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PD-L1 blockade enhances response of pancreatic
ductal adenocarcinoma to radiotherapy
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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is considered a non-
immunogenic tumor, and immune checkpoint inhibitor monother-
apy lacks efficacy in this disease. Radiotherapy (RT) can stimulate
the immune system. Here, we show that treatment of KPC and
Pan02 murine PDAC cells with RT and gemcitabine upregulated
PD-L1 expression in a JAK/Stat1-dependent manner. In vitro, PD-L1
inhibition did not alter radio- and chemosensitivity. In vivo, addi-
tion of anti-PD-L1 to high (12, 5 × 3, 20 Gy) but not low (6,
5 × 2 Gy) RT doses significantly improved tumor response in KPC
and Pan02 allografts. Radiosensitization after PD-L1 blockade was
associated with reduced CD11b+Gr1+ myeloid cell infiltration and
enhanced CD45+CD8+ T-cell infiltration with concomitant upregu-
lation of T-cell activation markers including CD69, CD44, and FasL,
and increased CD8:Treg ratio. Depletion of CD8+ T cells abrogated
radiosensitization by anti-PD-L1. Blockade of PD-L1 further
augmented the effect of high RT doses (12 Gy) in preventing devel-
opment of liver metastases. Exploring multiple mathematical
models reveals a mechanism able to explain the observed synergy
between RT and anti-PD-L1 therapy. Our findings provide a ratio-
nale for testing the use of immune checkpoint inhibitors with RT
in PDAC.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a deadly malignancy

with a 5-year survival rate of 5% (Hidalgo, 2010). Surgery is the only

curative option, but the majority of patients are diagnosed at an

advanced or metastatic stage. Also, PDAC is refractory to radiother-

apy (RT) and chemotherapy (Ryan et al, 2014). Therefore, new ther-

apeutic strategies are urgently required to improve survival in PDAC.

The immune checkpoint programmed death 1 (PD-1) receptor

and its ligand PD-L1 (Iwai et al, 2002) are often activated in cancer

and play an important role in mediating escape from immune

control by inhibiting cytotoxic T-cell function (Tolaney et al, 2015).

Inhibition of the PD-1/PD-L1 axis has produced impressive response

rates in various malignancies, such as melanoma, renal and non-

small cell lung cancer (Iwai et al, 2002; Topalian et al, 2012; Hamid

et al, 2013). However, although PD-L1 is expressed in human PDAC

samples (Spivak-Kroizman et al, 2013; Hutcheson et al, 2016),

monotherapy with PD-L1 inhibitors lacked efficacy in this disease

(Brahmer, 2012). This can be attributed to the fact that PDAC is a

“non-immunogenic” tumor characterized by low mutational burden

(Liu et al, 2011), lack of CD8+ T-cell infiltration (Ino et al, 2013),

and the presence of immunosuppressive myeloid cell populations

(Dunn et al, 2002; Stromnes et al, 2015).

Radiotherapy can activate the immune system to trigger an anti-

tumor immune response following cytotoxic death and release of

immunostimulating signals that can increase trafficking of T cells to

the tumor (Burnette & Weichselbaum, 2013; Formenti & Demaria,

2013). Although studies have proposed the use of immunomodula-

tors to enhance response to RT in various tumor types (Sharabi

et al, 2015a), the efficacy of this concept in PDAC remains unex-

plored. Because PDAC is considered non-immunogenic (Hiraoka

et al, 2006; Lutz et al, 2014) and thus less responsive to

immunotherapies alone, we hypothesized that RT and anti-PD-L1

might have synergistic roles in the treatment of this disease. Here,

we demonstrate that blockade of PD-L1 significantly improves

tumor response to high but not low radiation doses in different
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tumor microenvironments by “shifting” the balance toward a more

favorable anti-tumorigenic phenotype. We have also generated a

mathematical model to explain the mechanism of action of PD-L1

blockade when combined with RT.

Results

PD-L1 expression is upregulated after radiotherapy and
chemotherapy in PDAC cells

We analyzed PD-L1 expression by flow cytometry in murine PDAC

cell lines 24 h after RT and gemcitabine treatment (Fig 1A and B,

and Appendix Fig S1A and B). Both mean fluorescence intensity

(MFI) and percentage of PD-L1+ cells significantly increased in the

KPC and Pan02 cell lines compared to the DMSO-treated controls.

Similarly, we observed PD-L1 upregulation in the human pancreatic

cancer PSN-1 cells upon RT and gemcitabine treatment

(Appendix Fig S1C). However, conditioned medium (CM) obtained

from KPC and PSN-1 cells 24 h after RT and chemotherapy did not

alter PD-L1 expression (Appendix Fig S1D and E).

The signal transducer and activator of transcription (Stat) is an

important mediator of PD-L1 signaling (Mowen & David, 2000).

Hence, we investigated the effect of JAK/Stat signaling on PD-L1

expression in both KPC and Pan02 cell lines (Fig 1C and D). Consis-

tent with our flow cytometry results, we observed upregulation of

PD-L1 following RT and gemcitabine treatment by Western blotting.

Upon inhibition of the JAK/Stat using AG490, RT- and gemcitabine-

mediated upregulation of PD-L1 was completely abolished (Fig 1C

and D). Because AG490 can block both Stat1 and Stat3, we inhibited

Stat1 and Stat3 by siRNA and confirmed their downregulation by

Western blot (Appendix Fig S1F and G). Subsequent flow cytometry

analysis of PD-L1 after treatment showed that inhibition of Stat1

(Fig 1E and F) but not Stat3 (Appendix Fig S1H) decreased PD-L1

expression after RT and gemcitabine treatment in PDAC cells.

IFNc has been shown to stimulate PD-L1 expression downstream

of Stat1 in several cancer cells (Dovedi et al, 2014; Kharma et al,

2014). Hence, we examined whether IFNc expression in KPC and

Pan02 cells were affected by treatments (Appendix Fig S2A). Gem-

citabine stimulated a small but significant increase in MFI and

percentage of IFNc-expressing cells compared to controls, but RT

had no effect. Moreover, IFNc expression was not altered following

Stat1 and Stat3 inhibition in PDAC cells after RT and gemcitabine

treatment (Appendix Fig S2B and C). We next asked whether IL-6

affects PD-L1 and IFNc expression in PDAC cells as IL-6 also signals

via the JAK/Stat pathway. Addition of recombinant murine IL-6 did

not alter the percentage of PD-L1+ cells (Appendix Fig S3A) or IFNc
expression (Appendix Fig S3B) compared to untreated PDAC cells.

These results indicate that RT and gemcitabine treatments can

induce PD-L1 expression in PDAC cells in vitro in a JAK/Stat1 but

not Stat3-dependent manner and that blockade of JAK/Stat1 signal-

ing can abrogate PD-L1 induction.

Efficacy of PD-L1 blockade in radiosensitizing PDAC tumor to low
radiation doses

Next, we investigated the effect of anti-PD-L1 on tumor cell growth

in vitro. Treatment with anti-PD-L1 did not sensitize KPC or Pan02

tumor cells to RT or gemcitabine (Appendix Fig S4A and B). In vivo,

KPC syngeneic tumor-bearing mice were treated with either RT

alone (6 Gy or 5 × 2 Gy), anti-PD-L1 alone, or their combination

(Fig 2A). Treatment with anti-PD-L1 alone had no significant effect

on tumor growth, whereas RT radiosensitized tumors compared to

untreated controls. Addition of anti-PD-L1 to either RT schedule

failed to significantly enhance tumor response to RT (Fig 2A). Simi-

lar to the KPC syngeneic tumor model, treatment of Pan02 allografts

with either RT (6 Gy or 5 × 2 Gy), anti-PD-L1, or their combination

failed to show significant growth delay compared to the untreated

control group (data not shown).

We conducted flow cytometry analysis of immune effector

CD45+CD8+ T cells, CD45+CD4+ T cells, and CD11b+Gr1+

myeloid cells in the tumor 5 days after completion of the above

treatments. We failed to detect any significant changes in any of the

immune cell populations in the tumor after the different treatments

(Fig 2B and Appendix Fig S5). Treatment was well tolerated with no

weight loss observed in any of the mice throughout the experiment.

Thus, PD-L1 blockade did not significantly sensitize PDAC tumors

to low RT doses (6 Gy or 5 × 2 Gy). Although a trend toward

radiosensitization was observed, it is important to note that low RT

doses did not increase cytotoxic CD8+ T-cell numbers in the tumor

microenvironment.

PD-L1 blockade sensitizes pancreatic allografts to high RT doses

Because anti-PD-L1 treatment failed to enhance tumor response to

relatively low RT doses, we then asked whether combination with

higher RT doses could induce a better response to PD-L1 blockade.

We first tested the efficacy of high RT doses with anti-PD-L1 in the

Pan02 allograft tumor model (Fig 3A). Both high RT doses (12 Gy or

5 × 3 Gy) resulted in significant tumor growth delay, whereas anti-

PD-L1 alone did not affect tumor growth. However, PD-L1 blockade

significantly enhanced response to both RT schedules. The in vivo

experiment had to be terminated at around days 35–39 because the

extensive regression seen in several tumors in both combination

groups resulted in large wounds that could compromise animal

welfare. Flow cytometry analysis revealed significantly increased

CD45+CD8+ and CD45+CD4+ T-cell infiltration in irradiated tumors

compared to controls; these numbers were additionally significantly

increased upon blockade of PD-L1 (Fig 3B and Appendix Fig S6).

Compared to the control, CD11b+Gr1+ myeloid cell numbers only

decreased significantly after 12 Gy + PD-L1 blockade.

Similar to Pan02, mice bearing KPC tumors were treated with

either 12 Gy, 5 × 3 Gy, anti-PD-L1, or the combinations (Fig 4A and

B). Both RT doses resulted in increased tumor growth delay that

was further enhanced after administration of anti-PD-L1. In parallel,

we determined the effect of CD8+ T-cell depletion using anti-CD8

antibodies on the radiosensitization potential of PD-L1 blockade in

the KPC model (Fig 4A and B). Of note, the control, the anti-PD-L1

and anti-CD8 alone group are the same in both Fig 4A and B. Treat-

ment with anti-CD8 did not alter KPC tumor growth in either unirra-

diated or irradiated mice. However, addition of anti-CD8 reversed

the radiosensitizing effect of PD-L1 blockade (Fig 4A and B), under-

scoring the importance of CD8+ T cells in mediating the radiosensi-

tizing effect of PD-L1 blockade in PDAC. As in the Pan02 syngeneic

models, CD45+CD8+ and CD45+CD4+ T-cell infiltration signifi-

cantly increased after irradiation and was further enhanced after
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Figure 1. RT and chemotherapy alter PD-L1 expression in PDAC cells.

A, B Flow cytometric analysis of PD-L1 expression in (A) KPC and (B) Pan02 cells following treatment with gemcitabine and RT. Gemcitabine was diluted in DMSO
(vehicle) and DMSO was used for the “untreated” control group (mean � SD, n = 3, one-way ANOVA, Bonferroni test). MFI, mean fluorescence index.

C, D Western blot analysis of the indicated proteins in both KPC (C) and Pan02 (D) cells following radiation and chemotherapy � AG490, a JAK/Stat kinase inhibitor.
Actin represents loading control.

E, F Flow cytometric analysis of PD-L1 after gemcitabine and RT (as described above) in KPC (E) and Pan02 (F) following Stat1 downregulation by siRNA (mean � SD,
n = 3, Student’s t-test).

Source data are available online for this figure.
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PD-L1 blockade (data not shown). Additionally, we assessed the

activation status of the CD45+CD8+ T cells based on IFNc expres-

sion and found increased activated CD8+ T cells following combina-

tion of high RT doses and PD-L1 blockade (described in

Appendix Results and Appendix Fig S7).

We next compared simultaneous combination of 12 Gy with

anti-PD-L1 to administration of anti-PD-L1 1 week after RT (Fig 4C).

In contrast to the simultaneous combination, sequential administra-

tion of anti-PD-L1 1 week post-RT did not radiosensitize KPC tumor

allografts. Moreover, we analyzed the effect of PD-L1 blockade after

a very high single RT dose (20 Gy) in the KPC model. PD-L1 block-

ade significantly radiosensitized tumors after 20 Gy, but mice in

both the RT alone and the RT + anti-PD-L1 groups developed grade

2 radiation dermatitis that forced termination of the experiment at

approximately day 35 (Appendix Fig S9A). Taken together, anti-PD-

L1 treatment resulted in significant tumor growth delay after high

RT doses that correlated with enhanced tumor infiltration of CD8+

T cells and decreased CD11b+Gr1+ myeloid cells.

Changes in cytokine profiles after RT and PD-L1 blockade

We examined expression of several inflammatory cytokines in sera

of mice after treatment with anti-PD-L1 and/or RT (Appendix Fig

S8A). Levels of stromal derived factor 1 (SDF-1) and IL-1 receptor

agonist (ra) decreased slightly after anti-PD-L1 and RT treatments in

the cytokine array (Appendix Fig S8B). SDF-1 levels were

A

B

Figure 2. PD-L1 blockade does not significantly sensitize PDAC to low RT doses (6 Gy or 5 × 2 Gy; initiated at day 0) in the syngeneic KPC tumor allograft
model.

A Tumor growth delay was measured in the different groups, as indicated (n = 6 mice per group). Anti-PD-L1 was given at days 0, 3, 6, and 9 (black arrows). The
average time (days) for tumors to reach a volume of 400 mm3 from day 0 is shown (means � SD, n = 1, one-way ANOVA, Bonferroni test). No weight loss was
observed in the in vivo experiment.

B Quantitative data on the percentage of gated cells are shown (n = 5 per group; means � SD, n = 1, one-way ANOVA, Bonferroni test).
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significantly downregulated following RT and combination

anti-PD-L1 + RT compared to controls as shown by ELISA

(Appendix Fig S8C).

PD-L1 blockade improves both response to chemoradiotherapy
and radiation

We examined PD-L1 expression in the syngeneic KPC tumor allo-

grafts after RT and gemcitabine treatment. PD-L1 was induced

5 days after treatment with gemcitabine, 12 Gy, 20 Gy, and

5 × 3 Gy (Appendix Fig S9B). Similarly, PD-L1 was upregulated

24 h (short term) as well as 3–7 weeks (long term) after

completion of gemcitabine in the transgenic KPC mice compared

to control (Appendix Fig S9C). Hence, similar to the in vitro

conditions, RT and gemcitabine can upregulate PD-L1 in PDAC

in vivo.

We then assessed the impact of anti-PD-L1 when combined

with gemcitabine and RT (Fig 5A). Neither gemcitabine alone,

nor anti-PD-L1 alone affected tumor growth compared to control.

The combination of anti-PD-L1 with gemcitabine produced a

marginally significant tumor growth delay, whereas gemcitabine

and RT had a more pronounced effect. Consistent with our previ-

ous findings, anti-PD-L1 significantly enhanced the RT-induced

tumor growth delay. Compared to the double combinations, the

A

B

Figure 3. RT combined with blockade of PD-L1 amplifies anti-tumor effects in Pan02 tumor allograft.

A Tumor growth delay was measured by treating tumors with RT (12 Gy or 5 × 3 Gy daily; initiated at day 0) and anti-PD-L1 alone or combination of RT (n = 6 mice
per group). Anti-PD-L1 was given at days 0, 3, 6, and 9. The radiosensitizing effect of anti-PD-L1 after 12 and 5 × 3 Gy was assessed as shown by the capped lines
(means � SD, n = 1, one-way ANOVA, Bonferroni test). No weight loss was observed in the in vivo experiment.

B Quantitative data on the percentage of gated cells are shown (n = 5 per group; means � SD, n = 1, one-way ANOVA, Bonferroni test).
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Figure 4. CD8+ T cells are required for efficacy of RT and anti-PD-L1 treatment.

A KPC tumor growth delay after treatment with either 12 Gy (day 0), anti-PD-L1 (days 0, 3, 6, and 9; black arrows), anti-CD8 alone (days 0, 3, 6, and 9) or their
combinations, as indicated.

B KPC tumor growth delay after treatment with either 5 × 3 Gy (days 0–4), anti-PD-L1 alone (days 0, 3, 6, and 9; black arrows), anti-CD8 alone (days 0, 3, 6, and 9) or
their combinations, as indicated. Of note, the control, the anti-PD-L1 and anti-CD8 alone groups are the same as in (A).

C KPC tumor growth delay after either simultaneous (days 0, 3, 6, and 9; black arrows, upper row) or sequential (days 6, 9, 12, and 15; black arrows, lower row) addition
of anti-PD-L1 to RT (day 0).

Data information: The average time (days) for tumors to reach a volume of 400 mm3 from day 0 is also shown in the graphs on the right (means � SD, n = 1, one-way
ANOVA, Bonferroni test). No weight loss was observed in the in vivo experiments.
Source data are available online for this figure.
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triple combination significantly enhanced tumor growth delay,

albeit the effect of gemcitabine appeared to be additive rather

than synergistic (Fig 5A).

It has been previously reported that T cells become exhausted in

cancers and chronic infections (Virgin et al, 2009; Herbst et al,

2014). Because PD-L1 was upregulated in PDAC cells in vitro and

in vivo following RT and gemcitabine treatment and could poten-

tially suppress T-cell activation, we examined the expression of

T-cell activation markers CD69, FasL, and CD44 on intratumoral

CD8+ T cells after treatment with RT, gemcitabine, and/or anti-PD-

L1. We did not detect any significant difference in T-cell activation

markers after single-agent treatment (Fig 5B). However, addition of

anti-PD-L1 to RT and gemcitabine + RT significantly increased

numbers of CD69+ and CD44+FasL+ CD8 T cells compared

to controls. Additionally, treatment with anti-PD-L1 alone, or

anti-PD-L1 in combination with RT and RT + gemcitabine increased

the CD8/Treg ratio compared to control or treatment with RT alone

and RT + gemcitabine, respectively (Fig 5C). These data provide

evidence on the potential of PD-L1 blockade to promote T-cell acti-

vation in RT, gemcitabine, and combined RT plus gemcitabine.

Anti-PD-L1 enhances the anti-metastatic effect of RT

We asked whether anti-PD-L1 could enhance the cytotoxic

effect of RT in a microenvironment other than the tumor allo-

grafts. For that purpose, we assessed the effect of PD-L1 block-

ade in liver metastasis. Mice were injected intrasplenically with

either naı̈ve or pre-irradiated (12 Gy) KPC cells, then treated

A

B C

Figure 5. Impact of triple combination of gemcitabine-based chemoirradiation with anti-PD-L1 in the KPC tumor allograft.

A Mice were treated with either gemcitabine (days 0, 3), anti-PD-L1 (days 4, 7, 10, and 13), 12 Gy (day 4) alone, or in combinations, as indicated (n = 8 mice per
group). The average time (days) for tumors to reach a volume of 400 mm3 from day 0 is shown (means � SD, n = 1, one-way ANOVA, Bonferroni test). No weight
loss was observed in the in vivo experiment.

B, C RT plus anti-PD-L1 reverses T-cell exhaustion (B) and increases CD8:Treg ratio (C). Bar graphs show quantitation of T-cell activation markers and CD8:Treg ratio in
tumor samples based on flow cytometry analysis, as indicated (n = 5 per group; means � SD, n = 1, one-way ANOVA, Bonferroni test).
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with anti-PD-L1 every 3 days. After 14 days, livers were

harvested and weighted. Compared to control, prior treatment

with 12 Gy reduced metastatic tumor burden that was further

enhanced by anti-PD-L1 treatment (Fig 6A). Combination of

12 Gy + anti-PD-L1 also increased CD8+ T-cell infiltration, while

CD11b+Gr1+ myeloid cell and CD4+CD25+FOXP3+ Treg

numbers were significantly reduced compared to controls (Fig 6B

and Appendix Fig S10). Hence, the combination of RT and PD-L1

can enhance the cytotoxic effect of RT in an environment dif-

ferent from the primary tumor, further supporting the use of this

therapeutic strategy.

Mathematical modeling of immune cells interacting with
tumor cells

Finally, we used mathematical modeling (Dushek et al, 2011; Lever

et al, 2014) to provide additional insight into the tumor growth

behavior and underlying mechanism of synergy between RT and

anti-PD-L1 (Appendix Fig S11A). For that purpose, we simulated

populations of tumor cells, immune cells, and the effects of RT and

anti-PD-L1 in different ways (i.e., assuming different mechanisms of

action) and compared the overall tumor growth predicted by these

different models to our experimental data.

Experimentally, we observed that RT slowed overall tumor

growth for up to 4 weeks, but our initial simulations failed to repro-

duce this long-term effect if we modeled RT as directly killing tumor

cells (Appendix Fig S11B) or reducing their overall growth rate (i.e.,

permanently decreasing division rate or increasing cell death rate,

Appendix Fig S11C). Given that RT is known to induce immune cell

infiltration (Burnette & Weichselbaum, 2013), we generated a model

where irradiated tumor cells became susceptible to killing by exter-

nal factors (immune cells) that increase over time. Tumor growth

simulations from this model can reproduce the effects of RT

observed in our experiments (Appendix Fig S11D).

Building on this model for RT, we next simulated the tumor

growth curves for different mechanisms of PD-L1 blockade. We

found that two different models can reproduce the synergistic effects

observed in our experiments: Anti-PD-L1 increases CD8+ T-cell

recruitment (Appendix Fig S11E) or CD8+ T-cell killing efficiency

(Appendix Fig S11F). Both mechanisms are supported by our experi-

ments (Figs 3–5) and therefore it is likely that both contribute to

tumor control.

A

B

Figure 6. Blockade of PD-L1 enhances the anti-metastatic effect of RT.

A Representative images of livers from the different treatment groups, as indicated. The corresponding liver weights are shown on the right (n = 6 mice per group;
means � SD, n = 2, one-way ANOVA, Bonferroni test).

B Flow cytometry analysis of CD45+CD8+, CD11b+Gr1+, and CD4+CD25+FOXP3+ cell populations in the livers of the mice from the different treatment groups, as
indicated (n = 5 mice per group; means � SD, n = 1, one-way ANOVA, Bonferroni test).
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Lastly, we observed that radiosensitization was completely

abolished when anti-PD-L1 was administered 7 days after RT

(Fig 4C). The model could reproduce this result if it included

suppressive microenvironment factors established earlier than

7 days (Appendix Fig S11G). The administration of anti-PD-L1 early

but not late shifts the balance to a more inflammatory environment

by preventing the establishment of factors that suppress the ability

of CD8+ T cells to kill tumor cells (Appendix Fig S11G and E). This

is in line with our findings of reduced CD11b+Gr1+ and Treg

numbers in tumors treated with anti-PD-L1 and RT (Figs 3–6).

In summary, we find that the synergy between RT and anti-PD-

L1 observed in our experimental tumor growth curves can be

explained by a model where (i) RT induces a large population of

tumor cells to become susceptible to immune cell killing and (ii)

anti-PD-L1 increases the recruitment and killing ability of CD8

T cells and, importantly, prevents the establishment of suppressive

microenvironment factors (Appendix Fig S11A and G).

Discussion

PD-L1 plays a central role in permitting cancer evasion, mainly by

interfering with T-cell functions, and inhibitors of the PD-1/PD-L1

axis have changed the paradigm in the management of melanoma

patients (Clark et al, 2007). However, PDAC is characterized by a

highly immunosuppressive stroma (Hiraoka et al, 2006; Lutz et al,

2014; Beatty et al, 2015; Diana et al, 2016b; Zhang et al, 2017) and

immune checkpoint inhibitors alone were ineffective in the clinical

setting (Royal et al, 2010; Brahmer et al, 2012). Evidence indicates

potentially complementary roles for immunotherapy and RT

(Sharabi et al, 2015a), but this combination has not been explored

in PDAC. Here, we show that blockade of PD-L1 strongly enhanced

tumor response to high (12, 5 × 3, and 20 Gy) but not low (6 and

5 × 2 Gy) RT doses, albeit a trend was noted for low doses. In addi-

tion to sensitizing tumors to RT, anti-PD-L1 improved response after

gemcitabine-based chemoradiation. This is, to our knowledge, the

first preclinical study to examine in detail the impact of this thera-

peutic strategy in PDAC. Our findings support and build on previous

preclinical reports demonstrating enhanced radiosensitization using

CTLA-4 and/or PD-1/PD-L1 immune checkpoint inhibitors in mela-

noma, breast, and colorectal cancer, and glioblastoma multiforme

(Demaria et al, 2005; Deng et al, 2014; Dovedi et al, 2014; Sharabi

et al, 2015b; Twyman-Saint Victor et al, 2015; Rodriguez-Ruiz et al,

2016).

Although our observations with higher RT doses are in agreement

with the majority of reports showing strong radiosensitization with

PD-1/PD-L1 (Demaria et al, 2005; Deng et al, 2014; Dovedi et al,

2014; Sharabi et al, 2015b; Rodriguez-Ruiz et al, 2016) and CTLA-4

blockade (Twyman-Saint Victor et al, 2015), some suggestions that

the effects of immunity could be overcome were noted; despite the

significant growth delay after combination RT + anti-PD-L1, tumors

eventually regrew in the KPC model. Unfortunately, the in vivo exper-

iment using the Pan02 model had to be terminated early due to the

profound tumor regression that led to the formation of extensive open

wounds and hence tumor regrowth could not be monitored in this

model. Also, 20 Gy treatment in KPC allografts resulted in RT-

induced dermatitis (also in the RT alone group) that made tumor

rechallenge impossible as the experiment had to be terminated.

Interestingly, PD-L1 exerted a radiosensitizing effect only with

higher RT doses in our models. In contrast, Dovedi et al demon-

strated that PD-L1 inhibition in combination with lower RT doses

(5 × 2 Gy) was sufficient to delay tumor growth in colorectal and

triple-negative breast cancers (Dovedi et al, 2014). These differences

could be attributed to the cell line behavior, such as higher intrinsic

radiosensitivity compared to PDAC cells (Liu et al, 2011; Tolaney

et al, 2015) that could render these cells more vulnerable to recogni-

tion and cytotoxic killing by T cells.

PD-L1 expression is upregulated by either oncogenic signaling,

such as PI3K/AKT activation (innate resistance) or inflammatory

processes via IFNc (adaptive resistance) (Parsa et al, 2007; Kharma

et al, 2014). In accordance with other groups (Spivak-Kroizman

et al, 2013; Deng et al, 2014; Dovedi et al, 2014; Peng et al, 2015),

we showed that both RT and gemcitabine induced PD-L1 expression

in PDAC both in vitro and in vivo. Upregulation of PD-L1 by RT and

gemcitabine lends support to coupling PD-L1 blockade with these

conventional treatments to enhance anti-tumor response. Further-

more, PD-L1 expression can be suppressed by depletion of Stat1

(Kharma et al, 2014) and we found that the JAK/Stat kinase inhi-

bitor AG490 abrogated baseline PD-L1 expression and upregulation

after conventional treatments in our series. Because AG490 can

inhibit both Stat1 and Stat3, we also used siRNA to demonstrate that

inhibition of Stat1 but not Stat3 decreased PD-L1 expression at base-

line, and after RT and gemcitabine treatment in PDAC cells. Interest-

ingly, IL-6 had marginal effects on PD-L1 expression in the PDAC

cells despite activating the JAK/Stat pathway and its previous impli-

cation in PD-L1-mediated immunosuppression (Spary et al, 2014;

Chen et al, 2016).

PD-L1 upregulation can induce dysfunction in T cells leading to

their exhaustion and impaired activation and immune surveillance

(Wherry, 2011). Because both RT and gemcitabine upregulated PD-

L1 in PDAC, we assessed whether this suppressed CD8+ T-cell acti-

vation. Addition of anti-PD-L1 to RT and RT + gemcitabine

increased the proportion of intratumoral CD8+ T cells expressing

the activation markers CD69, CD44, and FasL (Smith-Garvin et al,

2009; Wherry, 2011; Twyman-Saint Victor et al, 2015). These data

suggest that despite inducing PD-L1 expression in PDAC, addition of

anti-PD-L1 to RT and gemcitabine can overcome T-cell suppression

and enhance T-cell activation.

Radiotherapy can modulate the immune system to promote

CD8+ T cells to attack tumor cells through multiple mechanisms

(Burnette & Weichselbaum, 2013; Sharabi et al, 2015a) including

the release of stimulatory cytokines such as IFNc. We only observed

upregulation of IFNc expression in PDAC cells after treatment with

gemcitabine but not with RT. IFNc can activate Jak/Stat resulting in

PD-L1 upregulation (Bellucci et al, 2015), which could explain PD-

L1 upregulation in PDAC cells after gemcitabine treatment. In an

attempt to uncover other cytokines involved in the RT-mediated

immune response, we examined the serum cytokine profiles of mice

after treatment. RT alone or in combination with anti-PD-L1 signifi-

cantly decreased SDF-1 expression. Interestingly, SDF-1 has been

previously implicated in immunosuppression and tumor progression

in PDAC (Feig et al, 2013) and downregulation of SDF-1 may contri-

bute to the therapeutic effect of RT + anti-PD-L1 in reversing the

immunosuppressive phenotype.

The positive prognostic role of high CD8+ T-cell infiltration has

been demonstrated consistently in the clinical setting in several
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malignancies, including PDAC (Fridman et al, 2012; Ino et al, 2013;

Diana et al, 2016a). We observed increased CD8+ T-cell infiltration

in tumors after high RT doses that was further enhanced by

inhibition of PD-L1. Anti-PD-L1 alone and in combination with RT

significantly increased the CD8/Treg ratio, an important metric of

anti-tumor response to treatment (Byrne et al, 2011; Amedei

et al, 2013; Diana et al, 2016a). Furthermore, blockade of CD8

abrogated the radiosensitizing effect of anti-PD-L1 in PDAC cells

in vivo, in agreement with other reports (Deng et al, 2014; Dovedi

et al, 2014; Twyman-Saint Victor et al, 2015; Rodriguez-Ruiz et al,

2016).

Addition of anti-PD-L1 to RT also caused a reduction in

CD11b+Gr1+ myeloid cells in vivo. Infiltration of myeloid cells is a

key feature of cancer inflammation in PDAC and CD11b+Gr1+ cells

characteristic of myeloid-derived suppressor cells (MDSCs) are

known to suppress antigen-specific T cells (Song et al, 2005). The

reduction in CD11b+Gr1+ cells appears to be mutually exclusive

from CD8+ T-cell infiltration (Clark et al, 2007). Deng et al revealed

that addition of anti-PD-L1 to RT eliminated MDSCs from the tumor

microenvironment (Deng et al, 2014). Consistent with this, we

found reduced CD11b+Gr1+ cells following anti-PD-L1 and RT

treatments.

We additionally assessed whether anti-PD-L1 could enhance

radiosensitization of PDAC cells in an environment other than the

syngeneic allograft model. For that purpose, we intrasplenically

injected untreated or previously irradiated (12 Gy) PDAC cells and

assessed the impact of systemic PD-L1 blockade (i.p.) in the devel-

opment of liver metastasis. Both RT alone and anti-PD-L1 alone

reduced metastatic colonization compared to untreated controls, but

addition of anti-PD-L1 significantly enhanced the anti-metastatic

effect of RT. Recruitment of immune cells to the liver is known to

precede development of liver metastases (Engblom et al, 2016). We

found significant infiltration of CD8+ T cells after RT and anti-PD-

L1 treatments compared to control. RT in combination with the

anti-PD-L1 also significantly reduced infiltration of CD4+

CD25+FOXP3+ T regulatory cells (Byrne et al, 2011), further

supporting the notion that PD-L1 checkpoint inhibition together

with RT can counteract the immunosuppressive tumor environ-

ment. Our observations are in line with a previous report showing

decreased lung metastases after RT and CTLA-4 blockade in a

mouse model of breast cancer (Demaria et al, 2005). Also, albeit in

a different setting, combination of local RT with immune checkpoint

blockade has demonstrated the so-called abscopal effect, that is,

regression of metastatic lesions located outside the radiation field in

melanoma patients due to the development of immune surveillance

(Postow et al, 2012).

Finally, we developed a minimal model of immune cell interac-

tions with tumor cells that can explain the tumor growth behavior

under treatment conditions. Importantly, we found that the syner-

gistic effect of anti-PD-L1 treatment with RT cannot be explained

solely with increased CD8+ T-cell recruitment or activation. An

additional effect of anti-PD-L1 on the immunosuppressive microen-

vironment had to be invoked to explain the delayed tumor growth.

Our model indicates that radiation + anti-PD-L1 combination ther-

apy is only effective in patients with pre-existing CD8 T cells in the

tumor microenvironment and that anti-PD-L1 should be adminis-

tered early, in conjunction with RT for maximal anti-tumor

responses. The mathematical model provides validation that

anti-PD-L1 additionally targets the immunosuppressive cells,

whereas radiotherapy alone may only stimulate immune cell recruit-

ment. These findings are important for the design of future thera-

peutic strategies as they underscore the clinical value of

combination therapy involving PD-1/PD-L1 blockade to target the

immunosuppressive microenvironment.

In summary, PD-L1 blockade can improve PDAC response to RT

and chemoradiation and can enhance the effect of RT in preventing

formation of liver metastases. Altogether, these findings indicate

that RT combined with PD-L1 checkpoint inhibition can “shift” the

balance toward a more favorable immune phenotype. Our data add

important insight on the potential of immune checkpoint inhibitors

to radiosensitize PDAC, a tumor that is traditionally considered as

non-immunogenic. These findings provide a rationale for exploring

the therapeutic potential of PD-L1 blockade in combination with RT

in PDAC and should be explored in future clinical studies in patients

with PDAC.

Materials and Methods

Cell culture and reagents

The murine PDAC cell lines KPC and Pan02 were cultured in DMEM

supplemented with 10% FBS and 1% penicillin/streptomycin. KPC

cells were derived from KrasLSLG12D/+; p53R172H/+; Pdx1-Cretg/+

(KPC) tumors. Murine Pan02 pancreatic adenocarcinoma cells were

obtained from the NCI–DCTD Tumor Repository, Maryland, USA.

Gemcitabine was purchased from Eli Lilly and Company Ltd, UK.

Murine anti-PD-L1 antibody (Clone 10F.9G2) was purchased from

BioXCell.

Clonogenic survival assay

Both KPC and Pan02 cells were seeded into 6-well plates. Anti-

PD-L1 antibody was added to the culture 1 h before irradiation

with single dose of 2, 4, and 6 Gy. Similarly, cells were also

treated with gemcitabine (0, 10, 20, and 50 nM). Gemcitabine

was diluted in DMSO (vehicle), and hence, we used DMSO for

the untreated control group. Twenty-four hours after treatment,

cells were washed with PBS and replaced with fresh medium.

The clonogenic survival of cells was assessed as described previ-

ously (Prevo et al, 2008).

Syngeneic mouse models

C57BL/6 mice were injected subcutaneously (s.c.) with KPC and

Pan02 cells (5 × 105 cells/100 ll in serum-free medium). Tumor

size was measured with caliper using the formula Volume =

(a × b2)/2, in which a and b are the largest and the smallest

perpendicular diameters, respectively. Mice were randomized into

different groups when tumors reached 100 mm3 and treatment was

initiated (day 0) as described previously (Fokas et al, 2012). RT

was initiated at day 0 (with the exception of the triple combination

experiment where it was initiated at day 4) and was administered

at a dose of either 6 Gy, 12 Gy, 20 Gy, 5 × 3 Gy, or 5 × 2 Gy given

daily using the Gulmay 320 irradiator under inhalational anesthesia

with isoflurane (2%). Only the tumor was irradiated, whereas the
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rest of the body was sealed to avoid unwanted side effects (Fokas

et al, 2012). Gemcitabine (100 mg/kg) was given by intraperitoneal

(i.p.) injection at days 0 and 3. Anti-PD-L1 antibody (clone

10F.9G2, BioXCell, UK) was administered at a dose of 10 mg/kg by

i.p. injection at days 0, 3, 6, and 9 when combined with RT, or at

days 4, 7, 10, and 13 in the triple combination experiment

(gemcitabine + anti-PD-L1 + RT). For the combination doses, anti-

PD-L1 was administered immediately after RT. The anti-CD8 (clone

2.43, BioXCell, UK) to deplete CD8+ T cells was given by i.p. injec-

tion at dose of 250 lg at days 0 (immediately post-RT), 3, 6, and 9.

We assessed the time it took for the tumors to grow to 400 mm3,

starting from the beginning of treatment (day 0) to ensure that our

experiments were according to the UK Home Office guidelines for

animal welfare.

Liver metastasis mouse model

To generate liver metastasis, KPC cells (5 × 105 cells/100 ll in PBS)

were injected intrasplenically into C57BL/6 mice that are either

naı̈ve or pre-irradiated with 12 Gy 1 h before intrasplenic injection,

as previously described (Lim et al, 2015). Spleen was removed

1 min following intrasplenic injection to avoid tumor growth in the

spleen. Similar to the allograft experiments, anti-PD-L1 antibody

was given at days 0, 3, 6, and 9 by i.p. injection at a dose of 10 mg/

kg. Livers were harvested and weighed at day 14.

KPC transgenic mice

The KPC transgenic mouse model has been described previously

(Hingorani et al, 2005). When mice reached an age of 11–12 weeks,

monitoring for tumor was initiated using palpation twice per week

and sonography (Ultrasound-Vevo 700). Treatment with gemc-

itabine (100 mg/kg) by i.p. injection for a total of three doses every

4 days was started when tumor reached 80–120 mm3. We assessed

the impact of chemotherapy either short term (24 h) or long term

(3–7 weeks, based on tumor size and deterioration of health status

including weight loss > 20% and lethargy) after completion of treat-

ment with gemcitabine. Tumors were harvested and analyzed for

PD-L1 expression by flow cytometry as described below.

All animal experiments were performed according to the regu-

lations of the University of Oxford and the Home office, UK (Sci-

entific Procedure Act, 1986; Project License Number 30/2922

issued by the Home Office). All protocols were approved by the

Committee on the Ethics of Animal Experiments of the University

of Oxford.

Flow cytometry analysis

KPC and Pan02 cells were seeded in 6-well plate. After 24 h, cells

were treated with either 6, 4 × 2 Gy fractionated radiation given

daily using cesium-137 irradiators, or 20 nM gemcitabine. Gem-

citabine was diluted in DMSO (vehicle), and hence, we used DMSO

for the untreated control group and the radiation groups as well.

Cells were harvested 24 h post-treatment and washed with cold

PBS. Cells were stained with mouse PE-PD-L1 and APC-IFNc. All

the antibodies were purchased from eBiosciences.

We also examined expression of PD-L1 following blockade of

either Stat1 or Stat3 using siRNA. For that purpose, cells were

transfected with 50 nM negative control siRNA (catalog number

1022076, Qiagen), 50 and 100 nM Stat1 (J-058881-10, DermaFECT),

or 50 nM Stat3 siRNA (J-040794-10, DermaFECT) using Lipofec-

tamine 2000 (Invitrogen) reagent. After 48 h, proteins were isolated

and knockdown was confirmed by Western blotting. For flow

cytometry analysis of PD-L1 and IFNc, siRNA-transfected cells were

either irradiated with 6 Gy or treated with gemcitabine and PD-L1

expression examined as above. PD-L1 expression was also assessed

following addition of recombinant mouse IL-6 (50 ng/ml; Pepro-

Tech) for 1 h and subsequent treatments with 6 Gy and gemcitabine

for 24 h.

For flow cytometry analysis of mouse tissue samples, tumor,

liver, and spleen were cut into small pieces and only liver samples

were digested with 0.05% collagenase/dispase (Roche) for 15 min

at 37°C in the presence of 0.01% trypsin inhibitor. Bone marrow

was collected by flushing both femur and tibia with PBS using a

25-G syringe. All cells were washed with cold PBS. Cells were then

filtered through 70-lm nylon strainer followed by red blood cell

(RBC) lysis for 3 min at room temperature. Single-cell suspensions

were then stained with the following antibodies: FITC-CD45, FITC-

CD8, PeCy7-CD4, PeCy7-CD11b, PE-Gr1, PE-Ly6G and APC-IFNc,
PE-CD25, APC-FOXP3, CD69-PE, APC-CD44, and PeCy7-FasL.

Blood samples were collected in 40 mM EDTA and mixed with

equal volume of PBS. Diluted blood was layered onto an equal

volume of Histopaque (Sigma) and centrifuged at 400 g for 20 min

at RT to isolate leukocyte population. The cells were washed with

cold PBS and stained with FITC-CD8, PeCy7-CD4, and PE-PD-1.

Flow cytometry was performed using a FACSCalibur (Becton

Dickinson) and analyzed using FlowJo software (FlowJo, LLC,

USA). All the antibodies were purchased from eBiosciences, UK.

Western blotting

Cells were first treated with 20 lM of JAK kinase inhibitor (AG490,

Tocris) 1 h before RT (6 Gy) or addition of 20 nM gemcitabine.

Following 24 h post-RT and gemcitabine, cell lysates were prepared

in RIPA buffer containing protease inhibitor cocktail (Roche) and

phosphatase inhibitor cocktail (Roche). In total, 30 lg of proteins

were separated on SDS–PAGE (Invitrogen) and transferred to

Hybond-C membranes (Amersham Biosciences). Standard proce-

dures were applied for Western blotting. The following antibodies

were used: Stat1, phospho-Stat1 (Y701), Stat3, mouse PD-L1 (all

from R&D Systems), actin (Cell Signaling).

Cytokine profile and SDF-1 ELISA in KPC allografts

Serum was obtained from the KPC allograft-bearing mice 5 days

after treatment with either vehicle (control), 12 Gy, anti-PD-L1, or

12 Gy + anti-PD-L1. Serum was assessed for expression of cytokines

using a standard Cytokine Profiler kit and SDF-1 ELISA kit (both

from R&D Systems) according to the manufacturer instructions.

Array spot intensities were quantified using a Matlab software as

reported (Zhao et al, 2013).

Mathematical modeling

We and others have previously used mathematical modeling to

describe T-cell activation and antigen potency (Dushek et al, 2011;
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Lever et al, 2014; Tolaney et al, 2015). Here, we used the same princi-

ples to model the efficacy of anti-PD-L1 and RT in the different experi-

ments. The mathematical model consists of a system of ordinary

differential equations (ODEs), which are often used to describe the

interactions among cellular populations in immunology and cancer,

@T1/@t = k*T1 (resistant tumor cells)

@T2/@t = k*T2-e1/((K+M))*E*T2-e2*X*T2 (susceptible tumor cells)

@E/@t = c (CD8 effector T cells)

@X/@t = b (other immune cells)

@M/@t = φ (microenvironment factors)

where: k = 0.19, c = 0.025, b = 0.16, e2 = 0.0298, M ≥ 1, K � 1,

tumor volume V = T1 + T2, and under the different treatment condi-

tions: no treatment: e1 = 0.002, φ = 3, T1 day 0 = 100, T2 day

0 = 0; radiation: e1 = 0.002, φ = 3, T1 day 0 = 0.4, T2 day

0 = 99.6; radiation + anti-PD-L1 (day 0): e1 = 0.02, φ = �0.2, T1

day 0 = 0.4, T2 day 0 = 99.6; radiation + anti-PD-L1 (day 6): e1 day

0 = 0.002, e1 day 6 = 0.02, φ day 0 = 3, φ day 6 = �0.2, T1 day

0 = 0.4, T2 day 0 = 99.6. The ODEs were integrated in Matlab

(Mathworks, MA, USA) using ode45.

Statistical analyses

Differences between groups were determined using Student’s paired

t-test and one-way ANOVA (Bonferroni test) with the GraphPad

Prism version 5 (GraphPad software, USA). P-values lower than

0.05 were considered statistically significant. Error bars represent

standard deviation.

Expanded View for this article is available online.
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