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ZEB2 facilitates peritoneal metastasis by regulating the
invasiveness and tumorigenesis of cancer stem-like cells in
high-grade serous ovarian cancers
Yiying Li1,2,6, He Fei 1,3,6, Qiwang Lin1,6, Fan Liang1, Yanan You1, Ming Li1, Mengyao Wu4, Ying Qu4, Pengfei Li4, Yan Yuan4,
Tong Chen 4✉ and Hua Jiang 1,5✉
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Peritoneal metastasis is a common issue in the progression of high-grade serous ovarian cancers (HGSOCs), yet the underlying
mechanism remains unconfirmed. We demonstrated that ZEB2, the transcription factor of epithelial–mesenchymal transition (EMT),
was upregulated in ascites cells from HGSOC patients and in CD133+ cancer stem-like cells (CSLCs) from epithelial ovarian cancer
(EOC) cell lines. SiRNA-mediated knockdown of ZEB2 in EOC cells decreased the percentage of CSLCs and reduced the colony
forming potential, cell invasion capacity and expression of pluripotent genes Oct4 and Nanog. Inhibition of ZEB2 also induced
cellular apoptosis and impacted the tumorigenicity of ovarian CSLCs. The mesenchymal markers N-cadherin and vimentin were
downregulated, while the epithelial marker E-cadherin was upregulated after ZEB2 knockdown. MiR-200a, a molecule that
downregulates ZEB2, had the opposite effect of ZEB2 expression in EOC-CSLCs. A retrospective study of 98 HGSOC patients on the
relationship of ascites volume, pelvic and abdominal metastasis, International Federation of Gynecology and Obstetrics (FIGO) stage
and the malignant involvement of abdominal organs and lymph nodes was performed. Patients with high expression of ZEB2 in
tumour tissues had a higher metastasis rate and a poorer prognosis than those with low expression. The parameters of ZEB2
expression and ascites volume were strongly linked with the prognostic outcome of HGSOC patients and had higher hazard ratios.
These findings illustrated that ZEB2 facilitates the invasive metastasis of EOC-CSLCs and can predict peritoneal metastasis and a
poor prognosis in HGSOC patients.

Oncogene (2021) 40:5131–5141; https://doi.org/10.1038/s41388-021-01913-3

INTRODUCTION
Epithelial ovarian cancer (EOC) is the most lethal gynaecological
malignancy [1]; high-grade serous tumours are a common subtype
with aggressive characteristics [2]. Up to 70% of high-grade serous
ovarian cancer (HGSOC) patients are in advanced stages with
abdominal metastasis at diagnosis [3], and the 5-year survival rate
is less than 30% [4]. Ascites is a clinical symptom highly related to
the peritoneal spread of EOC cells [5]; the local microenvironment
supports the engraftment and proliferation of these cells in distant
regions [6]. Previous studies have focused on the composition of
cellular and acellular factors in ascites, including immune evasion-
related factors [7] and pro-inflammatory cytokines [8, 9] and
chemokines [10], to reveal the mechanisms of abdominal
metastasis in EOCs. However, as the underlying mechanism is
highly complex and diverse, further exploration relating to the
prognostic molecular biomarkers of HGSOC metastasis is of great
interest.
Epithelial–mesenchymal (E–M) transition (EMT), a cellular

remodelling programme in embryogenesis and tumorigenesis,
contributes to tumour metastasis [11, 12], therapy resistance and

disease recurrence [13, 14], during which cells lose epithelial
apical–basal polarity and establish mesenchymal front–back
polarity, decrease cell–cell adhesion and remodel cell–matrix
adhesions as well as the cytoskeleton to acquire cell motility and
invade the basement membrane [15, 16]. When tumour cells are
shed from the primary lesion into the peritoneal cavity, EMT, as an
essential process orchestrated by a series of transcripts, induces
cellular anoikis resistance and leads to the survival of malignant
cells in ascites [17].
The assessment of EMT should rely on the combination of the

cell surface and multiple molecular markers, including Snai (Snail
and Snai2), Zeb (Zeb1 and Zeb2) and Twist1 [16]. A shift from
epithelial markers to mesenchymal features or hybrid E–M status
represents E–M plasticity and helps to distinguish the transform-
ing process. Among these markers, ZEB2, the Zn-finger EMT
transcription factor, is highly expressed in metastatic ovarian
cancer cells compared to in situ lesion cells, indicating that ZEB2
plays an important role in ovarian cancer peritoneal metastasis
[18–20]. Furthermore, a class of small non-coding RNAs, the
microRNA (miR)-200 family, has been identified as a family of post-
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transcriptional inhibitors of ZEB2. The reciprocal feedback loop
between ZEB2 and miR-200s is tightly implicated in the EMT and
invasive potential of malignancies [21]. However, the mechanism
by which miR-200/ZEB2 affects HGSOC progression remains
largely unknown.
In this study, we investigated the effects of miR-200a/ZEB2 on the

invasion of ovarian cancer stem-like cells (CSLCs) by regulating the
expression of ZEB2 in ovarian cancer cell lines. The prognostic value of
ZEB2 expression in 98 HGSOC patients was estimated by a
retrospective study. Our results suggested that ZEB2 participates in
peritoneal metastasis by regulating the invasive capacity of CSLCs and
serves as an effective biomarker for HGSOC prognosis prediction.

RESULTS
ZEB2 and CSLCs played a facilitative role in the peritoneal
metastasis of HGSOC
We first collected HGSOC cells from ascitic fluid and primary
tumours. Expression of the ovarian cancer markers carbohydrate
antigen 125 (CA125) and human epididymis protein 4 (HE4) was
determined by reverse transcription-polymerase chain reaction
(RT-PCR) and western blot analyses. Similar to a previous study
[22, 23], cells from ascites expressed either CA125 or HE4, while
human skin fibroblasts (HSFs) did not express these markers (Fig.
S1A, B), indicating that the cells collected following our protocol
were indeed ovarian cancer cells. To analyse the EMT status
between the primary and peritoneal metastatic lesions, the
expression of the epithelial marker E-cadherin (E-cad) and the
mesenchymal markers N-cadherin (N-cad), vimentin (VIM) and
fibronectin (FN) was investigated in tumour cells derived from
ascitic fluid and primary tumours. Ascitic cells displayed a more
elongated and polygonal shape than primary HGSOC tumour cells,
showing lower expression of E-cad (green) and higher expression
of VIM (red) (Fig. 1A). According to analyses of fluorescence-
activated cell sorter (FACS) and RT-PCR, ascitic cells expressed
higher levels of mesenchymal markers including N-cad, VIM and
FN (p < 0.01, <0.001, <0.01, respectively), while cells from the
primary tumour expressed higher levels of epithelial marker E-cad

(p < 0.05) (Figs. 1B, S1C). EMT-related transcription factors were
additionally compared between ascitic cells and cells from primary
tumours. ZEB2 was elevated in ascitic cells, while the changes in
ZEB1, Snail and Twist1 in ascites and primary tumours were mild
(Fig. 1C, S1D). In addition, the expression of invasive factors matrix
metalloproteinase-2 and 9 (MMP2, MMP9) was increased in ascitic
cells compared to cells from primary tumours (Fig. S1E, F).
Several markers and assays are being applied to assess tissue

stem cells. Among them, a functional Hoechst 33342 dye-effluxing
assay [24] and the cell surface marker CD133 [25] have been well
established for purifying EOC-CSLCs. In our previous study, ZEB2 was
significantly increased in Hoechst 33342-effluxing side population
(SP) cells compared to non-SP cells, and the percentage of SP cells
was higher in ascites than that in primary tumours [26]. In this study,
either CD133+ cells or SP cells were designated CSLCs. Both SP cells
and CD133+ cells were present in higher proportions in the ascites
than in their paired primary tumours from HGSOC patients (p < 0.05,
Fig. 1D). These findings indicated that ZEB2 and CSLCs are elemental
factors in HGSOC peritoneal metastasis.

ZEB2 was upregulated in EOC-CSLCs and correlated with their
abundance, mesenchymal features and invasive potential
To explore the potential mechanisms of ZEB2 in EOC-CSLC-
initiated peritoneal metastasis, we analysed ZEB2 expression in
human ovarian cancer cell lines and their metastatic daughter
lines (SKOV3/SKOV3-IP and HEY/HEY-A8). We found that all
metastatic daughter cells, SKOV3-IP and HEY-A8, had higher
ZEB2 expression (Fig. 2A, B) and an increased percentage of
CD133+ cells (HEY vs HEY-A8: 0.9 ± 0.03 vs 1.73 ± 0.03, p < 0.05,
Fig. 2C), whereas the mother lines exhibited a more epithelial
phenotype showing higher E-cad expression and lower N-cad,
VIM, MMP2 and MMP9 expression (Fig. 2D, S2A–E). CD133+

CSLCs had higher ZEB2 levels than CD133− non-CSLCs (NCSLCs)
(Fig. 2E, F). HEY-CD133+ and HEY-A8-CD133+ cells exhibited
more mesenchymal features with N-cad and VIM expression
(Fig. 2G, H). However, the elevated expression of ZEB2 in CD133+

cells indicated that ZEB2 may play an important role in
regulating ovarian CSLC-driven pathogenesis.
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Fig. 1 ZEB2 and CSLCs played a facilitative role in the peritoneal metastasis of HGSOC. A Immunofluorescence staining of E-cad (green)
and VIM (red) in HGSOC primary tumour cells and ascitic cells (left panel). The median fluorescence intensity was analysed by ImageJ (N= 6 in
each group) (right panel). B FACS analysis of E-cad, N-cad, VIM and FN in paired ascites and primary tumour cell samples from six HGSOC
patients. Representative FACS figures are shown (left panel), and the grouped relative percentages of markers were analysed (right panel). C
Expression of ZEB2 and Snail in paired ascites and primary tumour cell samples from three HGSOC patients was analysed by western blotting.
D FACS analysis of SP and CD133+ subpopulations in paired ascites and primary tumour cell samples from six HGSOC patients. Representative
images are shown (left panel), and the grouped relative percentages of markers were analysed (right panel). The data represented the mean ±
SD. The experiments were repeated independently at least three times. *p < 0.05, **p < 0.01, ***p < 0.001.
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ZEB2 enhanced the tumorigenesis and metastatic potential of
EOC-CSLCs
We then efficiently knocked down ZEB2 by transfecting siRNA-
ZEB2 (shZEB2) lentiviral vectors in the SKOV3-IP and HEY-A8 lines
to explore the impact of ZEB2 on ovarian CSLC function (Fig. S3A,
B). The E–M markers and pluripotency of CSLCs were determined
after ZEB2 inhibition.
In shZEB2-transfected sublines, the percentages of CD133+ cells

were significantly decreased compared with the non-specific control
(NC-HEY-A8 vs shZEB2-HEY-A8: 1.5 ± 0.21 vs 0.45 ± 0.09, p < 0.01, Fig.
3A). The colony forming capacity and expression of the pluripotent
genes Nanog and Oct4 were significantly reduced in CSLCs but not
in NCSLCs (Fig. 3B, C, S3C). N-cad and VIM were consequently
downregulated (Fig. S3D). Specifically, the trend of increasing E-cad
and decreasing N-cad and VIM was much more prominent in CSLCs
than in NCLSCs after ZEB2 was inhibited (Fig. 3D, E). These findings
demonstrated that ZEB2 exerts important functions to help ovarian
CSLCs sustain their pluripotency and E–M properties.
It has been indicated that peritoneal metastatic potential is

related not only to the pluripotency but also to the mobility and
anti-apoptotic capacity of CSLCs. We found that in shZEB2-
transfected cell lines, the invasive capacity of CSLCs dramatically
decreased compared to that of NCSLCs, in accordance with the

downregulated expression of MMP9 and MMP2 in shZEB2-
transfected CD133+ cells (Fig. 3F–H). To determine the cellular
anti-apoptotic capability, serum-free media were applied to the
culture system at 4 °C for 24 h. Analyses of Bcl2, Bax and annexin
V/7-AAD apoptosis assays were performed. Bcl2 was decreased,
while active caspase-3 was elevated in shZEB2-transfected CSLCs
(Fig. 3I, J). Likewise, the changes in annexin V+ cells among
shZEB2-transfected CD133+ cells were more conspicuous than
those among shZEB2-transfected CD133− cells (Fig. S3E).
To further investigate the function of ZEB2 in peritoneal

metastasis, ovarian CD133+ cells derived from luciferase-labelled
shZEB2- and negative control (NC)-transfected HEY-A8 cells were
intraperitoneally injected into NOD/SCID mice. Overall, 4 of 6 mice
injected with shZEB2-transfected CD133+ cells had fewer
luciferase-labelled tumours and weaker signals, while 6/6 mice
injected with the same numbers of NC-CD133+ cells showed
massive clusters of luciferase signals (Fig. 3K). These mice were
monitored for 6 weeks. The mean fluorescence intensity of the
mice injected with NC-CD133+ cells was four times that of shZEB2-
transfected CD133+ mice at week 3 and increased to 13.7-fold at
week 6, while it was only 1.7- and 4.9-fold in the NC-CD133− and
shZEB2-transfected CD133− groups, respectively (Fig. 3L), indicat-
ing that inhibition of ZEB2 represses EOC metastatic capacity.
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shZEB2/NC-transfected HEY-A8 cells. Scale bar= 100 μm. I FACS analysis of Bcl2 and active caspase-3 in CD133+ or CD133− cells from the
shZEB2-HEY-A8 line. J The relative mRNA of Bcl2 and Bax in CD133+/CD133− cells from shZEB2-transfected HEY-A8 cells was compared to
their NC counterparts. K Bioluminescence image of xenografted mice 6 weeks after coeliac injection with CD133+ cells from the shZEB2/NC-
transfected HEY-A8 line. The bar with the colour gradient indicates the fluorescence intensity. L The fluorescent intensity of engrafted tumours
was calculated weekly by the luciferase in vivo imaging technique and is shown in the growth curve (n= 6 for each group). The data represent
the mean ± SD. Each experiment was independently repeated at least three times. *p < 0.05, **p < 0.01, ***p < 0.001.
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MiR-200a impacted the pluripotency and invasiveness of EOC-
CSLCs
MiR-200s are inhibitory miRNAs targeting ZEB2. There are five
members of the miR-200 family, including miR-200a, miR-200b,
miR-200c, miR-429 and miR-141, that compose a feedback loop

and maintain the epithelial cell state [27]. We further investigated
whether miR-200s exert suppressive functions on the tumorigen-
esis and metastasis of EOCs. Interestingly, compared to other miR-
200 family members, miR-200a was expressed at lower levels in
ascitic cells and highly metastatic daughter cells (Fig. 4A, B), and
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Fig. 4 MiR-200a impacted the pluripotency and invasiveness of EOC-CSLCs. A The relative mRNA levels of miR-200 family members in
ascites cells relative to paired primary tumour cells derived from HGSOC patients were analysed by RT-PCR. B Expression of miR-200a in
SKOV3, HEY and their daughter lines SKOV3-IP, HEY-A8 was analysed by RT-PCR. C The relative mRNA levels of miR-200 family members in
CSLCs relative to paired NCSLCs in HEY and HEY-A8 cell lines were analysed by RT-PCR. D The expression of ZEB2 in miR-200a-mimic/inhibitor-
transfected SKOV3-IP and HEY-A8 cells was analysed by western blotting. E The relative mRNA of miR-200a in CD133+/CD133− cells purified
from shZEB2-transfected HEY-A8 cells was analysed by RT-PCR and normalised to their NC-transfected counterparts (=1). F FACS analysis of
CD133+ subpopulations in miR-200a-mimic/inhibitor-transfected HEY-A8 cells. Representative FACS figures are shown (left panel), and the
grouped percentages of CD133+ cells were analysed (right panel). G Expression of Nanog and Oct4 in miR-200a-mimic/inhibitor-transfected
CD133+/CD133− cells from HEY-A8 cells. H Transwell assay of CD133+ or CD133− cells derived from the miR-200a-mimic/inhibitor-transfected
HEY-A8 line. Scale bar= 100 μm. I FACS analysis of E-cad, N-cad and VIM in CD133+ or CD133− cells derived from the miR-200a-mimic/
inhibitor-transfected HEY-A8 line. J Western blot analysis of Bcl2 in CD133+/CD133− cells derived from miR-200a-mimic/inhibitor-transfected
HEY-A8 lines. K Schematic diagram of the regulatory activity of miR-200a/ZEB2 in CSLC-initiated peritoneal metastasis. The data represented
the mean ± SD. Each experiment was repeated independently at least three times. *p < 0.05, **p < 0.01, ***p < 0.001.
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was significantly reduced in CD133+ cells (Fig. 4C). We thus
focused on miR-200a and dissected the interaction between miR-
200a and ZEB2.
First, mimics (10 nM, Qiagen, Germany) and inhibitors (50 nM,

Qiagen, Germany) of miR-200a were transfected into HEY-A8 cells
(Fig. S4A). MiR-200a mimics downregulated ZEB2, while miR-200a
inhibitors upregulated ZEB2 expression (Fig. 4D), and both of the
changes were more significant in CD133+ cells than in CD133−

cells (Fig. S4B). In addition, in shZEB2-transfected CD133+ cells,

miR-200a was higher than that in CD133− NCSLCs (Fig. 4E),
indicating that the inverse coupling relationship between miR-
200a and ZEB2 is more linked in CSLCs.
Second, the pluripotency of CSLCs was assessed after they were

transfected with miR-200a mimics and inhibitors. The percentages
of CD133+ cells were decreased by miR-200a (Fig. 4F). The
inhibitory effect with respect to pluripotent gene expression was
more significant in CD133+ CSLCs than in CD133− NCSLCs
(Fig. 4G). We further investigated the impact of miR-200a on the
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invasiveness of CD133+ cells, another factor regulating malignant
cell tumorigenic and metastatic ability. The miR-200a mimics
decreased the invasive capacity of CD133+ cells (Fig. 4H) and
enhanced epithelial E-cad expression but not N-cad and Vim
expression, and these results were the opposite of those under
conditions with miR-200a inhibitors (Fig. 4I).
Third, Bcl2-related cellular apoptosis was analysed after mimic/

inhibitor transfection. In the cells transfected with miR-200a-mimic
or inhibitor, Bcl2 was reduced or elevated, respectively (Figs. 4J,
S4C, D). All these data provide evidence that miR-200a exerts an
impeditive effect on EOC-CSLC-originated tumorigenesis by
inhibiting ZEB2-related cellular pluripotency and invasiveness
(Fig. 4K).

Higher expression of ZEB2 was related to a poorer prognosis
in HGSOC patients
To verify the prognostic potential of ZEB2 in HGSOC patients, the
expression profiles of ZEB2, E-cad, N-cad, Bcl2 and Bax and the
survival information of 98 HGSOC patients were analysed. Among
them, 7 patients were in stage I/II, and 91 patients were in stage
III/IV (Table S1). Normal ovary surface epithelium (OSE) obtained
from the patients diagnosed with hysteromyoma was used as a
control. Compared to those in OSE controls, ZEB2, N-cad and Bax
were higher in HGSOC tumour tissues, while E-cad and Bcl2 were
lower, and these changes were amplified with progressing stage
(Fig. 5A, Tables S2 and S3).
Because intraperitoneal metastasis is a major unfavourable

prognostic factor in HGSOC patients, we assessed the value of
ZEB2 in predicting intraperitoneal metastasis using correlation
analysis and receiver operating characteristic (ROC) curves. The
expression of ZEB2 was consistent with the ascites volume at the
cut-off of 75 ml (Fig. 5B). In addition, ZEB2 expression was
significantly related to the extent of intraperitoneal metastasis
(present beyond the pelvis vs absent), the infiltration of lymph
nodes, and the CA125 index at the pre-treatment stage (Table S1),
which were also statistically significant related to the status of
recurrence and survival according to the area under the ROC curve
(Fig. 5C).
We thus sought to investigate the prognostic value of ZEB2 by

univariate Cox’s proportional hazard model. Higher expression of
ZEB2 was evidently correlated with worse progression-free

survival (PFS) (hazard ratio (HR)= 3.504, p < 0.001) and overall
survival (OS) (HR= 3.029, p < 0.001) and with clinical variables
associated with aggressive disease behaviour (Fig. 5D, Tables 1
and 2). The multivariate Cox proportional hazard model revealed
that ZEB2 expression and beyond-the-pelvis metastasis were
significantly associated with PFS and OS (Tables 1 and 2). In
addition, compared to those in the ZEB2high, asciteshigh (≥75ml) or
ZEB2low/asciteslow groups (<75ml), the PFS and OS rates in the
ZEB2high/asciteshigh group were significantly worse, which was
noteworthy and adequate to prove that integrating ZEB2 with
ascites status improves the predictive ability of the markers (Fig.
5E, Tables 1 and 2).

DISCUSSION
Malignant ascites is an important clinical outcome of HGSOC
invasion [28–30] and promotes the dissemination of cancer cells
from the primary tumour mass to the peritoneal cavity. However,
intraperitoneal metastasis is not a simple tumour cell shedding
and dissemination. Heterogeneity was observed intratumourally
and between the primary tumour and ascitic spheroids, suggest-
ing monophyletic spread in malignant ascites [31]. It has been
indicated that CSLCs, with high differentiation and proliferation
capacity [32], may play an important role in peritoneal metastasis.
However, the underlying mechanism remains largely unknown.
Consistent with a previous study [33], we found that the

percentage of ovarian CSLCs (not only SP cells but also CD133+

cells) was higher in ascitic fluid than in primary tumours. Since
CSLCs are more able to resist anoikis after detaching from primary
tumours [34], our results provide evidence of the contribution of
CSLCs to the abdominal metastasis of HGSOC.
The process by which EOC-CSLCs detach from the primary

tumour mass triggers dynamic EMT changes in cellular re-
organisation from an epithelial-to-mesenchymal phenotype [17].
Malignant ascites-related pathogenesis is associated with upregu-
lation of EMT signalling to promote tumour cell invasion in both
EOCs and gastric cancers [35, 36]. Six steps constitute the
metastasis cascade, namely, dissociation, migration, intravasation,
extravasation, reestablishment and eventual formation of second-
ary tumours in distant organs, during which EMT and
mesenchymal–epithelial transition occur [16]. In searching for

Table 1. Univariate and multivariate Cox analysis of PFS in HGSOC patients.
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the key transcript regulating EOC-CSLC-initiated peritoneal
metastasis, we found that the difference in ZEB2 between ascites
and primary tumours was more distinguishing than that of other
transcripts. We additionally screened the expression of inhibitory
miR-200 family members and discovered that miR-200a is the key
interrupter that post-transcriptionally counters ZEB function. Thus,
the role of the reciprocal miR-200a/ZEB2 loop in EMT-related
tumorigenesis and EOC-CSLC-initiated metastasis was dissected in
this study.
In addition to finding that the cells in ascites both harboured

more CSLCs and expressed higher ZEB2, we found that ZEB2 was
increased in CD133+ cells. Silencing ZEB2 not only reduced the CSLC
percentages but also impacted the self-renewal and multipotency of
EOC-CSLCs. The EMT-enhanced pathologic process of EOCs, which
mediates invasive capacity, cellular apoptosis resistance and in vivo
tumorigenicity, was impaired in ZEB2-/- cells compared with wild-
type ZEB2 cells. The introduction of miR-200a-mimic/inhibitor into
malignant cells provided concordant information on the miR-200a/
ZEB2 loop [37]. Our results further indicated that miR-200a/ZEB2 are
more linked with CSLCs than with NCSLCs and play an important
role in inducing the abdominal metastasis of EOCs.
From the perspective of translational application, ZEB2 has

been reported as an adverse prognostic marker in some tumours,
such as breast cancer [38], bladder carcinoma [39] and glioma [40].
We thus retrospectively analysed 98 HGSOC patients to clarify the
relationship between ZEB expression and clinical outcome. We
found that the expression of ZEB2 was associated with the OS of
HGSOC patients, which is consistent with a previous study [41]. In
addition, the integrity analysis of ZEB2 and ascites volume
brought in apparent higher HRs for PFS and OS in the univariate
Cox analysis. Higher ZEB2 expression or ZEB2high/asciteshigh status
was indicated as a risk indicator for recurrence according to their
higher HRs for PFS.
Collectively, the relationship between ZEB2 expression and

ovarian CSLC-initiated metastasis is shown in Fig. 4K. Depending
on the activation of ZEB2 or the suppression of miR-200a, EMT
occurs in the CSLC subpopulation and leads to the repression of
epithelial characteristics and acquisition of mesenchymal features.
EOC metastasis encompasses a series of pathologic process,
including self-renewal, invasiveness, anti-anoikis and tumorigen-
esis, in which EOCs detach from the primary loci via the EMT

programme and proliferate in distant organs to ultimately form
intraperitoneal metastases. Our study improves the understanding
of the regulatory mechanisms related to the miR-200a/ZEB2 loop
in ovarian CSLC-initiated peritoneal metastasis, which may be a
potential marker for prognostic evaluation and therapeutic
intervention.

MATERIALS AND METHODS
Patient samples
Ascites and primary tumours were obtained from 23 HGSOC patients at the
time of debulking surgery at Shanghai Cancer Center, Fudan University,
from 2013 to 2014 (Table S4); the patients had a median age of 67 (54–78)
years old. All patients were in stage III/IV. In addition, 98 HGSOC patients (7
patients in stage I/II; 91 patients in stage III/IV) who received surgery at
Obstetrics & Gynecology Hospital, Fudan University, from 2009 to 2012
were included in our retrospect cohort with a median follow-up of 60
(26–77) months. The pathological characteristics of these patients are
listed in Table S5. Control OSE tissues were obtained from 82 patients who
were diagnosed with hysteromyoma undergoing post-unilateral uterine
adnexectomy, who had a median age of 51 (45–55) years old.
All the patients’ diagnoses in this study were pathologically confirmed,

and no patients received pre-operative chemotherapy or had a family
history of breast or ovarian cancer. The proposal for this study was
approved by the Institutional Review Board of Obstetrics & Gynecology
Hospital, Fudan University, (2016-29), and informed consent was obtained
from all subjects.

Cell lines and cell cultivation
Human EOC cell line SKOV3 cells were obtained from American Type
Culture Collection. SKOV3-IP and HEY cells were provided by Dr. Yinhua Yu,
Obstetrics & Gynecology Hospital, Fudan University. HEY-A8 cells were
provided by Professor Gong Yang, Shanghai Cancer Center, Fudan
University. HSFs were purchased from Shanghai Fuheng Biological
Technology Co. The lines HEY-A8 and SKOV3-IP were the highly metastatic
daughter lines of HEY and SKOV3, respectively [42, 43]. HSF cells were
maintained in Dulbecco’s modified Eagle’s medium (HyClone) with 10%
FBS, while the remaining lines were cultivated in Roswell Park Memorial
Institute 1640 (RPMI 1640, HyClone) containing 10% FBS. All the cell lines
were tested free of mycoplasma contamination.

Cell collection from ascites and primary tumours
The cells were isolated from ascitic fluid by 50% v/v Percoll density
gradient centrifugation. The tumour specimens, especially the cauliflower-

Table 2. Univariate and multivariate Cox analysis of OS in HGSOC patients.
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like cancer tissue, were washed with sterile PBS to remove blood clots,
necrotic and fatty tissue and digested with 0.2 mg/ml collagenase type I
(Sigma, USA) in MCDB/M199 at 37 °C for 4 h, and single cells were obtained
by passing the samples through 70-μm and 40-μm cell strainers.
A time-dependent method was used to discard tumour stromal cells

[44]. Cultivated tumour cells reaching 80–90% confluence were trypsinised.
When the surrounding fibroblasts disaggregated entirely, the supernatant
was discarded, and the remaining ascites- or primary tumour-derived
colonies were continuously cultured. The tumour characteristics were
assessed by staining with CA125 and HE4. All the cells applied in
subsequent experiments were cultured for 2–3 weeks; the cells were
purified each time when they were passaged during this time period.

Flow cytometry analysis and cell sorting
For the analysis of cell surface markers, cells were trypsinised and
incubated for 20min with murine anti-human antibodies, the information
of antibodies was listed in Table S5. The expression of intracellular markers
(Bcl2 and active caspase-3) was detected by incubating the permeabilised
cells with Alexa Fluor 647-conjugated murine anti-human Bcl2 or active
caspase-3 (Table S5).
For apoptosis analysis, an annexin V-APC/7-AAD apoptosis detection kit

(BD Pharmingen, USA) was used following the manufacturer’s instructions.
We took the total proportion of annexin V-positive cells (quadrants II and
III) as the apoptotic rate, regardless of the 7-AAD status. FACS analysis was
performed on a FACS Calibur (BD Biosciences, USA), and data analysis was
performed using FlowJo Software (TreeStar, USA).
CD133+ and SP cells were sorted for the analysis of CSLC. The staining

procedure of SP cells was described previously [26]. Hoechst 33342-
effluxing cells were analysed and sorted by ultraviolet laser cytometry
(FACS MoFlo, Beckman Coulter, USA), while CD133+ cells were sorted on a
FACS Aria III (BD Biosciences, USA). Data analysis was performed using
Summit Software (Beckman Coulter, USA).

Lentiviral transduction
The oligo sequences of the ZEB2-specific shRNA (shZEB2) duplex and NC
duplex were 5′-ACCAUGAAUAGUAAUUUAATT-3′ and 5′-GGCTACGTCCAG-
GAGCGCA-3′, respectively. Lentiviral vectors encoding short hairpin RNAs
were generated by inserting shZEB2 or NC into the U6-MCS-Ubi-EGFP-
vector and hU6-MCS-Ubiquitin-Luc-firefly IRES-puromycin-vector (both
from GeneChem lnc, Shanghai, China), respectively. The transfected
GFP+ cells were selected by fluorescence-activated cell sorting or purified
by the addition of 2 μg/ml puromycin to the culture media.

Transfection of miR mimics and inhibitors
Cells (3 × 105 per well in a six-well plate) were cultured to reach a
confluency of 60–80%. A mixture of miR-200a-mimic (10 nM, Qiagen,
Germany, 5′-UAACACUGUCUGGUAACGAUGU-3′) or inhibitor (50 nM, Qia-
gen, Germany, 5′-UAACACUGUCUGGUAACGAUGU-3′) with HiPerFect
Transfection Reagent (Qiagen, Germany) was applied to transfect primary
tumour cells and freshly sorted CSLCs and non-CSCLs according to the
manufacturer’s instructions. After culturing for 24 or 48 h, the transfected
tumour cells were harvested for the collection of RNAs or proteins. Serial
transfection (every 3 days) was performed for the analysis of cell
morphology and colony forming ability.

RT-PCR analysis
Total RNA was extracted using TRIzol reagent (Invitrogen, USA) and reverse
transcribed into cDNA using the PrimeScript reverse transcription kit
(Takara, Japan). RT-PCR was subsequently performed in triplicate using the
Premix SYBR green PCR system (Takara, Japan) on an ABI Step One Plus RT-
PCR machine (Applied Biosystems, USA). The oligonucleotide primers are
listed in Table S6. The expression of miR-200s (miR-200a, miR-200b, miR-
200c, miR-141 and miR-429) relative to that of small nucleolar RNA U6 was
determined by using the miScript PCR System (Qiagen, Germany)
according to the manufacturer’s instructions.

Western blotting analysis
The protein was resolved by 10% SDS-PAGE and then transferred onto
PVDF membranes, which were treated sequentially in blocking solution
and then incubated with primary antibodies overnight at 4 °C and
secondary antibodies for 1 h at room temperature. The information of
antibodies was listed in Table S5. After incubation with enhanced

chemiluminescence reagents, the membranes were visualised under an
Image Quant LAS 4000 (GE Healthcare, USA).

Colony formation assay
Two hundred cells/well were seeded in a six-well plate at 37 °C for 12 days,
and the medium was replaced with fresh complete medium every 4 days.
The attached cells were fixed and subjected to 1% crystal violet staining to
detect colonies consisting of at least 50 cells using ImageJ Software (Rawak
Software, Germany).

Transwell invasion assay
Sixty microlitres of cold-melted Matrigel (BD, USA) at a 1:5 dilution was
coated and solidified on a Transwell membrane with 8-µm pores (Corning
Costar, USA) at 37 °C for 5 h. The cells were resuspended in serum-free
RPMI 1640 at a concentration of 1–6 × 106 cells/ml. One hundred
microlitres of the cell suspension was plated on the Matrigel-covered
upper chamber, while 600 μl RPMI 1640 medium containing 30% FBS was
added to the lower chamber. After culturing at 37 °C for 24–36 h, the
membranes were stained with 0.1% crystal violet and visualised under a
Nikon upright microscope.

In vivo xenograft transplantation
Female NOD/SCID mice (5 weeks old) were purchased from Shanghai SLAC
Laboratory Animal Co. Ltd, and were randomised into four groups. Each
group included six mice without blinding controls. Luciferase-expressing
CD133+ or CD133− cells derived from the shZEB2- or NC-transfected HEY-
A8 cells (5 × 105) were injected into the mice intraperitoneally. Luciferin
(Promega, USA) was used to ensure the detection of the emitted light in an
In-Vivo Xtreme II Imaging System (Bruker, Germany). In addition, the
metastatic tumours in the abdominal cavity were surgically removed and
formalin-fixed for immunohistochemistry (IHC) staining. The animal
experiment procedure was reviewed and approved by the Ethical
Committee of Animal Experiments of the School of Pharmacy, Fudan
University (2015-05-FCKYY-JH-01).

In situ immunofluorescence and IHC
Cells cultured on chamber slides were fixed and permeabilised in PBS
containing 0.2% Triton X-100 for 10min. Murine anti-human antibodies,
including Alexa Fluor 488-conjugated anti-E-cad (1:40, #560061, BD
Pharmingen, USA) and Alexa Fluor 647-conjugated anti-VIM (1:100,
#MA5-11883-A647, Thermo Fisher Scientific, USA), were added to the
slides and incubated overnight at 4 °C, while a goat anti-mouse IgG1
conjugated with Alexa Fluor 488 (1:200, # A-21121, Invitrogen, USA) was
used as the secondary antibody. The fluorescence images were
investigated under a Leica TCS SP5 confocal microscope (Leica Micro-
systems, Germany) with DAPI co-staining.
Paraffin-embedded tissues were obtained from the primary tumours

or normal ovaries at initial surgery. Ten millimolar preheated citrate
buffer (pH 6) and 3% H2O2 were used to retrieve antigens and block
non-specific peroxidase activity. The slides were incubated with
antibodies at 4 °C overnight. The information of antibodies was listed
in Table S5. Secondary antibody was subsequently incubated for
30 min, and 3,3′-diaminobenzidine was used for detection using the
GTVisionTM II Detection System (Gene Tech, USA). All the 98 HGSOC
patients were detected ZEB2 expression in tumour tissues by IHC, and
expression of N-cad, E-cad, Bax and Bcl2 was determined in 64 cases
from 2010 to 2012.
Protein expression was scored by two independent observers according

to previously published methodology [45]. Briefly, protein expression was
quantified using a scoring system defined as signalling intensity (A) × the
percentage of positive cells (B), in which 0, 1, 2, 3 in (A) represent no
staining, weak staining and strong staining, and 0–3 in (B) represent 0%,
1–25%, 25–50% and >50% positively stained cells, respectively. Final scores
of 1–3 indicated proteins with low (negative) expression, and final scores
of 4–9 indicated proteins with high (positive) expression.

Statistical analysis
Statistical analysis was performed with SPSS 22.0 (IBM, USA) and GraphPad
Prism 4.0 (GraphPad Software, USA). For the cellular data, the significance of
the difference in the mean value was determined using a two-tailed Student’s t
test. Chi-square and Spearman rank correlation tests were conducted to assess
the association between ZEB2 and pathological parameters. ROC curves were
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applied to evaluate the predictive value of ZEB2 in terms of clinical features.
Survival curves were drawn using the Kaplan–Meier method. OS and PFS were
determined from the date of diagnosis to the date of progression/death or
date last seen. Univariate and multivariate Cox proportional hazards regression
analyses were employed to investigate the prognostic value and HRs of ZEB2
and a series of variables. The results are presented as the mean ± SD of at least
three independent experiments. Differences with a p value of < 0.05 were
considered significant.
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