted on clades separately, low proportions of variance
were explained in the groups chiliensis, fitzingerii, wiegman-
nii and lineomaculatus (Table 1). Regression analyses
including outliers showed non-significant relationships
between SVL and ALM in the clades montanus and Dono-
solaemus-magellanicus. When excluding outliers, we found
a significant negative relationship between SVL and ALM
for the clade montanus and a non-significant relationship
in the clade Donosolaemus-magellanicus (Table 1; Fig. 2).

Linear regression analyses conducted on phylogenetic
independent contrasts (through the origin) revealed that
ALM cannot predict body size when including outliers
(Table 1; Fig. 3a), and when excluding outliers (Table 1;
Fig. 3b).

Effects of sample size reduction
Non-phylogenetic linear regressions conducted on the 63
species for which phylogenetic information was available
(see Additional file 1: Supplementary table), revealed that
reduction of sample size for phylogenetic analyses (from
126 to 63 species; see methods) does not produce qualita-
tive differences in the results. As observed in the whole
dataset (126 species), body size does not vary predictably
with adjusted latitudinal midpoint (ALM) in any of the
studied groups. For these 63 species, non-significant pro-
portions of variance were explained in the clades chiliensis
(R2 = 0.063, F1,23 = 1.55, P = 0.23), Donosolaemus-magellan-
icus (R2 = 0.14, F1,5 = 0.78, P = 0.42), fitzingerii (R2 = 0.17,
F1,16 = 3.22, P = 0.092), lineomaculatus (R2 = 0.79, F1,1 =
3.66, P = 0.31), montanus (R2 = 0.17, F1,1 = 0.21, P = 0.73)
and wiegmannii (R2 = 0.16, F1,5 = 0.92, P = 0.38). The anal-
ysis on standardized residuals confirmed that none of the
regression models suffered from oultiers.

Discussion
This analysis of Bergmann's rule is unique in including a
representative proportion of the geographical, ecological,
morphological and phylogenetic diversity of one of the
most species rich terrestrial ectotherm vertebrate genera,
Liolaemus lizards [see [6,39,46]]. Our results fail to sup-
port Bergmann's rule. Non-phylogenetic and phyloge-
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Phylogenetic relationships for 63 of the 126 Liolaemus taxa included in this studyFigure 1
Phylogenetic relationships for 63 of the 126 Liolaemus taxa included in this study. The clades lineomaculatus (lnm) and montanus 
(mnt) are abbreviated.
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netic analyses showed that increasing latitude and
elevation do not predict increasing body size in Liolaemus
species. These results further contradict the only known
phylogenetic evidence in favour of Bergmann's rule
reported in squamate reptiles [[27], see also [39]], and a
recent large-scale analysis conducted on assemblages of
European lizards supporting this macroecological model
[20].

Thermal gradients, thermoregulatory physiology and body 
size
Research on Bergmann's rule has inspired debate about
why increasing body size should be advantageous for cold
climate species, and why its predictions are observed in
some groups but not in others [6,31,39]. For example, it
has been suggested that the anatomical characteristics of
the skin (e.g. density, or epidermal covering such as feath-
ers and fur) in groups as different as birds, mammals and
turtles make large body size advantageous in colder envi-
ronments and that the absence of these skin characteristics
in squamate reptiles explains why they generally fail to
follow Bergmann's rule [6,31,62]. In contrast, much less
reference has been made to the role that thermoregulatory
physiology of organisms (endothermy and ectothermy)
can play during the process of body size evolution [39].
Indeed, an important part of the available discussions
focuses on the benefits of increasing body size for heat
retention in cold climate species. However, since conser-
vation of body heat in ectotherms is only possible once
they have optimally achieved it (which is metabolically
resolved in endotherms), it appears to be simplistic to
exclude the fact that increasing body mass also reduces the

rates of heat gain [31], which may be as critical as the need
for retaining heat [6,32]. This is illustrated, for example,
by the observation that gravid females in several lizard
species tend to bask more often or for longer than non-
gravid females [63-66].

It might be argued that lizard body size and heating rates
do not covary in a linear fashion, as these organisms may
adjust (plastically or genetically) some physiological and
behavioural traits to increase heating rates in cold envi-
ronments [5,7,20,67,68]. For example, it has been
observed that physiological adaptations may increase
heating rates up to 17% in cold climate lizards [20,68].
Likewise, behavioural adjustments such as selection of
basking sites less exposed to wind [3] or modifications in
the postures and body orientation to the sun may contrib-
ute to gain heat more rapidly [3,69,70]. However, even
though these adaptations contribute to increase heating
rates in lizards inhabiting cold environments, their effi-
ciency has limits. Indeed, a number of studies have shown
that annual and daily activity, and thermoregulatory proc-
esses in cold climate lizards may vary substantially in
comparison to warm climate lizards. For example, it has
been observed that high elevation (e.g. over 4000 m) liz-
ards tend to exhibit considerably shorter daily activities,
often no more than four or five hours a day [71-73], than
species distributed in lower latitudes and elevations,
which may remain active for over twelve hours per day
[57,61,72,74-76]. One of the most plausible factors to
explain this pattern is that mean daily temperatures are
lower, hot hours per day are fewer, and warm seasons are
shorter in cold climates [22,71,77-79]. Therefore, even in
presence of the above mentioned physiological and
behavioural adjustments, cold environments restrict
severely the patterns of activity in lizards, as a conse-
quence of their failure to overcome the selective pressures
imposed by low temperatures. This suggests that the ther-
moregulatory limitations determined by the ectothermal
condition of lizards might be one of the main (if not the
main) factors constraining the maximum attainable limits
of body size in cold climate species.

Large body mass in cold climate lizards would have dra-
matic consequences for ecological performance (imposed
by natural selection) and reproductive success (imposed
by sexual selection), because in conditions of suboptimal
metabolic temperatures most physiological functions
(and hence, behavioural responses) occur at suboptimal
rates [3,80]. For example, performance at prey capture,
predator evasion, endurance, digestion, mate courtship,
sperm production and conversion of lipids is substantially
reduced at suboptimal body temperatures [3,66,80-83].
Also, basking for longer periods may increase the risk of
predation by diurnal hunters [66]. Consequently, large
body mass in cold climate lizards would be disadvanta-

Table 1: Results of least squares regression analyses conducted 
on clades separately (non-phylogenetic) and on independent 
contrasts (phylogenetic) in the genus Liolaemus. In the clades 
Donosolaemus-magellanicus and montanus, these analyses were 
conducted including outliers (IO) and excluding outliers (EO). 
See methods for details.

Clade N R2 r F df P

Non-Phylogenetic
chiliensis 56 0.009 0.09 0.471 1,54 0.495
Donosolaemus-magellanicus 
(IO)

12 0.009 -0.09 0.086 1,10 0.775

Donosolaemus-magellanicus 
(EO)

11 0.088 0.29 0.869 1,9 0.375

fitzingerii 22 0.023 0.15 0.467 1,20 0.502
lineomaculatus 4 0.3 0.55 0.855 1,2 0.453
montanus (IO) 21 0.165 -0.41 3.75 1,19 0.068
montanus (EO) 20 0.313 -0.56 8.191 1,18 0.01
wiegmannii 8 0.122 -0.35 0.837 1,6 0.396

Phylogenetic
Liolaemus genus (IO) 63 0.023 -0.15 1.439 1,61 0.235
Liolaemus genus (EO) 58 0.064 -0.25 3.842 1,56 0.055
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Linear regressions of raw data for ln(snout-vent length) against adjusted latitudinal midpoint in the six main clades forming the Liolaemus genusFigure 2
Linear regressions of raw data for ln(snout-vent length) against adjusted latitudinal midpoint in the six main clades forming the 
Liolaemus genus. Top: regressions for the clades chiliensis (black), Donosolaemus-magellanicus including outliers (blue; slope from 
analysis excluding outliers not shown, as it provided identical qualitative results), fitzingerii (red), lineomaculatus (orange), and 
wiegmannii (green). Bottom: regressions for the clade montanus including (black) and excluding (red) outliers.
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geous. Hence, the hypothesis of heat conservation cannot
be accepted (at least in these organisms), as it predicts
increasing body size in low-temperature environments.
These claims are supported by a number of previous stud-
ies conducted in lizards [30,31,39].

Finally, it might also be argued that large ectotherms can
maintain higher constant minimum body temperatures
than do smaller species. However, it is unlikely that even
relatively large cold climate lizards are able to retain heat
overnight. Indeed, it has been observed in several species
[84] that during the initial period of basking, the body
temperature of lizards is very similar to the environmental
temperature. Additionally, field observations conducted
at high latitudes and elevations in South America (DPD,
unpublished data) reveal that different sized Liolaemus liz-
ards exhibit similar temperatures before initiating bask-
ing.

Trophic niche evolution and body size
The evolution of trophic niches in lizards may provide
additional evidence to support the idea that larger body
size is disadvantageous for species living in cold environ-
ments. Although most lizards feed on other animals,
omnivory and herbivory have evolved independently
many times among these squamates [80,85]. Plant matter
is a low energy food for lizards [3]. Therefore, omnivory
and herbivory are advantageous for these reptiles only

when certain morphological and thermoregulatory condi-
tions are met. In general, it has been observed that plant
consumption has evolved primarily in species occurring
in warm habitats, where vegetation is extremely abundant
(e.g. tropical forests), or where abundance of animal prey
is extremely low (e.g. deserts, small islands)
[11,80,86,87]. In these environments, lizards can attain
large body size and high body temperatures, both traits
considered essential requirements for efficient digestion
of plant matter [3,88-90]. A large body allows for a more
voluminous gut, and high body temperature provides
optimal conditions for endosymbionts (bacteria and pro-
tozoa) specialized in breaking down otherwise indigesti-
ble plant matter [3,9,91-93]. Consequently, according to
these rules of herbivory [3,11], most lizards in which
plant consumption has evolved are expected to reverse
Bergmann's rule, because larger species tend to occur in
warm environments.

Contrary to predictions, in a recent study Espinoza et al.
[11] found that omnivory and herbivory have not only
evolved in warm-climate and large lizards, but also in
small species occurring in cold environments [94]. These
authors observed that a large number of small Liolaemi-
dae species (which includes Liolaemus) restricted to high
latitudes or elevations, have substantial proportions of
plant matter in their diets (i.e. 11%–100% of digestive
volume content). Although the body size pattern

Linear regression analyses (through the origin) of phylogenetically independent contrasts (IC) for ln(snout-vent length) against adjusted latitudinal midpoint in the entire dataset of Liolaemus species for which phylogenetic information was availableFigure 3
Linear regression analyses (through the origin) of phylogenetically independent contrasts (IC) for ln(snout-vent length) against 
adjusted latitudinal midpoint in the entire dataset of Liolaemus species for which phylogenetic information was available. (a) Lin-
ear regression observed when including outliers, and (b) when excluding outliers.
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observed in omnivorous and herbivorous Liolaemidae
species differs significantly from the pattern known for
plant-consumer lizards occurring in warm climates, the
explanation may be exactly the same. Since digestion of
plant matter requires the highest possible body tempera-
tures [11,93], evolution of large body size in cold-climate
Liolaemidae species would decrease the thermoregulatory
efficiency needed to achieve optimal metabolic tempera-
tures. This in turn would affect negatively the digestion of
plant matter. Therefore, in the case of Liolaemidae species
occurring at high latitudes and elevations, evolution of
large size would be disadvantageous, challenging patterns
predicted by Bergmann's rule.

Why do some ectotherms appear to follow Bergmann's 
rule?
Thermal environment differs from some other sources of
selection in that it is a dominant selective force at low tem-
peratures [31,39], but at higher temperatures, ectotherms
are essentially freed from thermal constraints and hence
other factors may become dominant in determining body
size. These include fecundity selection [10,13,14], reduc-
tion of mass-specific energy requirements [3], greater
physiological homeostasis [9], and reduction of mortality
rates by predation [2,95-97]. Therefore, ectotherm clades
whose geographical distributions are primarily restricted
to tropical or subtropical ecosystems, such as continental
turtles [30,31], may exhibit increasing body size with
increasing latitude and moderate elevations. This pattern
probably reflects a response to selective factors other than
the thermal environment which is essentially benign
throughout the geographic range of the group. Alterna-
tively, observations of Bergmann's clines in some ecto-
therm vertebrates (i.e. turtles, salamanders) may be
explained by the large taxonomic scale at which studies
have been conducted [30,31] which could mean that dif-
ferent patterns of body size variation at an interspecific
scale might be obscured by patterns observed at inter-
clade scales [27]. Consequently, for example, although
Ashton [45] observed that salamanders tend to follow
Bergmann's rule, we could expect that a test incorporating
a substantially larger number of species from a wider
diversity of areas find that these amphibians do not follow
Bergmann's clines (the situation might be different for
turtles, as these animals are more restricted to tropical
zones).

Conclusion
Physiological processes in ectotherms are strongly
dependent upon their body temperature [3,80] with
numerous consequences for survival and reproduction.
Since heating rates in ectotherms are critically determined
by body mass, large body size in species occurring at high
latitudes or elevations is likely to be disadvantageous. We
found no evidence to support Bergmann's rule in Liolae-

mus lizards: increasing latitude and elevation are not asso-
ciated with larger body size in these reptiles (Fig. 2). We
suggest that Bergmann's rule should be recognized as a
macroecological prediction employed to investigate pat-
terns of body size evolution only in endotherms, as it was
originally proposed by Bergmann [21].

Methods
Phylogenetic scale and study species
Even though many studies testing Bergmann's rule have
focused on intraspecific comparisons
[19,34,37,73,98,99], the rule [6,21,23] was originally
developed on the basis of multiple species comparisons
[21] which is the approach that we took. Meiri & Thomas
[100] provided a detailed discussion on the taxonomical
scale of Bergmann's rule in an historical context.

We gathered data on body size with respect to latitude and
elevation from 4942 adult Liolaemus specimens of both
sexes representing a total of 126 species from museum
collections (see appendix and Additional file 1: Supple-
mentary table). Since body size of lizards may be affected
by distribution in islands [101-103], we excluded insular
Liolaemus taxa from our dataset (e.g. L. brattstroemi, L. mel-
aniceps). Collection numbers and localities for most of the
studied species and specimens can be found in Pincheira-
Donoso & Núñez [48]. The species forming our sample
cover a representative proportion of the total biogeo-
graphical, ecological, morphological and taxonomical
diversity of the genus Liolaemus. The studied taxa belong
to the clades chiliensis, Donosolaemus-magellanicus, fitz-
ingerii, lineomaculatus, montanus and wiegmannii
[11,48,57]. These groups represent the six main lineages
known for this genus. The studied species encompass
almost the entire geographical range known for Liolaemus
[57,104]. The total dataset comprises individuals coming
from austral Patagonia in Argentina and Chile, the high
Andes plateau (> 4500–5000 m), the Atacama Desert,
tropical areas in eastern Brazil, austral forests in southern
Chile and several intermediate and temperate areas
[48,50,51,54,57,60,104].

Environmental estimations
Since environmental temperatures decrease with increas-
ing latitude and altitude [27,45,78], it is necessary to
account for the combined effect of latitude and elevation
when testing thermal dependence of traits [27]. Latitudi-
nal and altitudinal data were used as estimators of the
thermal conditions under which species live by converting
them to a single Adjusted Latitudinal Midpoint (ALM) for
each species. This scale, recently calibrated by Cruz et al.
[27], and similar versions have been used for estimations
of species' environmental conditions in comparative stud-
ies [11,39,105,106]. The ALM is obtained assuming that
environmental temperature in altitudinal transects
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declines 0.65°C for each 100 m of increased elevation
[27,78]. Cruz et al. [27] obtained a corrected latitudinal
value for latitude and altitudinal thermal covariation
using the formula y = 0.009x - 6.2627, where x represents
the altitudinal midpoint for each species, and y the cor-
rected temperature for latitude which is added to the lati-
tudinal midpoint for each species (the details of this
formula were provided personally by F.B. Cruz, as they are
not published in the same format in Cruz et al. [27]). The
final value is referred to as the adjusted latitudinal mid-
point for South American areas where Liolaemus occurs,
calculated for each species [27].

Statistical analysis and phylogenetic control
To investigate the effects of environmental variation on
Liolaemus species size, we used snout-vent length (SVL) as
a proxy for body size. Snout-vent length is a widely used
measure of body size in squamate reptiles. This parameter
is positively correlated with other body variables, such as
mass, and with ecological and life-history traits [3,27,86].
Several recent studies have selected the largest recorded
values for SVL as an estimation of species size [27,57,107].
However, utilization of single extreme values may lead to
misleading results when testing these kinds of hypotheses
[108,109]. Recent evidence [110] shows that estimation
of asymptotic size can be reasonably obtained using the
largest individual per sample, but only in lineages that fol-
low asymptotic growth curves, such as Anolis lizards [110].
Since it is unknown whether Liolaemus follow asymptotic
growth curves [39], the use of the largest recorded individ-
ual per sample may bias analyses. An alternative method
that offers greater statistical power is the estimation of
body size by obtaining intermediate percentiles between
the maximum record and the sample mean. For example,
it has been found in agamid species that the use of mean
sample values may lead to substantial underestimation of
asymptotic size, whereas the use of the largest individual
per sample may lead to overestimation [108]. In contrast,
these intermediate percentiles (between mean and maxi-
mum record) provide the most accurate estimate of
asymptotic size. Moreover, such percentiles have low var-
iance, low dependence on sample size, and are amenable
to bootstrap estimations of confidence intervals, when
compared to the largest individual per sample [108]. Con-
sequently, we used the mean SVL of the largest two-thirds
of the adults for each studied species [111]. Since species
of the genus Liolaemus exhibit various patterns of sexual
size dimorphism (i.e. larger males, larger females or no
sexual dimorphism) [48,50,54,57,60,61,112,113], SVL
mean values were calculated for males and females, to
estimate a mean value for the species [27,39]. Whenever
possible (117 of 126 species) samples comprised a similar
number of males and females.

Prior to analyses SVL values were ln-transformed. This ln-
transformation reduces skewness of the original measure-
ments, and helps to homogenize variance [114-116].
After ln-transformation, SVL met the statistical assump-
tions required for parametric analyses (according to Sha-
piro-Wilk tests).

It is now well appreciated that samples consisting of spe-
cies sharing phylogenetic histories cannot be considered
independent evolutionary entities in comparative analy-
ses [43,117]. Consequently, simple statistical analyses
might provide phylogenetically biased evidence, necessi-
tating the development of explicit approaches to control
the impact of shared ancestry [43,44,118]. On the other
hand, recent studies have shown that conventional regres-
sion and correlation analyses on raw data may perform
better than independent contrasts data under certain con-
ditions of phenotypic evolution [119-122]. For example,
Carvalho et al. [121] suggested that it is not always neces-
sary to perform phylogenetic simulations for statistical
analyses when there is little phylogenetic effect, and that
comparative analyses in some cases should be applied as
a conservative approach. Hence, providing results from
both conventional statistical procedures and explicit phy-
logenetic analyses may be a more robust approach
[2,119]. In the case of body size patterns observed in Liol-
aemus species, the distribution of this trait across the phy-
logeny may reveal only a partial effect of shared ancestry.
Therefore, we analyzed our data in two different ways.
First, using conventional ordinary least squares bivariate
regression analyses on raw ln-transformed data, separately
for each of the main clades [43,44]. We identified these
clades as detailed above following the latest available
nomenclature [11,27,48,57] (Fig. 1). Each of the recog-
nized clades has previously been supported by different
phylogenetic hypotheses based on molecular, morpho-
logical and combined molecular and morphological evi-
dence [11,27,51,57,59,123].

Second, we analyzed the dataset using an explicit phyloge-
netic approach, by calculating independent contrasts [43]
as implemented in COMPARE version 4.6b [124]. We
examined species relationships using a phylogenetic
hypothesis of the genus Liolaemus derived from different
recent studies [11,27,51,59,123]. Because this phylogeny
(Fig. 1) is based on both molecular and morphological
data, we performed phylogenetic analyses under a specia-
tional Brownian motion model of evolutionary change,
assuming branch lengths equal to 1.0 [11,125-127]. Since
phylogenetic information was only available for 63 of the
126 species included in our dataset (see additional file 1:
Supplementary table), we conducted all analyses in three
different ways to test for the potential effect that reduction
of sample size can have on the results: (i) ordinary least
squares regressions on raw data separately for each of the
Page 9 of 13
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six clades, including the entire species sample (i.e. 126
species), (ii) the same regression analyses (on raw data)
for separate clades conducted in the entire dataset, but
using only the 63 species included in the phylogeny, and
(iii) ordinary least squares regression analyses (through
the origin) on phylogenetically independent contrast for
those species for which phylogenetic information was
available. Since the existence of outliers may have large
effects on statistical analyses [116], we performed all the
regressions including and excluding outliers. Data points
with standardized residuals (i.e. z-scores) greater than 2 or
less than -2 were considered outliers [114]. Except for one
analysis (non-phylogenetic regression on the montanus
clade), regressions including and excluding outliers did
not differ qualitatively.
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(MHNC*), Department of Cell Biology and Genetics, Fac-
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Instituto de Biologia Animal, Facultad de Ciencias
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