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ABSTRACT: Currently, geopolymer is being considered as a future oil-
well cement. For wellbore applications, geopolymers are initially tested at
specific temperature conditions. However, an oil-wellbore may experience a
sudden increase in temperature which may adversely affect geopolymer
systems designed for low to moderate temperature conditions. In this work,
the effect of elevated temperatures on the microstructure of the geopolymer
was simulated. Metakaolin-based geopolymer systems cured at 163 °F for
48 h were subjected to a temperature ramp of 194 °F and 248 °F for 24 h.
X-ray diffraction, Fourier transform infrared spectroscopy, and thermog-
ravimetry analysis techniques were used to study the microstructural
changes. The analytical techniques show the formation of new crystalline
phases when the geopolymer cured at 163 °F was suddenly exposed to
higher temperatures. These crystalline phases, for instance, gobbinsite and
anorthite, observed in the microstructure have the potential to cause
thermal stress, weaken the system, and ultimately affect the geopolymer’s ability to effectively isolate the formation and support the
casing.

1. INTRODUCTION

The production of ordinary Portland cement (OPC) is one of
the main sources of anthropogenic carbon dioxide (CO2)
output, contributing around 5−7%.1,2 This necessitates the
investigation of alternative cement systems with low CO2
emissions.3 Geopolymer is one of the most used alternative
cementitious systems.4,5 The geopolymer is a type of
cementitious material (inorganic polymeric binder) formed
when aluminosilicate-rich precursors are dissolved in alkaline
solutions and undergo a polycondensation reaction.5

The application of geopolymer systems in oil-well cementing
is still in the research stage. A review study by Adjei et al.6

discussed the investigations that have been performed to date.
These studies can be classified under four main categories: (1)
geopolymer application in acidic and high saline environ-
ments,7−13 (2) geopolymer application in well plug and
abandonment,14−17 (3) compatibility of geopolymer with
drilling mud,18−22 and (4) effect of temperature on geopolymer
systems.23−26 These studies indicated that in comparison to
OPC systems, a geopolymer is more durable in aggressive
environments, could be an excellent plug material, and is highly
compatible with drilling fluid.
In the fourth category (effect of temperature), researchers

developed geopolymer systems simulating fixed temperature
conditions. It has been reported that the optimum performance
of geopolymer systems can be achieved when they are generally
cured at 122−176 °F.27,28 Nasvi et al.23 observed the optimum

temperature within 122 °F to 140 °F. Nasvi et al.24 explored the
feasibility of geopolymer as a binder in oil and gas wells
designated for carbon dioxide storage. The study indicated
higher strength for a geopolymer system cured at 144 °F,
however the authors reported that a slight increase in strength
has been observed up to 185 °F. Nasvi et al.25 also noticed that
the carbon dioxide permeability increased with increasing curing
temperature. Even though the increase was lower compared to
the OPC-based system, such a scenario would decrease the
sealing ability of the geopolymer.
The above findings have shown that geopolymer systems

would be idle for low to moderate temperature conditions.
However, cementitious systems placed in shallow intervals may
be subjected to elevated temperatures during the hardening
period. For instance, drilling, completions, and workover
operations and production techniques such as cyclic steam
injection may cause elevation of downhole temperature that
would adversely impact the cement sheath.29−31 In the case of
conventional Portland cement systems, studies have shown that
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above 230 °F, the calcium silicate hydrate gel produced through

cement hydration is converted into a more dense phase known

as alpha dicalcium silicate hydrate, which has a detrimental effect

on the cement system.32−35 The addition of a silica source

modifies the C−S−H phase into more stable phases like
tobermorite and Xonotlite.34

The macroscopic effect of elevated temperatures has been
well documented. The objective of this current study is to
understand the microstructural effect of elevated temperatures.

Table 1. Chemical and Physical Properties of Raw Materials

raw materials SiO2 Al2O3 Fe2O3 CaO K2O Na2O MgO SO3 TiO2 specific gravity

GGBFS 35.30 14.21 0.50 43.79 0.00 0.00 0.00 0.00 0.75 2.89
PKS 55.55 27.48 12.08 0.00 3.07 0.00 0.33 0.00 1.49 2.60

Figure 1. Diffractogram showing mineral phases present in powdered kaolinitic shale and ground granulated blast furnace slag.

Figure 2. Infrared spectrum of powdered kaolinitic shale and ground granulated blast furnace slag.
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X-ray diffraction (XRD), Fourier transform infrared (FTIR)
spectroscopy, and thermogravimetry analysis (TGA) were used
to better understand the effect of sudden temperature increase
on the geopolymerization process of the geopolymer developed
using metakaolin produced locally from the calcination of Saudi
kaolinitic shale.

2. MATERIALS AND METHOD

2.1. Materials. In this study, powdered kaolinitic shale
(PKS) was converted into metakaolin for the synthesis of the
geopolymer. The PKS was obtained by grinding mudrocks
collected from the Qusaiba Member of Qalibah Formation,
Saudi Arabia. Ground granulated blast furnace slag (GGBFS)
was combined in the synthesis of the geopolymer. The chemical
composition of the raw materials as indicated by the X-ray
fluorescence (XRF) and the specific gravity of these materials is
given in Table 1. Both PKS and GGBFS are dominated by silica
and alumina, which are required in geopolymerization. A Bruker
X-ray diffractometer (XRD) was used for characterizing the
mineral phases within a scanning range of 5−70°, 2θ. The
diffractogram (Figure 1) shows that the GGBFS is highly
amorphous, showing a hump at 25−35°, 2θ°. The GGBFS also
shows the presence of crystals of coesite (100%), a polymorph of
crystalline silicon dioxide.36 The PKS contains kaolinite (77%)
and quartz (22.6%). A Nicolet FTIR device was used to collect
spectra data within the 400−4000 cm−1 range. The infrared (IR)
spectrum of the GGBFS and PKS is presented in Figure 2. The
OH-stretching and Al−OH deformation bands of kaolinite
appear at 3000−4000 and 912.51 cm−1, respectively. The
asymmetric Si−O−Si (Al) stretching vibration occurs at 998−
1034 cm−1. The Si−O-symmetrical stretching vibration of SiO2
appears at 678−763 cm−1.37−39 The intensity of the bands in the
OH-stretching region is not pronounced in the PKS, implying a
low degree of orderliness, making it an excellent source for
metakaolin production.39

The alkaline solution was a mixture of sodium hydroxide
(NaOH) and sodium silicate (Na2SiO3). The NaOH having
≥98% purity was supplied by Sigma-Aldrich. The Na2SiO3
(SiO2/Na2O = 3.375, specific gravity = 1.390) was obtained
from Loba Chemie, India. Distilled water was used in all the
formulations.
2.2. Methodology. 2.2.1. Conversion of PKS to Meta-

kaolin.The PKS (75 μm) was placed in an oven at 1562 °F for 1
h to produce metakaolin.40 Earlier investigations had revealed
this to be the optimum calcination temperature for the kaolinitic
shale used in this study. XRD, FTIR, and thermogravimetry
analysis (TGA) were used to study the dehydroxylation process.
The XRD and FTIR tests were performed using the same
equipment and conditions as discussed earlier. The powders
were also placed in an SDT Q600 device manufactured by TA
Instruments and heated from the ambient room temperature up
to about 1634 °F at a rate of 50 °F/min in an atmosphere of air.
2.2.2. Determination of Minimum Required Silicate

Modulus. The initial objective was to determine the minimum
silicate modulus (Ms) required to have an alkaline solution with
suitable gelation. A modulus silicate of 0.7, 0.9, and 1.1 was
initially investigated. The NaOH was used to adjust the silicate
modulus. The NaOH pellets were dissolved in the sodium
silicate solution and allowed to cool down to ambient room
temperature. Distilled water was used to adjust the H2O/Na2O
ratio of the silicate solution. The H2O/Na2O controls the
alkalinity and workability of the slurry and it has been reported

that a value of 11/12 gives the optimum workability.41,42 In this
work, an H2O/Na2O of 11 was used in all systems.

2.2.3. Geopolymer Synthesis. A binary geopolymer system
was developed using the PKS and GGBFS in the ratio of 70:30
(PKS/GGBFS) by weight of blend (BWOB). The choice of
GGBFS was based on the report by several authors that it
enhances the setting and contributes to strength, especially at an
optimal level of 30%.13,43−45 The sodium bentonite was dry
presheared at 12 000 rpm for 5 min. The PKS and GGBFS were
added to the liquid phase composed of the alkaline solution,
defoamer, and dispersant. The role of sodium bentonite was to
control free water and sedimentation observed in the initial trial
tests. The mixing of the slurry, conditioning, rheology, and
thickening time tests were according to the guidelines provided
by American Petroleum Institute (API).46,47 The recipes for the
geopolymer system are given in Table 2.

2.2.4. Curing. The slurries were poured into 1.5 in. × 4 in.
cylindrical molds. The molds (three samples for each system)
were placed in aging cells containing distilled water and then
placed in an electric oven. A pressure of 200 psi was applied to
the aging cells. The geopolymer systems were all initially cured
at 163 °F for 48 h. Then the control sample (aged at 163 °F for
48 h) was taken out of the oven, and the temperature was
ramped up to 194 °F and kept at this temperature for 24 h. The
experiment was repeated for a temperature rise of 248 °F.
Microstructural analyses were performed at the end of each
curing period.

3. RESULTS AND DISCUSSION
3.1. Investigating the Conversion of PKS to Meta-

kaolin. 3.1.1. XRD Analysis of Raw and Heated PKS. The
characterization of the PKS indicated the presence of kaolinite
(K) in a high proportion (77%) (Figure 1). Such a high amount
of kaolinite implies the rock can be categorized under high grade,
a category that possesses the potential of being highly reactive
upon heat treatment.37,48 The diffractogram in Figure 3 shows
that while the peak of quartz is present that of kaolinite
disappears upon heat application. This is probably due to
dehydroxylation of the structural water indicating the trans-
formation of kaolinite into metakaolin, confirmed by the
presence of a halo hump between 20 and 35°, 2θ.49

3.1.2. FTIR of Raw andHeated PKS.The FTIR can be used to
study the dehydroxylation process bymonitoring the behavior of
the bands associated with the OH groups. When the OH groups
in the clays’ structure are removed, the material loses its crystal
structure and becomes amorphous.50 When a rock contains
more than one clay mineral, it is sometimes difficult to
characterize it using the FTIR technique due to overlap in the
spectra. However, this sample shows only kaolinite, whichmakes
the use of FTIR efficient. Figure 4 compares the IR spectrum
before and after heat treatment. The two peaks in the 3000−
4000 cm−1 range attributed to OH-stretching vanish upon
heating, indicating dehydroxylation has taken place.37,39

Table 2. Mix Design for Geopolymer

material proportion, %BWOB

PKS 70
GGBFS 30
sodium bentonite 10
defoamer 0.3
alkaline solution/binder ratio 4
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Dehydroxylation is further confirmed in the disappearance of
the OH-deformation band at 912.51 cm−1 in the heated
sample.39,51 The change in the microstructure upon heating is
also inferred from the intensity of the bands at 998−1037 cm−1

attributed to the asymmetric Si−O−Si (Al) stretching.39,52

3.1.3. Thermogravimetry Analysis of Raw and Heated PKS.
Figure 5 compares the weight loss of the raw and heated samples.
The loss of structural water at certain temperature intervals
could be used to infer the dehydroxylation process. In the raw
sample, the weight loss up to about 230 °F is due to the removal
of the adsorbed water in the interlayer of the clay mineral while
the loss between 959 °F and 1634 °F is due to dehydrox-
ylation.37,53,54 It is confirmed that the material undergoes
dehydroxylation upon heat treatment, inferred from the
negligible weight loss in the regions associated with the loss of

structural water. The total weight loss in each of the samples is
provided in Table 3.

3.2. Minimum Silicate Modulus. The silicate modulus
(Ms) of the sodium silicate solution controls the extent of
gepolymerization and hence affects parameters like setting,
viscosity, and strength.55−57 Commonly used ratios fall within
the range of 0.6 to 2 with the authors reporting various optimum
values.57−62 It was necessary to determine the minimumMs that
would help to achieve a workable solution. Figure 6 compares
the behavior of alkaline solutions with Ms of 0.7, 0.9, and 1.1.
The system with a Ms of 0.7 (Figure 6a) quickly gels as the
solution cooled down, however, when the Ms is increased to 0.9
the rate of gelling reduces. In Figure 6b, the solution is clear and
remains in this state for about 4 h, however, precipitation begins
in Figure 6c after about 4 h, and severe precipitation occurs in
Figure 6d at 24 h. However, the solution designed at Ms of 1.1

Figure 3. Diffractogram showing the effect of temperature on the powdered kaolinitic shale.

Figure 4. IR spectrum showing the effect of temperature on the powdered kaolinitic shale.
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remains clear and stable for the entire 24 h period. The objective
of this study is not to investigate the effect of Ms and hence the
minimum Ms required to achieve a workable alkaline system,
which in this investigation 1.1 was selected.
3.3. Rheology and Viscosity. The consistency plot (Figure

7) of the developed geopolymer was fitted with the Bingham
plastic model (BP). The model fits the data with a coefficient of
determination (R2) of 99.9%. The slurry has a yield stress of
about 1.06 lbf/100 ft2. The plastic viscosity is approximately
0.178 lbf/100 ft2 (85 cP). The plot of the shear rate versus
viscosity plot in Figure 8 indicates that the developed system has
a shear thinning behavior, which is the desired flow behavior for
oil-well cementing. The above parameters show that the
geopolymer system exhibits good flow behavior.
3.4. Thickening Time. Cement systems should have a

reasonable setting or thickening time to allow for efficient
cement placement. In conventional cement systems, the time a
slurry achieves a consistency value of 70 or 100 Bearden unit of
consistency (Bc) is often reported as the thickening time.46 The
consistency of the slurry at different times is shown in Figure 9.
The investigation was done up to 70 Bc. The initial consistency

of the slurry is about 4.8 Bc and it achieves 70 Bc in about 3 h and
26 min.

3.5. Results and Discussion. 3.5.1. XRD Analysis of
Geopolymer Systems. The mineralogical composition of the
geopolymer systems aged under different temperature con-
ditions is presented in Figure 10. All geopolymer systems show
an equivalent amorphous hump at 20 to 40°, 2θ°. This indicates
the formation of the aluminosilicate gel and amorphous calcium
silicate hydrates from the geopolymerization of the metakaolin
and GGBFS, respectively.43,63,64 The control sample cured at
163 °F only, G1, shows the presence of alite, coesite, and
babingtonite. The alite is from the dissolution of both raw
materials. The coesite is from the GGBFS, while the
babingtonite (Ca2(Fe,Mn)FeSi5(OH)14) is associated with
zeolite minerals.65 When the temperature was ramped to 194
°F (G2), coesite, gobbinsite (Na5(Si11Al5)O32·11H2O), and
gypsum are seen in the microstructure while anorthite
crystallizes at 248 °F (G3). The gobbinsite and anorthite
(CaO, Al2O3, 2SiO2) are related to the zeolite group.66−68 In
general, the diffractogram shows an increase in crystallinity with
increasing curing temperature. Increased crystallization could
lead to thermal stress in themicrostructure which would degrade
the system.69,70

3.5.2. FTIR Analysis of Geopolymer Systems. The FTIR
technique is accurate in determining tiny changes in the
microstructure.11 The significant difference in the infrared (IR)
spectra (Figure 11) is a confirmation of the formation of new

Figure 5. Thermogram of raw and heated powdered kaolinitic shale powders.

Table 3. Total Weight Loss of Samples at the End of the Test

sample weight loss, %

raw 19.36
1562 °F 1.08

Figure 6. Effect of modulus silicate on the alkaline system.
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bonds due to the presence of new phases. The main band in
Figure 11 occurs at 929−950 cm−1, and it is a result of the
asymmetric stretching of the Si−O−Si (Al) band of the
geopolymer structure.71 First of all, the shift of the asymmetric
Si−O−Si (Al) peak to lower wavenumbers (1037 cm−1 to 929

cm−1 to 950 cm−1) is an indication that geopolymerization has
occurred, but the reduction in the intensity of the peak in this
region with increasing curing temperature would suggest a
breakdown of the gel structure.72,73 This would be responsible

Figure 7. Rheology of metakaolin-based geopolymer at 114 °F.

Figure 8. Viscosity of metakaolin-based geopolymer at 114 °F.

Figure 9. Thickening time of synthesized geopolymer system at 114 °F
and atmospheric pressure.

Figure 10. Diffractogram of geopolymer systems cured under different
temperature conditions.

Figure 11. IR spectrum of geopolymer systems cured under different
temperature conditions.
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for the observed loss in strength reported by several authors for
geopolymers subjected to higher curing temperatures.
3.5.3. TGA Geopolymer Systems. In general, the weight loss

up to about 572 °F is because of the escape of physically and
chemically bound water. The weight loss from 572 to 1202 °F is
due to dehydration of the binding gel. In Figure 12, there is

greater weight loss in the geopolymer systems exposed to
elevated temperatures. Higher weight loss would suggest the
presence of a greater amount of cementitious gels. However, this
is not the situation. It can be explained that at elevated
temperatures, new phases are formed which would be unstable
or could have more water molecules.74,75 These factors would
contribute to the higher mass loss in G2 and G3 geopolymer
systems.

4. CONCLUSION
The application of geopolymer in oil-well cementing as an
alternative to conventional Portland cement systems is currently
being explored. This work focuses on the microstructural
changes of geopolymer systems under elevated temperature
conditions. The XRD, FTIR, and TGA techniques were used to
observe this phenomenon. The findings indicate that when
geopolymer is subjected to elevated temperatures, the gel
structure is altered. This is due to the formation of crystalline
phases. These phases may induce thermal stresses. This explains
the reduction in the macroscopic properties of the geopolymer
systems as reported by several authors.
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