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Abstract

Recent studies in the SIV-macaque model of HIV infection suggest that Nef-specific CD8+ T-cell responses may
mediate highly effective immune control of viraemia. In HIV infection Nef recognition dominates in acute infection, but
in large cohort studies of chronically infected subjects, breadth of T cell responses to Nef has not been correlated
with significant viraemic control. Improved disease outcomes have instead been associated with targeting Gag and,
in some cases, Pol. However analyses of the breadth of Nef-specific T cell responses have been confounded by the
extreme immunogenicity and multiple epitope overlap within the central regions of Nef, making discrimination of
distinct responses impossible via IFN-gamma ELISPOT assays. Thus an alternative approach to assess Nef as an
immune target is needed. Here, we show in a cohort of >700 individuals with chronic C-clade infection that >50% of
HLA-B-selected polymorphisms within Nef are associated with a predicted fitness cost to the virus, and that HLA-B
alleles that successfully drive selection within Nef are those linked with lower viral loads. Furthermore, the specific
CD8+ T cell epitopes that are restricted by protective HLA Class I alleles correspond substantially to effective SIV-
specific epitopes in Nef. Distinguishing such individual HIV-specific responses within Nef requires specific peptide-
MHC I tetramers. Overall, these data suggest that CD8+ T cell targeting of certain specific Nef epitopes contributes
to HIV suppression. These data suggest that a re-evaluation of the potential use of Nef in HIV T-cell vaccine
candidates would be justified.
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Introduction

The HIV-1 nef gene encodes a polymorphic 27kda protein,
200-215 amino acids in length [1,2]. Nef has a complex role in
HIV pathogenicity via a number of mechanisms, including
down-regulation of host CD4 and MHC cell surface expression,

modulation of T cell function, and altering of macrophage
signaling [2–4]. Nef is among the most diverse HIV proteins [5].
The greatest sequence variability is focused in the amino- (N-)
and carboxy- (C-) terminal regions, while the central portion of
the protein is substantially more conserved [6–8]. At least some
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of this sequence variability may be driven by Class I HLA
selection pressure [9,10].

Nef has a high density of overlapping CD8+ T cell epitopes
(see Nef epitope map at www.hiv.lanl.gov), and multiple copies
of Nef are produced early in the HIV life cycle [11,12]. Nef is
the most targeted protein in acute infection [13–15], accounting
for 50% to 90% of CD8+ T cell responses in acutely infected
subjects [16,17], as well as having the most CD8+ T cell
responses and the highest magnitude IFN-gamma responses
in chronic infection [7].

Large cross-sectional studies have shown no correlation
between viraemic suppression and either the breadth of CD8+
T cell IFN-gamma responses to Nef [18], or the number of
HLA-selected mutations in Nef [19]. However the
immunogenicity of Nef and consequent density of overlapping
epitopes confounds analyses of the distinct CTL responses
targeting this protein that have typically depended on ELISpot
assays using panels of overlapping peptides 15-18 amino acids
in length. Other studies have attempted to address the issue of
Nef diversity by using extended panels of overlapping peptides
(e.g. 10-mers overlapping by 9 amino acids, with all common
variants represented [20]) but this approach is costly and time-
consuming.

The HLA Class I alleles that are most strongly associated
with long-term suppression of viraemia (e.g. HLA-B*57, -
B*58:01 and -B*27 [21–23]) present CD8+ T cell epitopes in
Gag and Pol that have been especially well-studied [19,24,25].
The targeting of these highly conserved proteins is thought to
underpin successful immunological control [26,27]. However
these HLA class I molecules also present epitopes within Nef
that may be important in mediating disease control. In a host
expressing these protective HLA alleles, the virus adapts by
selecting escape mutations in all Gag, Pol and Nef epitopes
[28,29], underlining a survival benefit to the virus incurred
through evasion of these responses. Indeed, some studies
have suggested that viraemic suppression may be linked to
specific Nef epitopes, including HLA-B*57/58:01-HW9 [30] and
HLA-B*35: 01-VY8 [31].

Several further lines of evidence pointing towards the
potential immunological benefit of targeting HIV-Nef have been
reported. Many HLA-selected escape mutations in Nef revert to
wild-type following transmission to an HLA-mismatched host,
suggesting a fitness cost in association with the mutation
[9,19]. This hypothesis is supported first by studies showing
that Nef polymorphisms are more common among slow
progressors than rapid progressors [6], and second by the
finding that such sequence changes in elite controllers are
associated with a detriment to Nef function [32].

Studies in the SIV model add further weight to the hypothesis
that Nef responses can contribute to disease control. In the
rhesus macaque, Mamu-B*08, which has a peptide-binding
motif so similar to HLA-B*27 that it can bind the same peptides
[33], is also associated with elite viraemic control [34–36].
However, unlike HLA-B*27 [25], the immunodominant
responses are within accessory/regulatory proteins, and a
vaccine induced Mamu-B*08-restricted response to the Nef
RL10 epitope (SIV Nef 137–146, RRHRILDIYL) is correlated
with viraemic control [34]. This epitope is homologous to the

HIV-specific HLA-B*27: 05 RI10 epitope, (HIV Nef 105-114,
RRQDILDLWI [37]). Likewise, macaques expressing another
favourable allele, Mamu-B*17, also target Nef via two
immunodominant epitopes, IW9 (SIV Nef 165-173,
IRYPKTFGW) and MW9 (SIV Nef 195-203, MHPAQTSQW)
[38,39]. In Mauritian Cynomolgus Macaques, controllers of SIV
replication have been shown to target epitopes located near
the carboxy terminus of the SIV Nef protein [40]. Recently, a
novel protective MHC-I haplotype was described in Burmese
macaques, 90-010-Id (D), which also mediates immune control
against SIV through Nef responses [41].

The starting point for these current studies, therefore, was
the conflict in evidence regarding the extent to which CD8+ T
cell responses to Nef might impact upon HIV-1 disease control.
On the one hand, large cross-sectional studies have suggested
no benefit in extended breadth of Nef targeting [18,19], whilst
on the other, recent data suggest that targeting particular
regions of Nef might contribute fundamentally to viraemic
control [29–32,34,38,39].

Most previous analyses of Nef diversity and HLA-selection
have focused on B-clade infections [12,29,42,43], while studies
of C-clade have often been limited by small sample numbers
[44,45]. We focused here on an extended cohort of >700 C-
clade infected adults to identify relationships between CD8+ T
cell responses to Nef and HIV disease control. We
hypothesized that certain specific Nef responses may help to
underpin viraemic control, strengthening the argument for the
inclusion of Nef as an immunogen in CD8+ T cell vaccines.

Materials and Methods

Recruitment and characterization of HIV-infected
individuals

We studied 739 adults with chronic HIV-1 C-clade infection
recruited from three cohorts: Durban, South Africa (n=436),
Gaborone, Botswana (n=275), and Zimbabwean subjects
recruited via the Thames Valley Cohort in the UK (n=28), as
previously described [46,47]. Ethics approval was given by
KwaZulu-Natal Review Board and the Massachusetts General
Hospital Review Board (Durban cohort); the Office of Human
Research Administration, Harvard School of Public Health and
the Health Research Development Committee, Botswana
Ministry of Health (Gaborone cohort); and the Oxford Research
Ethics Committee (Durban, Gaborone and Thames Valley
cohorts). All subjects provided written informed consent.

Nef sequences and HLA-types were generated as previously
described [19,48]. Viral loads were performed using the Roche
Amplicor v.1.5 assay. Viral load measurements were made in
chronic disease (therefore reflecting set-point viraemia).

Identification of Nef sequence polymorphisms
associated with Class I HLA genotype

We used computational methods, as previously described
[19,49], to identify sites of HLA-selected polymorphism in Nef
sequences, correcting for viral lineage and for linkage
disequilibrium between HLA Class I alleles. We corrected for
multiple comparisons using a q-value (false discovery rate,
FDR [50]), and a cut-off value of q<0.05(5% FDR). Reversion
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was predicted, as previously, by the statistical association
between the absence of a particular HLA allele with either (i) an
increase in expression of the consensus amino acid, or (ii) a
decrease in expression of a variant amino acid [19]. These
associations demonstrate that a mutation selected by a
particular HLA allele returns to consensus following
transmission to an HLA-mismatched host, from which a fitness
cost is inferred.

Data analysis
We computed amino acid variability using Shannon entropy

with the on-line tool at Los Álamos HIV sequence database
(http://www.hiv.lanl.gov/content/sequence/ENTROPY/
entropy_one.html). Mean entropy scores were calculated for
each overlapping peptide (OLP) spanning the Nef protein
(OLPs 67-93) and ranged from 0.15 in a ‘conserved’ region
(OLP-82) to 0.78 in a ‘non-conserved’ region (OLP-68).

Statistical analysis was performed using GraphPad Prism v.
5.0a. We focused our attention particularly on the central, most
conserved region of Nef (previously defined as residues 81-160
[8]), extended here to correspond to the most conserved
overlapping peptides (OLPs) adopted in these and in
previously published studies [51], namely OLPs 76-85.

IFN-gamma ELISpot studies to identify regions of the
Nef protein associated with beneficial immune
responses

In vitro HIV-specific CD8+ T-cell responses were determined
in a cohort of 1010 subtype-C infected individuals using IFN-
gamma ELISpot assays using a set of 410 overlapping 18-mer
OLPs spanning the whole HIV-1 subtype C proteome (2001
consensus sequence). Overlapping peptides were arranged in
a matrix system with 11-12 peptides in each pool. Responses
to matrix pools were confirmed by subsequent testing with the
individual 18-mer peptides within each pool, and the identity of
the individual 18-mers recognized were thus confirmed, as
previously described [46].

OLP responses that independently correlate with log10 VL
were identified using stepwise linear regression (inclusion
criterion: p<0.05; exclusion criterion: p>0.05). We included in
analysis all OLPs for which responses were observed in ≥3
individuals, and HLA class I alleles expressed in ≥3 individuals.
P-values were computed using likelihood ratio tests, and q-
values were computed over all features, conditioned on the
final model. For these studies, the analyses resulting in q
values <0.2 (p<0.024) were defined as significant.

HLA Class I tetramer staining
Tetramers were generated as previously described [52]. We

stained antigen-specific cells using peptide-MHC-I tetramer
conjugated to phycoerythrin (PE) or allophycocyanin (APC).
Peripheral blood mononuclear cells (PBMCs) were thawed in
R10 medium (RPMI medium, 10% fetal calf serum [FCS], 1%
penicillin/streptomycin, 1% glutamine); rested for 1 h at 37°C in
5% CO2; stained with HLA class I tetramer for 30 min at room
temperature; washed; surface stained with CD8 Pacific Blue
(BD Pharmingen), CD3 Pacific Orange (Invitrogen), and a live/
dead violet cell stain kit (Invitrogen) for 30 min; washed in

phosphate-buffered saline (PBS) and fixed in 2%
paraformaldehyde. Data were acquired on an LSR II (BD) flow
cytometer within 12 h of staining and analyzed using FlowJo
version 8.8.6. The cells were hierarchically gated on singlets,
lymphocytes, live cells, and distinct tetramer-specific CD8-
positive cells.

Results

Over 50% of HLA-selected polymorphisms in Nef are
predicted to reduce viral fitness

Sequence analysis identified 44 Nef sequence
polymorphisms associated with Class I HLA expression,
operating at 34 different amino acid residues (all associations
corrected for multiple comparisons, q<0.05 [49]; Table 1).
Reversion was predicted following transmission to an HLA-
mismatched recipient in 24 of the 44 HLA-associated
polymorphisms (54.5%) (Table 1), implying that these
polymorphisms would occur at a cost to viral replicative or
infective capacity [19,49].

Of the 44 HLA-associated polymorphisms identified, 25
(57%) were within or in the flanking regions (within 5 amino
acids up- or down-stream) of known epitopes restricted by the
HLA allele in question (Table 1). The majority of
polymorphisms (n=31, 70%) were associated with HLA-B
alleles, while 7 (16%) were associated with HLA-A and 6 (14%)
with HLA-C (Table 1).

HLA-mediated selection pressure contributes to
sequence diversity in conserved central Nef

Nef can be divided into three regions of differing sequence
variability (Figure 1). The central region (residues 66-148,
median residue entropy 0.135) is the most conserved,
significantly more so than both the C-terminal region (residues
149-206, median residue entropy 0.491, p < 0.0001, Mann–
Whitney U test), and the N-terminal region (residues 1-65,
median residue entropy 0.829, p < 0.0001, Mann–Whitney U
test). The C-terminal region is significantly more conserved
than the N-terminal region (p=0.0056, Mann–Whitney U test).

There is a strong relationship between the presence of an
HLA-selected polymorphism and amino acid variability,
particularly in the central conserved region of Nef (p=0.0001,
Mann–Whitney U test; Figure 1B). Although this type of
analysis cannot determine the causation of amino acid
diversity, this association may indicate that HLA is a significant
factor in driving polymorphisms, as previously suggested with
Gag sequences [10] and supported in studies of longitudinally
sampled Nef sequences [53]. This illustrates the potential
evolutionary influence of HLA-selection in Nef [29,54], 47], as a
factor contributing to sequence diversity, together with other
factors such as neutral ‘toggling’ between amino acids, founder
effect and genetic drift [55].

HLA-B selected mutations in Nef are associated with
reduction in viral set-point

We next investigated the relationship between the presence
of polymorphisms selected by HLA-A, HLA-B and HLA-C
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alleles and viral load (VL) in chronic infection. HLA-B alleles
driving the selection of Nef mutants are linked with lower VL
than those that do not select Nef polymorphisms (median VL
21,175 RNA copies/ml versus 49,350 for HLA-B alleles not

associated with any Nef selection; p=0.003, Mann Whitney U
test; Figure 2). However, increasing the number of Nef
mutations beyond 1 was not statistically associated with HLA-B
alleles predictive of lower VL. There was no significant

Table 1. Amino acid residues in Nef at which amino acid polymorphism is associated with HLA Class I expression.

HLA HXB2 position                      P value q value Reversion
A*68:01 15 W S K S S I V G W P A V R E R I R R T E P 5.00E-07 0.00  
A*24:02 135 Q N Y T P G P G V R Y P L T F G W C F K L 4.40E-05 0.02 R
A*23 143 V R Y P L T F G W C F K L V P V D P R E V 8.52E-17 0.00 R
A*66:01 156 V P V D P R E V E E A N K G E N N C L L H 2.87E-05 0.01 R
A*02 176 H P M S Q H G M E D E D R E V L K W K F D 1.07E-05 0.01  
A*66 184 E D E D R E V L K W K F D S S L A R R H L 6.70E-05 0.02 R
A*74:01 192 K W K F D S S L A R R H L A R E L H P E Y 2.89E-06 0.00 R
B*73:01 19 S I V G W P A V R E R I R R T E P A A E G 1.53E-04 0.05  
B*42 20 I V G W P A V R E R I R R T E P A A E G V 7.22E-05 0.03  
B*44(03) 64 C A W L E A Q E E E E V G F P V R P Q V P 2.52E-08 0.00 R
B*4501 64 C A W L E A Q E E E E V G F P V R P Q V P 3.90E-08 0.00  
B*4501 66 A W L E A Q E E E E V G f P V R P Q V P L 1.50E-26 0.00 R
B*44(03) 71 E E E E E V G F P V R P Q V P L R P M T Y 5.23E-06 0.00 R
B*07 [Cw*07:02] 71 E E E E E V G F P V R P Q V P L R P M T Y 2.16E-13 0.00 R
B*57 76 V G F P V R P Q V P L R P M T Y K A A F D 5.55E-05 0.02 R
B*81(01) 76 V G F P V R P Q V P L R P M T Y K A A F D 2.71E-23 0.00  
B*35(01) 81 R P Q V P L R P M T Y K A A F D L S F F L 8.22E-11 0.00  
B*57 83 Q V P L R P M T Y K A A F D L S F F L K E 2.41E-07 0.00  
B*5801 [A*03] 83 Q V P L R P M T Y K A A F D L S F F L K E 1.16E-12 0.00 R
B*44(03) 93 A A F D L S F F L K E K G G L E G L I Y S 2.48E-15 0.00 R
B*44:03 102 K E K G G L E G L I Y S K K R Q E I L D L 1.57E-18 0.00 R
B*18(01) 108 E G L I Y S K K R Q E I L D L W V Y H T Q 1.36E-11 0.00  
B*44:03 108 E G L I Y S K K R Q E I L D L W V Y H T Q 1.08E-09 0.00  
B*44:03 115 K R Q E I L D L W V Y H T Q G F F P D W Q 1.25E-04 0.04 R
B*57:03 116 R Q E I L D L W V Y H T Q G F F P D W Q N 8.93E-06 0.01  
B*35(01) 133 D W Q N Y T P G P G V R Y P L T F G W C F 3.32E-08 0.00  
B*53(01) 133 D W Q N Y T P G P G V R Y P L T F G W C F 3.12E-05 0.01  
B*42 133 D W Q N Y T P G P G V R Y P L T F G W C F 4.75E-05 0.02 R
B*14:01 156 V P V D P R E V E E A N K G E N N C L L H 5.46E-05 0.02  
B*13 158 V D P R E V E E A N K G E N N C L L H P M 1.89E-05 0.01 R
B*42 168 K G E N N C L L H P M S Q H G M E D E D R 1.75E-05 0.01  
B*42 173 C L L H P M S Q H G M E D E D R E V L K W 4.11E-05 0.02 R
B*15:01 176 H P M S Q H G M E D E D R E V L K W K F D 1.18E-05 0.01  
B*53(01) 176 H P M S Q H G M E D E D R E V L K W K F D 2.14E-05 0.01 R
B*08:01 179 S Q H G M E D E D R E V L K W K F D S S L 1.24E-04 0.04  
B*15:10 191 L K W K F D S S L A R R H L A R E L H P E 5.99E-06 0.00 R
B*35(01) 194 K F D S S L A R R H L A R E L H P E Y Y K 1.02E-05 0.01 R
B*42:01 202 R H L A R E L H P E Y Y K D C       4.76E-05 0.02  
Cw*02:10 48 K H G A L T S S N T A H N N A D C A W L E 1.51E-04 0.05  
Cw*08 85 P L R P M T Y K A A F D L S F F L K E K G 3.19E-05 0.01 R
Cw*07:01 [B*080 105 G G L E G L I Y S K K R Q E I L D L W V Y 2.93E-14 0.00 R
Cw*16:01 174 L L H P M S Q H G M E D E D R E V L K W K 1.13E-04 0.04  
Cw*16 198 S L A R R H L A R E L H P E Y Y K D C   1.26E-05 0.01 R
Cw*16 199 L A R R H L A R E L H P E Y Y K D C    1.44E-05 0.01 R

Bold interface indicates site of polymorphism
Lineage-corrected analysis of sequences from 739 C-clade infected Southern African subjects. Amino acid residue at which polymorphism is identified is shown in bold, with
ten amino acids flanking on either side (consensus sequence for this cohort). Known HLA-class I epitopes corresponding to the allele in question are underlined. Sites at
which reversion is predicted are marked ‘R’ [19]. Round brackets indicate likely high resolution HLA type based on high population prevalence of this allele. Square brackets
indicate alleles in linkage disequilibrium with selecting allele, with association also detected at this site.
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relationship between the selection of mutations and median VL
for HLA-A and HLA-C alleles (p=0.2 and p=0.5, respectively,
Figure 2).

Given the relationship between HLA-B selection in Nef and
reduced VL, we further scrutinized the pattern of HLA-B-
associated polymorphisms. The commonest HLA-B alleles
driving selection were HLA-B*44 (n=6; 14% of all associations),
HLA-B*42 (n=5; 11%), HLA-B*57 (n=3; 7%) and HLA-B*35
(n=3; 7%) (Table 1). All of these alleles have been associated
with favourable control of viraemia in previous studies of C-
clade infected cohorts [31,56–58]. This includes HLA-B*35: 01,
which is associated with rapid progression in B-clade infection
but not in C-clade infection [31]. The presence of a strong
CD8+ T cell response directed at Nef by all of these alleles is
again consistent with the hypothesis that specific Nef
responses may be a component of successful disease control.

Definition of novel HLA-B*44:03 restricted Nef epitopes
HLA-B*44 is responsible for the greatest number of HLA-

selected polymorphisms in Nef (Table 1), but there are no
epitopes restricted by HLA-B*44 that have been sufficiently well
defined to appear in the Los Álamos epitope ‘A-list’ (http://
www.hiv.lanl.gov/content/immunology/tables/
optimal_ctl_summary.html). In Southern Africa, the
predominant HLA-B*44 subtype is HLA-B*44: 03. For these
reasons, we focused on further identification of HLA-B*44: 03
epitopes. The approach we used for guidance was, first, to
identify the Nef residues at which HLA-B*44: 03 drives escape,
then to predict the optimal epitope based on the peptide-
binding motif for HLA-B*44: 03, which features glutamate (E) at
position 2, and phenylalanine (F) or tyrosine (Y) at the C-
terminus [59,60]. We thus identified Nef 93-102
(KEKGGLEGLIY; locations of HLA-escape associations

Figure 1.  Variation in C-clade Nef sequences, and relationship between amino acid variability and presence of HLA-class I
selection pressure.  [A] Nef consensus sequence (derived from 739 C-clade sequences from Southern African patients) plotted
against Shannon entropy score. Residues at which there is an association with HLA-Class I expression are shown in grey. As
previously observed, the sequence is most highly conserved in the central portion of the protein (residues 66-148) [8]..
[B] Entropy scores of residues associated with HLA-class I expression vs. those with no HLA association, showing significantly
higher variability at sites at which HLA selection operates, particularly in the central conserved region. P-value by Mann Whitney U
test.
doi: 10.1371/journal.pone.0073117.g001
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underlined) and Nef 107-115 (QEILDLWVY) as putative HLA-
B*44: 03-restricted epitopes. We subsequently confirmed these
epitopes using HLA-B*44: 03 tetramers bound to KY11 or QY9
(Figure 3). In both epitopes, the putative escape mutations are
located exclusively at the anchor residues, consistent with
recent studies indicating a tendency for selection of escape at
anchor residues [61], especially among protective alleles. The

location of these epitopes, which overlap with others presented
by highly protected MHC-I alleles (Figure 4), as well as with
many others within the central highly immunogenic region of
Nef (see epitope map at http://www.hiv.lanl.gov/content/
immunology/maps/ctl/Nef.html) would make precise
identification, quantification and analysis of such responses
highly problematic without access to such tetrameric reagents.

Figure 2.  Relationship between number of HLA associations with Nef sequence polymorphisms and median viral load for
subjects expressing that allele, for HLA-A, -B and -C alleles.  Data from lineage-corrected analysis of 739 C-clade Nef
sequences. P-values by Mann–Whitney U test.
doi: 10.1371/journal.pone.0073117.g002

Figure 3.  Confirmation of Nef-KY11 (KEKGGLEGLIY) and Nef-QY9 (QEILDLWVY) as novel HLA-B*44: 03 restricted.  CD8 T
cell epitopes using HLA-Class I tetramers. HLA-B*44: 03 tetramers were loaded with [A] Nef-KY11 and [B] Nef-QY9 optimal
peptide and stained against donor PBMC’s from a C-clade infected B*44: 03 positive individual, subject R129 HLA-A*23: 01/30:04,
B*08: 01/44:03, C*03:04/04:01. The number shown above each gate is the percentage of total lymphocytes that are tetramer-
specific (tetramer positive cells expressed as a percentage of CD8+ cells were 1.48% for KY11 and 0.65% for QY9).
doi: 10.1371/journal.pone.0073117.g003
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CD8+ T cell responses to certain Nef regions
associated with lower viral load set-point

Our analyses of this extended dataset confirmed previous
findings [51] of a statistically significant relationship between
reduced VL and IFN-gamma ELISpot T cell responses to two
OLPs in Nef, with q<0.2: OLP-79 SFFLKEKGGLEGLIYSKK
(p=0.01, q=0.13), and OLP-85, RYPLTFGWCFKLVPV
(p=0.002, q=0.04).

Examining these regions in more detail, the Nef regions
spanned by OLP-79 and OLP-85 contain epitopes restricted by
HLA-B*27, HLA-B*44 and HLA-B*57 [28] (http://
www.hiv.lanl.gov/content/immunology/ctl_search and [14]) as
well as by the protective macaque MHC-I alleles Mamu-B*08
and Mamu-B*17 and the protective Burmese rhesus monkey
haplotype 90-010-Id (D) (Figure 4). Together, these data
suggest that responses to these regions of Nef may be
especially beneficial and contribute to MHC-I-associated
protection against HIV/SIV disease.

Discussion

We have here shown, using several approaches, that CD8+
T cell responses to HIV Nef can be linked with improved
viraemic suppression. First, HLA-selected escape mutations in
Nef have a high rate of reversion to wild-type following
transmission, suggesting a fitness cost imposed by the
mutation in the presence of the selecting allele. Second,
targeting of two specific OLPs in Nef is associated with
reduction in viraemia in chronic infection, pointing to successful
T cell responses in these regions. Third, there is substantial
overlap between Nef regions targeted by beneficial HLA Class I
epitopes and by simian Mamu-restricted responses that are
associated with disease control.

The finding that HLA alleles predictive of lower viraemia are
statistically associated with selection of one or more HLA-
selected polymorphisms in Nef points to a contribution of CD8+
T cell responses to Nef in mediating disease control. It is

Figure 4.  Map of central region of Nef showing sites of key epitopes and residues at which CD8+ selection pressure
operates.  Central conserved region of HIV-1 Nef is shown previously defined as HXB2 residues 81-160 [8]. Corresponding B-clade
and C-clade consensus sequences are shown along with SIVmac239 consensus. Positions of epitopes restricted by alleles HLA-
B*27 [37], HLA-B*57 [28,64,65] and HLA-B*44 are highlighted in green, orange and blue respectively. Regions homologous to
Mamu-B*08 [36] and Mamu-B*17 epitopes [66] are also marked (yellow and purple respectively). SIV 115-129 also highlighted as a
region recently associated with SIV control in macaques [41]. Responses to overlapping peptides 79 and 85 are associated with
viraemic control, q<0.2 (black boxes). Sites of mutations selected by HLA-B*57, HLA-B*27, HLA-B*44, Mamu-B*08 and Mamu-B*17
are marked with arrows [29,36,67]. This highlights the substantial overlap between HIV and SIV epitopes restricted by alleles that
are associated with favourable immune control.
doi: 10.1371/journal.pone.0073117.g004
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problematic however to infer the impact of individual mutations
by comparison of viral loads in subjects with and without those
mutants. If the mutation is associated with a significantly
increased viral load this may suggest that the CTL response
contributes to immune control and if there is no significant
increase that it does not. However, a lack of significant
increase in viral load associated with selection of the escape
mutant may reflect reduced replicative capacity resulting from
that mutation and a fine balance between selection pressure
driven by the CTL response and opposing purifying selection
pressure exerted by the virus. The fact that 5 out of the 6 B*44:
03-associated Nef mutations were predicted to be revertants,
that is, induced a cost to viral replicative capacity, underlines
the intractability of such analyses. For these reasons, we
cannot draw specific conclusions about the effects of selection
of one or more Nef polymorphisms; however, these results do
suggest that the ability to target Nef epitopes with sufficient
strength that escape associations can be detected population-
wide is a correlate of protection.

HLA-B*44 is most frequently associated with sequence
polymorphism within Nef of any HLA allele and is also
consistently associated with some tendency to protection
against disease progression or control of viraemia, amounting
to approximately a 0.25 log10 reduction in viral set point on
average, compared to a ~0.75 log10 reduction for HLA-B*57:
03, the most protective HLA allele prevalent in sub-Saharan
African populations [31,46,56]. We have here defined two novel
HLA-B*44: 03 restricted epitopes within Nef, KY11
(KEKGGLEGLIY) and QY9 (QEILDLWVY) (Figure 3). KY11 is
entirely contained within OLP-79 which has been associated
with improved disease control overall. Due to the small number
of HLA-B*44: 03 responders to this OLP in our cohort (2
responders of a total 91 subjects with HLA-B*44: 03), we have
been unable to determine whether recognition of the KY11
epitope itself contributes to control of viraemia. These tetramer-
based confirmations of the optimal epitopes in this central
region of Nef highlight the necessity to use these reagents in
order to characterize CTL responses that are potentially
critically important to immune control.

The overall degree of sequence diversity in Nef might
suggest that amino acid substitutions would be well tolerated
without a significant detriment to viral infectivity or replicative
capacity. However, a reversion rate of >50% (Table 1)
suggests that, even in variable regions of the protein, a fitness
cost to the virus is commonly imposed by the selection of HLA

escape mutations. The polymorphisms we identified do not
only occur in the epitope-rich central portion of Nef, but also in
the terminal regions of the protein, particularly at the C-terminal
region (Figure 1). This finding suggests that the C-terminal
region of Nef as well as the central, highly conserved region,
also contains CD8+ T cell epitopes. Potentially these may also
be important, but the more variable regions of the viral
proteome present a considerable challenge to epitope
definition and characterization.

It is striking that SIV epitopes in Nef that are associated with
immune control correspond so specifically to sites of confirmed
or putative HIV HLA-B*57 and B*27 epitopes, and with HIV-
OLPs that are associated with disease control (Figure 4). The
substantial overlap between favourable responses in SIV and
HIV highlights the utility of SIV studies in detecting regions of
the HIV proteome that warrant further attention. However it is
also notable that sequence conservation is not the only factor
contributing to the potential efficacy of Nef-specific responses:
disease protection was only associated with responses to
OLPs-79 and -85, while responses to OLPs 80-84 which span
this region - and are equally conserved and just as
immunogenic as OLP-79 and OLP-85 - are not associated with
lowered VL (Figure 4). This observation is also highlighted by
other recent studies that report substantial variation in fitness
costs associated with HLA-selected mutations irrespective of
the degree of sequence conservation [62,63].

Overall, these results confirm the importance of Nef as a
CD8+ T cell target with a potentially significant impact on HIV
viraemic control, highlight the potential for HLA selection to
drive evolutionary change, and corroborate the predominance
of the HLA-B locus as a selection force. The high rate of
reversion suggests that over half of the HLA selected
polymorphisms are associated with a significant cost to viral
fitness, underlining the usefulness of this protein as a vaccine
target. Further studies to characterize the functional role of
these regions of Nef and to define more CD8+ T cell epitopes
will further inform the use of Nef as a vaccine immunogen.
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